Adedokun, S.A., Adeola, O., Parsons, C.M., Lilburn, M.S., Applegate, T.J., 2011. Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poult. Sci. 90, 1737–1748. https://doi.org/10.3382/ps.2010-01245.
Adedokun, S.A., Helmbrecht, A., Applegate, T.J., 2016. Investigation of the effect of coccidial vaccine challenge on apparent and standardized ileal amino acid digestibility in grower and finisher broilers and its evaluation in 21-day-old broilers. Poult. Sci. 95, 1825–1835. https://doi.org/10.3382/ps/pew066.
Adedokun, S.A., Parsons, C.M., Lilburn, M.S., Adeola, O., Applegate, T.J., 2007. Endogenous amino acid flow in broiler chicks is affected by the age of birds and method of estimation. Poult. Sci. 86, 2590–2597. https://doi.org/10.3382/ps.2007-00096.
Adeola, O., Xue, P.C., Cowieson, A.J., Ajuwon, K.M., 2016. Basal endogenous losses of amino acids in protein nutrition research for swine and poultry. Anim. Feed Sci. Technol. 221, 274–283. https://doi.org/10.1016/j.anifeedsci.2016.06.004.
Allen, P.C., Fetterer, R.H., 2002. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev. 15, 58–65. https://doi.org/10.1128/CMR.15.1.58-65.2002.
Arsenault, R.J., Lee, J.T., Latham, R., Carter, B., Kogut, M.H., 2017. Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannancontaining diets. Poult. Sci. 96, 4307–4316. https://doi.org/10.3382/ps/pex246.
Bai, M., Liu, H., Xu, K., Oso, A.O., Wu, X., Liu, G., Tossou, M.C.B., Al-Dhabi, N.A., Duraipandiyan, V., Xi, Q., Yin, Y., 2017. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids 49, 67–74. https://doi.org/10.1007/s00726-016-2351-8.
Baracos, V.E., 2004. Animal models of amino acid metabolism: a focus on the intestine. J. Nutr. 134, 1656S–1659S. https://doi.org/10.1093/jn/134.6.1656S.
Bartell, S.M., Batal, A.B., 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 86, 1940–1947. https://doi.org/10.1093/ps/86.9.1940.
Bauchart-Thevret, C., Stoll, B., Burrin, D.G., 2009. Intestinal metabolism of sulfur amino acids. Nutr. Res. Rev. 22, 175–187. https://doi.org/10.1017/ S0954422409990138.
Bequette, B.J., 2003. Amino acid metabolism in animals: an overview. In: D’Mello, J.P.F. (Ed.), Amino Acids in Animal Nutrition. CABI, Wallingford, pp. 87–101. https://doi.org/10.1079/9780851996547.0087.
Bortoluzzi, C., Rochell, S.J., Applegate, T.J., 2018. Threonine, arginine, and glutamine: influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci. 97, 937–945. https://doi.org/10.3382/ps/pex394.
Brosnan, J.T., Brosnan, M.E., 2006. The sulfur-containing amino acids: an overview. J. Nutr. 136, 1636S–1640S. https://doi.org/10.1093/jn/136.6.1636S.
Bunchasak, C., 2009. Role of dietary methionine in poultry production. J. Poult. Sci. 46, 169–179. Burrin, D.G., Stoll, B., 2007. Emerging aspects of gut sulfur amino acid metabolism. Curr. Opin. Clin. Nutr. Metab. Care 10, 63–68. https://doi.org/10.1097/MCO. 0b013e3280115d36.
Chen, Y., Li, D., Dai, Z., Piao, X., Wu, Z., Wang, B., Zhu, Y., Zeng, Z., 2014. l-Methionine supplementation maintains the integrity and barrier function of the smallintestinal mucosa in post-weaning piglets. Amino Acids 46, 1131–1142. https://doi.org/10.1007/s00726-014-1675-5.
Chen, Y., Zhang, H., Cheng, Y., Li, Y., Wen, C., Zhou, Y., 2018. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br. J. Nutr. 119, 1254–1262. https://doi.org/10.1017/S0007114518000740.
Chen, Y.P., Cheng, Y.F., Li, X.H., Yang, W.L., Wen, C., Zhuang, S., Zhou, Y.M., 2017. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult. Sci. 96, 405–413. https://doi.org/10.3382/ps/pew240.
Collier, C.T., Hofacre, C.L., Payne, A.M., Anderson, D.B., Kaiser, P., Mackie, R.I., Gaskins, H.R., 2008. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet. Immunol. Immunopathol. 122, 104–115. https://doi.org/10.1016/j.vetimm.2007.10.014.
Conway, P.L., 1994. Function and regulation of the gastrointestinal microbiota of the pig. Publ.-Eur. Assoc. Anim. Prod. 80, 231. Cook, R.H., Bird, F.H., 1973. Duodenal villus area and epithelial cellular migration in conventional and germ-free chicks. Poult. Sci. 52, 2276–2280. https://doi.org/ 10.3382/ps.0522276.
Corzo, A., Kidd, M.T., Dozier, W.A., Pharr, G.T., Koutsos, E.A., 2007. Dietary threonine needs for growth and immunity of broilers raised under different litter conditions. J. Appl. Poult. Res. 16, 574–582. https://doi.org/10.3382/japr.2007-00046.
Cowieson, A.J., Ravindran, V., 2007. Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br. J. Nutr. 98. https://doi.org/10.1017/S0007114507750894.
Dahiya, J.P., Hoehler, D., Van Kessel, A.G., Drew, M.D., 2007. Effect of different dietary methionine sources on intestinal microbial populations in broiler chickens. Poult. Sci. 86, 2358–2366. https://doi.org/10.3382/ps.2007-00133.
Dai, X., Zhu, B.T., 2010. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: implications for its biological functions. J. Histochem. Cytochem. 58, 17–28. https://doi.org/10.1369/jhc.2009.953604.
Ding, H., Mei, Q., Gan, H.-Z., Cao, L.-Y., Liu, X.-C., Xu, J.-M., 2014. Effect of homocysteine on intestinal permeability in rats with experimental colitis, and its mechanism. Gastroenterol. Rep. 2, 215–220. https://doi.org/10.1093/gastro/gou022.
D’Mello, J.P.F. (Ed.), 2003. Amino Acids in Animal Nutrition, 2nd ed ed. CABI Pub, Willingford, Oxon, UK, Cambridge, MA, USA.
Fasina, Y.O., Bowers, J.B., Hess, J.B., McKee, S.R., 2010. Effect of dietary glutamine supplementation on Salmonella colonization in the ceca of young broiler chicks. Poult. Sci. 89, 1042–1048. https://doi.org/10.3382/ps.2009-00415.
Faure, M., Choné, F., Mettraux, C., Godin, J.-P., Béchereau, F., Vuichoud, J., Papet, I., Breuillé, D., Obled, C., 2007. Threonine utilization for synthesis of acute phase proteins, intestinal proteins, and Mucins is increased during Sepsis in rats. J. Nutr. 137, 1802–1807. https://doi.org/10.1093/jn/137.7.1802.
Faure, M., Moënnoz, D., Montigon, F., Mettraux, C., Breuillé, D., Ballèvre, O., 2005. Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. J. Nutr. 135, 486–491. https://doi.org/10.1093/jn/135.3.486.
Fernandes, J.I.M., Murakami, A.E., 2010. Arginine metabolism in uricotelic species. Acta Sci. Anim. Sci. 32, 357–366. https://doi.org/10.4025/actascianimsci.v32i4. 10990.
Fernandes, J.I.M., Murakami, A.E., Rorig, A., Bordignon, H.L.F., Ribeiro, M.V., Kaneko, I.N., dos Santos, T.C., 2018. Effect of dietary glutamine supplementation associated with threonine levels in the intestinal mucosa of broilers challenged with Eimeria sp. from 22 to 42 days of age. Semina Ciênc. Agrár. 39, 1239. https:// doi.org/10.5433/1679-0359.2018v39n3p1239.
Fernando, M.A., McCraw, B.M., 1973. Mucosal morphology and cellular renewal in the intestine of chickens following a single infection of Eimeria acervulina. J. Parasitol. 59, 493. https://doi.org/10.2307/3278782.
Finkelstein, J.D., 2000. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemost. 26, 219–226. https://doi.org/10.1055/s-2000- 8466.
Flynn, N.E., Wu, G., 1996. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 271, R1149–R1155. https://doi.org/10.1152/ajpregu.1996.271.5.R1149.
Gao, J., Xu, K., Liu, H., Liu, G., Bai, M., Peng, C., Li, T., Yin, Y., 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol. 8. https://doi.org/10.3389/fcimb.2018.00013.
Gilani, S., Howarth, G.S., Tran, C.D., Kitessa, S.M., Forder, R.E.A., Barekatain, R., Hughes, R.J., 2018. Effects of delayed feeding, sodium butyrate and glutamine on intestinal permeability in newly-hatched broiler chickens. J. Appl. Anim. Res. 46, 973–976. https://doi.org/10.1080/09712119.2018.1443109.
Golian, A., Guenter, W., Hoehler, D., Jahanian, H., Nyachoti, C.M., 2008. Comparison of various methods for endogenous ileal amino acid flow determination in broiler chickens. Poult. Sci. 87, 706–712. https://doi.org/10.3382/ps.2007-00330.
Gottardo, E.T., Prokoski, K., Horn, D., Viott, A.D., Santos, T.C., Fernandes, J.I.M., 2016. Regeneration of the intestinal mucosa in Eimeria and E. coli challenged broilers supplemented with amino acids. Poult. Sci. 95, 1056–1065. https://doi.org/10.3382/ps/pev356.
Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., Sigl, V., Hanada, T., Hanada, R., Lipinski, S., Wild, B., Camargo, S.M.R., Singer, D., Richter, A., Kuba, K., Fukamizu, A., Schreiber, S., Clevers, H., Verrey, F., Rosenstiel, P., Penninger, J.M., 2012. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481. https://doi.org/10.1038/nature11228.
Hibbs, J.B., Taintor, R.R., Vavrin, Z., Rachlin, E.M., 1988. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94. https://doi.org/10.1016/S0006-291X(88)80015-9.
Hofacre, C.L., Smith, J.A., Mathis, G.F., 2018. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult. Sci. 97, 1929–1933. https://doi.org/10.3382/ps/pey082.
Hubbard, T.D., Murray, I.A., Perdew, G.H., 2015. Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab. Dispos. 43, 1522–1535. https://doi.org/10.1124/dmd.115.064246.
Kadirvel, R., Kratzer, F.H., 1974. Uptake of L-Arginine and L-Lysine by the small intestine and its influence on arginine-lysine antagonism in chicks. J. Nutr. 104, 339–344. https://doi.org/10.1093/jn/104.3.339.
Keszthelyi, D., Troost, F.J., Masclee, A.A.M., 2009. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 21, 1239–1249. https://doi.org/10.1111/j.1365-2982.2009.01370.x.
Khajali, F., Tahmasebi, M., Hassanpour, H., Akbari, M.R., Qujeq, D., Wideman, R.F., 2011. Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poult. Sci. 90, 2287–2294. https://doi.org/10.3382/ps. 2011-01618.
Khattak, F., Helmbrecht, A., 2019. Effect of different levels of tryptophan on productive performance, egg quality, blood biochemistry, and caecal microbiota of hens housed in enriched colony cages under commercial stocking density. Poult. Sci. 98, 2094–2104. https://doi.org/10.3382/ps/pey562.
Kidd, M.T., 2004. Nutritional modulation of immune function in broilers. Poult. Sci. 83, 650–657. https://doi.org/10.1093/ps/83.4.650.
Kidd, M.T., Kerr, B.J., 1996. L-threonine for poultry: a review. J. Appl. Poult. Res. 5, 358–367. https://doi.org/10.1093/japr/5.4.358.
Kipper, M., Andretta, I., Lehnen, C.R., Lovatto, P.A., Monteiro, S.G., 2013. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Vet. Parasitol. 196, 77–84. https://doi.org/10.1016/j.vetpar.2013.01.013.
Kogut, M.H., 2017. Issues and consequences of using nutrition to modulate the avian immune response. J. Appl. Poult. Res. 26, 605–612. https://doi.org/10.3382/ japr/pfx028.
Kogut, M.H., Genovese, K.J., Swaggerty, C.L., He, H., Broom, L., 2018. Inflammatory phenotypes in the intestine of poultry: not all inflammation is created equal. Poult. Sci. 97, 2339–2346. https://doi.org/10.3382/ps/pey087.
Korecka, A., Dona, A., Lahiri, S., Tett, A.J., Al-Asmakh, M., Braniste, V., D’Arienzo, R., Abbaspour, A., Reichardt, N., Fujii-Kuriyama, Y., Rafter, J., Narbad, A., Holmes, E., Nicholson, J., Arulampalam, V., Pettersson, S., 2016. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes 2, 16014. https://doi.org/10.1038/npjbiofilms.2016.14.
Lai, A., Dong, G., Song, D., Yang, T., Zhang, X., 2018. Responses to dietary levels of methionine in broilers medicated or vaccinated against coccidia under Eimeria tenella-challenged condition. BMC Vet. Res. 14, 140. https://doi.org/10.1186/s12917-018-1470-8.
Laika, M., Jahanian, R., 2017. Increase in dietary arginine level could ameliorate detrimental impacts of coccidial infection in broiler chickens. Livest. Sci. 195, 38–44. https://doi.org/10.1016/j.livsci.2016.11.002.
Lanis, J.M., Alexeev, E.E., Curtis, V.F., Kitzenberg, D.A., Kao, D.J., Battista, K.D., Gerich, M.E., Glover, L.E., Kominsky, D.J., Colgan, S.P., 2017. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 10, 1133–1144. https://doi.org/10. 1038/mi.2016.133.
Le Floc’h, N., Melchior, D., Obled, C., 2004. Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest. Prod. Sci. 87, 37–45. https://doi.org/10.1016/j.livprodsci.2003.09.005.
Le Floc’h, N., Otten, W., Merlot, E., 2011. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41, 1195–1205. https://doi.org/ 10.1007/s00726-010-0752-7.
Le Floc’h, N., Seve, B., 2007. Biological roles of tryptophan and its metabolism: potential implications for pig feeding. Livest. Sci., Special Section: Non-Ruminant Nutrition Symposium 112. pp. 23–32. https://doi.org/10.1016/j.livsci.2007.07.002.
Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L., Stadtman, E.R., 1999. Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 107, 323–332. https://doi.org/10.1016/S0047-6374(98)00152-3.
Liang, H., Dai, Z., Kou, J., Sun, K., Chen, J., Yang, Y., Wu, G., Wu, Z., 2019. Dietary l-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota. Int. J. Mol. Sci. 20, 20. https://doi.org/10.3390/ijms20010020.
Liang, H., Dai, Z., Liu, N., Ji, Y., Chen, J., Zhang, Y., Yang, Y., Li, J., Wu, Z., Wu, G., 2018. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.01736.
Lien, K., Sauer, W., He, J., 2001. Dietary influences on the secretion into and degradation of mucin in the digestive tract of monogastric animals and humans. J. Anim. Feed Sci. 10, 223–245. https://doi.org/10.22358/jafs/67980/2001.
Luquetti, B.C., Alarcon, M.F.F., Lunedo, R., Campos, D.M.B., Furlan, R.L., Macari, M., Luquetti, B.C., Alarcon, M.F.F., Lunedo, R., Campos, D.M.B., Furlan, R.L., Macari, M., 2016. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Sci. Agric. 73, 322–327. https://doi.org/10.1590/0103-9016-2015-0114.
Mastrototaro, L., Sponder, G., Saremi, B., Aschenbach, J.R., 2016. Gastrointestinal methionine shuttle: priority handling of precious goods. IUBMB Life 68, 924–934. https://doi.org/10.1002/iub.1571.
Moghaddam, H.N., Alizadeh-Ghamsari, A.H., 2013. Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation. J. Appl. Anim. Res. 41, 1–7. https://doi.org/10.1080/09712119.2012.738214.
Montagne, L., Pluske, J.R., Hampson, D.J., 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108, 95–117. https://doi.org/10.1016/S0377-8401(03)00163-9.
Mosharov, E., Cranford, M.R., Banerjee, R., 2000. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39, 13005–13011. https://doi.org/10.1021/bi001088w.
Nyachoti, C.M., de Lange, C.F.M., McBride, B.W., Schulze, H., 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can. J. Anim. Sci. 77, 149–163. https://doi.org/10.4141/A96-044.
Olsen, T., Øvrebø, B., Turner, C., Bastani, N.E., Refsum, H., Vinknes, K.J., 2018. Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients 10, 1822. https://doi.org/10.3390/nu10121822.
Pereira, A.P., Murakami, A.E., Stefanello, C., Iwaki, L.C.V., Santos, T.C., 2019. Productive performance, bone characteristics, and intestinal morphology of laying hens fed diets formulated with L-glutamic acid. Poult. Sci. https://doi.org/10.3382/ps/pey595.
Prescott, J.F., Parreira, V.R., Gohari, I.M., Lepp, D., Gong, J., 2016. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol. 45, 288–294. https://doi.org/10.1080/03079457.2016.1139688.
Rao, R., Samak, G., 2012. Role of glutamine in protection of intestinal epithelial tight junctions. J. Epithel. Biol. Pharmacol. 5, 47–54. https://doi.org/10.2174/ 1875044301205010047.
Ravindran, V., Hendriks, W.H., 2004. Endogenous amino acid flows at the terminal ileum of broilers, layers and adult roosters. Anim. Sci. 79, 265–271. https://doi. org/10.1017/S1357729800090123.
Ravindran, V., Hew, L.I., Ravindran, G., 2004. Endogenous amino acid flow in the avian ileum: quantification using three techniques. Br. J. Nutr. 92, 217–223. https:// doi.org/10.1079/BJN20041202.
Richard, D.M., Dawes, M.A., Mathias, C.W., Acheson, A., Hill-Kapturczak, N., Dougherty, D.M., 2009. L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2https://doi.org/10.4137/IJTR.S2129. IJTR.S2129.
Roager, H.M., Licht, T.R., 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294. https://doi.org/10.1038/s41467-018-05470-4.
Rochell, S.J., Helmbrecht, A., Parsons, C.M., Dilger, R.N., 2017a. Interactive effects of dietary arginine and Eimeria acervulina infection on broiler growth performance and metabolism. Poult. Sci. 96, 659–666. https://doi.org/10.3382/ps/pew295.
Rochell, S.J., Parsons, C.M., Dilger, R.N., 2016. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers. Poult. Sci. 95, 1573–1581. https://doi.org/10.3382/ps/pew035.
Rochell, S.J., Usry, J.L., Parr, T.M., Parsons, C.M., Dilger, R.N., 2017b. Effects of dietary copper and amino acid density on growth performance, apparent metabolizable energy, and nutrient digestibility in Eimeria acervulina-challenged broilers. Poult. Sci. 96, 602–610. https://doi.org/10.3382/ps/pew276.
Sharma, R., Fernandez, F., Hinton, M., Schumacher, U., 1997. The influence of diet on the mucin carbohydrates in the chick intestinal tract. Cell. Mol. Life Sci. 53, 935. https://doi.org/10.1007/s000180050114.
Shaw, J.P., Chou, I.-N., 1986. Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J. Cell. Physiol. 129, 193–198. https://doi.org/10.1002/jcp.1041290210.
Shoveller, A.K., Brunton, J.A., Pencharz, P.B., Ball, R.O., 2003. The methionine requirement is lower in neonatal piglets fed parenterally than in those fed enterally. J. Nutr. 133, 1390–1397. https://doi.org/10.1093/jn/133.5.1390.
Siriwan, P., Bryden, W.L., Mollah, Y., Annison, E.F., 1993. Measurement of endogenous amino acid losses in poultry. Br. Poult. Sci. 34, 939–949. https://doi.org/10. 1080/00071669308417654.
Smirnov, A., Sklan, D., Uni, Z., 2004. Mucin dynamics in the chick small intestine are altered by starvation. J. Nutr. 134, 736–742. https://doi.org/10.1093/jn/134.4. 736.
Smith, J.A., 2018. Broiler production without antibiotics: United States field perspectives. Anim. Feed Sci. Technol. https://doi.org/10.1016/j.anifeedsci.2018.04.027.
Soda, K., 2018. Polyamine metabolism and gene methylation in conjunction with one-carbon metabolism. Int. J. Mol. Sci. 19, 3106. https://doi.org/10.3390/ ijms19103106.
Soleimani, A.F., Kasim, A., Alimon, A.R., Meimandipour, A., Zulkifli, I., 2010. Original Article: ileal endogenous amino acid flow of broiler chickens under high ambient temperature. J. Anim. Physiol. Anim. Nutr. (Berl) 94, 641–647. https://doi.org/10.1111/j.1439-0396.2009.00951.x.
Star, L., Rovers, M., Corrent, E., van der Klis, J.D., 2012. Threonine requirement of broiler chickens during subclinical intestinal Clostridium infection. Poult. Sci. 91, 643–652. https://doi.org/10.3382/ps.2011-01923.
Stein, H.H., Sève, B., Fuller, M.F., Moughan, P.J., de Lange, C.F.M., 2007. Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J. Anim. Sci. 85, 172–180. https://doi.org/10.2527/jas.2005-742.
Stoll, B., 2006. Intestinal uptake and metabolism of threonine: nutritional impact. Adv. Pork. Prod. 17, 257–263.
Stoll, B., Henry, J., Reeds, P.J., Yu, H., Jahoor, F., Burrin, D.G., 1998. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 128, 606–614. https://doi.org/10.1093/jn/128.3.606.
Su, W., Zhang, H., Ying, Z., Li, Y., Zhou, L., Wang, F., Zhang, L., Wang, T., 2018. Effects of dietary l-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur. J. Nutr. 57, 2735–2745. https://doi.org/10.1007/s00394-017-1539-3.
Sung, Y.-J., Hotchkiss, J.H., Austic, R.E., Dietert, R.R., 1991. L-arginine-dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J. Leukoc. Biol. 50, 49–56. https://doi.org/10.1002/jlb.50.1.49.
Tamir, H., Ratner, S., 1963. Enzymes of arginine metabolism in chicks. Arch. Biochem. Biophys. 102, 249–258. https://doi.org/10.1016/0003-9861(63)90178-4.
Tan, J., Applegate, T.J., Liu, S., Guo, Y., Eicher, S.D., 2014. Supplemental dietary l-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. Br. J. Nutr. 112, 1098–1109. https://doi.org/10.1017/S0007114514001846.
Turner, J.R., 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809. https://doi.org/10.1038/nri2653.
Uni, Z., Ganot, S., Sklan, D., 1998. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 77, 75–82. https://doi.org/10.1093/ps/77. 1.75.
Vespa, G.N., Cunha, F.Q., Silva, J.S., 1994. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182.
Waclawiková, B., El Aidy, S., 2018. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals 11, 63. https://doi.org/10.3390/ph11030063.
Wang, J., Chen, L., Li, P., Li, X., Zhou, H., Wang, F., Li, D., Yin, Y., Wu, G., 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138, 1025–1032. https://doi.org/10.1093/jn/138.6.1025.
Wang, W.W., Qiao, S.Y., Li, D.F., 2009. Amino acids and gut function. Amino Acids 37, 105–110. https://doi.org/10.1007/s00726-008-0152-4.
Wang, X., Qiao, S.Y., Liu, M., Ma, Y.X., 2006. Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25kg pigs. Anim. Feed Sci. Technol. 129, 264–278. https://doi.org/10.1016/j.anifeedsci.2006.01.003.
Wils-Plotz, E.L., Jenkins, M.C., Dilger, R.N., 2013. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poult. Sci. 92, 735–745. https://doi.org/10.3382/ps.2012-02755.
Windmueller, H.G., Spaeth, A.E., 1976. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch. Biochem. Biophys. 175, 670–676. https://doi.org/10.1016/0003-9861(76)90558-0.
Windmueller, H.G., Spaeth, A.E., 1975. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 171, 662–672. https://doi.org/10.1016/0003-9861(75)90078-8.
Wu, G., 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17. https://doi.org/10.1007/s00726-009-0269-0. Wu, G., 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128, 1249–1252. https://doi.org/10.1093/jn/128.8.1249.
Wu, G., Flynn, N.E., Yan, W., Barstow, D.G., 1995. Glutamine metabolism in chick enterocytes: absence of pyrroline-5-carboxylase synthase and citrulline synthesis. Biochem. J. 306, 717–721.
Wu, G., Morris, S.M., 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17. https://doi.org/10.1042/bj3360001.
Xi, P., Jiang, Z., Dai, Z., Li, X., Yao, K., Zheng, C., Lin, Y., Wang, J., Wu, G., 2012. Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J. Nutr. Biochem. 23, 1012–1017. https://doi.org/10.1016/j.jnutbio.2011.05.009.
Xue, G.D., Barekatain, R., Wu, S.B., Choct, M., Swick, R.A., 2018. Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poult. Sci. 97, 1334–1341. https://doi.org/10.3382/ps/pex444.
Yao, K., Fang, J., Yin, Y.L., Feng, Z.M., Tang, Z.R., Wu, G., 2011. Tryptophan metabolism in animals: important roles in nutrition and health. Front. Biosci. Sch. Ed. 3, 286–297. https://doi.org/10.2741/s152.
Yi, D., Hou, Y., Wang, L., Ouyang, W., Long, M., Zhao, D., Ding, B., Liu, Y., Wu, G., 2015. l-Glutamine enhances enterocyte growth via activation of the mTOR signaling pathway independently of AMPK. Amino Acids 47, 65–78. https://doi.org/10.1007/s00726-014-1842-8.
Yu, M., Wang, Q., Ma, Y., Li, L., Yu, K., Zhang, Z., Chen, G., Li, X., Xiao, W., Xu, P., Yang, H., 2018. Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. Int. J. Biol. Sci. 14, 69–77. https://doi.org/10.7150/ijbs.22259.
Zhang, B., Lv, Z., Li, Z., Wang, W., Li, G., Guo, Y., 2018. Dietary l-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by Clostridium perfringens. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.01716.
Zhang, Q., Chen, X., Eicher, S.D., Ajuwon, K.M., Applegate, T.J., 2017. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge. Poult. Sci. 96, 3043–3051. https://doi.org/10.3382/ps/pex111.
Zhang, Q., Xu, L., Doster, A., Murdoch, R., Cotter, P., Gardner, A., Applegate, T.J., 2014. Dietary threonine requirement of Pekin ducks from 15 to 35 days of age based on performance, yield, serum natural antibodies, and intestinal mucin secretion. Poult. Sci. 93, 1972–1980. https://doi.org/10.3382/ps.2013-03819.
Zhang, Q., Zeng, Q.F., Cotter, P., Applegate, T.J., 2016. Dietary threonine response of Pekin ducks from hatch to 14 d of age based on performance, serology, and intestinal mucin secretion. Poult. Sci. 95, 1348–1355. https://doi.org/10.3382/ps/pew032.
Zulkifli, I., Shakeri, M., Soleimani, A.F., 2016. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement. Poult. Sci. 95, 2757–2763. https://doi.org/10.3382/ps/pew267.
Thanks for the great topic and content. Some doubts arise during the paper reading, it would be better to increase CP digestibility by reducing the antinutritional and allergenics, using ingredients like SPC (Soybean Protein Concentrate), or decrease CP by using "pure AA" to meet the regular requirements.
A second question, regarding soluble fiber, would be better to reduce soluble fiber or take the ratio between Soluble and Insoluble fiber into consideration? Sometimes when reducing crude fiber, we are also reducing insoluble fiber.
Regarding mucin production, some papers have shown that once reduced antinutritional and allegenics like Glycinin and Conglycinin, the epithelium has a different morphology, increasing length and crypt depth. That suggests a higher demand for Threone, Proline, and other AAs.
Dr. Alemu, I think your considerations are consistent with those we did earlier. This consistency is more evident in his report that, in conditions of low health challenge, it is feasible to use diets with a lower level of crude protein. The reason for adopting this practice would be precisely related to the fact that healthy animals have less demand for non-amino acids. essential and that the relationships between essential amino acids and the lysine proposed in the ideal protein for the animal category would be more adjusted to their requirements. These facts are based on our report presented above.
Under immunological challenge, the animal uses the limiting AA for the synthesis of acute phase protein and other proteins that involve in immune system development at the expense of muscle accretion leading to growth depression. Therefore, in immune compromised animals the demand for these AA increases necessitating extra supplementation of AA to keep the animals healthy and productive. However, under ideal (normal) situation increasing crude protein level will compromise gut health in that, the fermentation of extra AA produces toxic metabolites that will enhance the growth and proliferation of pathogenic microbes. Therefore, low crude protein-AA diet is recommended under healthy conditions.
Dr. Cristiano, we congratulate the team involved in preparing the article, considering the information contained therein. I would like to take the opportunity of the material presented, to make some considerations regarding the implications of the practice of reducing crude protein (CP) in diets for pigs and poultry. First; - it became evident that the demand for essential amino acids, such as threonine, tryptophan and sulfur dioxide is increased in conditions of immunological challenge. Therefore, the relationships between these amino acids and lysine in the ideal protein of these animals are increased. With these facts, it became evident that the ideal protein has a dynamic character, revealing the need for adjustments in the relationships of these amino acids with lysine according to the animal's health status. Second, - the evidence that the non-essential amino acid, glutamine, can become limiting depending on the degree of the animal's immune challenge, is also a restriction to the practice of reducing crude protein in the feed. I made these considerations not in the sense that it is not feasible to reduce CP in poultry and swine diets, but in the sense that there is a need for the use of common sense when we advocate this practice. very well addressed in this article., other non-essential amino acids such as glutamate, aspartate and glycine, can also become limiting in pig and poultry diets depending on the animals' immune stress.