Campylobacter is a major foodborne pathogen and can be acquired through consumption of poultry products. With 1.3 million United States cases a year, the high prevalence of Campylobacter within the poultry gastrointestinal tract is a public health concern and thus a target for the development of intervention strategies. Increasing demand for antibiotic-free products has led to the promotion of various alternative pathogen control measures both at the farm and processing level. One such measure includes utilizing essential oils in both pre- and post-harvest settings. Essential oils are derived from plant-based extracts, and there are currently over 300 commercially available compounds. They have been proposed to control Campylobacter in the gastrointestinal tract of broilers. When used in concentrations low enough to not influence sensory characteristics, essential oils have also been proposed to decrease bacterial contamination of the poultry product during processing. This review explores the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their role in reducing Campylobacter concentrations both pre- and post-harvest. This review also details the suggested mechanisms of action of essential oils on Campylobacter.
Keywords: Campylobacter, poultry, essential oils, oregano, thymol, carvacrol, cinnamaldehyde.
Aarts, H. J., Van Lith, L. A., and Jacobs-Reitsma, W. F. (1995). Discrepancy between Penner serotyping and polymerase chain reaction fingerprinting of Campylobacter isolated from poultry and other animal sources.
Lett. Appl. Microbiol. 20, 371–374. doi: 10.1111/j.1472-765x.1995.tb01
324.x
Adkin, A., Hartnett, E., Jordan, L., Newell, D., and Davidson, H. (2006). Use of systematic review to assist the development of Campylobacter control strategies in broilers. J. Appl. Microbiol. 100, 306–315. doi: 10.1111/j.1365-2672.2005.
02781.x
Alcicek, A., Bozkurt, M., and Çabuk, M. (2004). The effect of a mixture of herbal essential oils, an organic acid or a probiotic on broiler performance. S. Afr. J.
Anim. Sci. 34, 217–222.
Allameh, S. K., Ringø, E., Yusoff, F. M., Daud, H. M., and Ideris, A. (2017).
Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short chain fatty acid production, immune system response and disease resistance of
Javanese carp (Puntius gonionotus, Bleeker 1850). Aquac. Nutr. 23, 331–338. doi: 10.1111/anu.12397
Allen, K. J., and Griffiths, M. W. (2001). Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma (28) promoter. FEMS Microbiol. Lett. 205, 43–48. doi: 10.1016/s0378-1097(01)00
444-x
Amerah, A. M., Mathis, G., and Hofacre, C. L. (2012). Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult. Sci. 91, 943–947. doi: 10.3382/ps.2011-01922
Anand, S., Kaur, H., and Mande, S. S. (2016). Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front.
Microbiol. 7:1945. doi: 10.3389/fmicb.2016.01945
Anderson, R. C., Krueger, N. A., Byrd, J. A., Harvey, R. B., Callaway, T. R.,
Edrington, T. S., et al. (2009). Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro. J. Appl.
Microbiol. 107, 1258–1268. doi: 10.1111/j.1365-2672.2009.04308.x
Ansari-Lari, M., Hosseinzadeh, S., Shekarforoush, S. S., Abdollahi, M., and Berizi,
E. (2011). Prevalence and risk factors associated with Campylobacter infections in broiler flocks in Shiraz, southern Iran. Int. J. Food Microbiol. 144, 475–479. doi: 10.1016/j.ijfoodmicro.2010.11.003
Arsi, K., Donoghue, A. M., Venkitanarayanan, K., Kollanoor-Johny, A., Fanatico,
A. C., Blore, P. J., et al. (2014). The efficacy of the natural plant extracts, thymol and carvacrol against Campylobacter colonization in broiler chickens. J. Food
Saf. 34, 321–325. doi: 10.1111/jfs.12129
Aslim, B., and Yucel, N. (2008). In vitro antimicrobial activity of essential oil from endemic Origanum minutiflorum on ciprofloxacin-resistant Campylobacter spp. Food Chem. 107, 602–606. doi: 10.1016/j.foodchem.2007.08.048
Austgulen, L. T., Solheim, E., and Schelin, R. R. (1987). Metabolism in rats of p-cymene derivates: carvacrol and thymol. Pharmacol. Toxicol. 61, 98–102. doi: 10.1111/j.1600-0773.1987.tb01783.x
Awad, W. A., Hess, C., and Hess, M. (2018). Re-thinking the chicken–
Campylobacter jejuni interaction: a review. Avian Pathol. 47, 352–363. doi: 10.1080/03079457.2018.1475724
Bajpai, V. K., Baek, K.-H., and Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: a review. Food Res. Int. 45, 722–734. doi: 10.1016/j.foodres.2011.04.052
Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M. (2008). Biological effects of essential oils: a review. Food Chem. Toxicol. 46, 446–475.
Bansil, R., and Turner, B. S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11,
164–170. doi: 10.1016/j.cocis.2005.11.001
Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L., and Thorat, R. M. (2010). Microencapsulation: a review. Int. J. Pharm. Sci. Rev. Res. 1, 38–43.
Baratta, M. T., Dorman, H. D., Deans, S. G., Figueiredo, A. C., Barroso, J. G., and Ruberto, G. (1998). Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr. J. 13, 235–244. doi: 10.1002/(sici)
1099-1026(1998070)13%3A4%3C235%3A%3Aaid-ffj733%3E3.3.co%3B2-k
Bashor, M. P., Curtis, P. A., Keener, K. M., Sheldon, B. W., Kathariou, S., and Osborne, J. A. (2004). Effects of carcass washers on Campylobacter contamination in large broiler processing plants. Poult. Sci. 83, 1232–1239. doi: 10.1093/ps/83.7.1232
Basmacioglu Malayo ˘ glu, H., Baysal, ¸S., Misirlio ˘ glu, Z., Polat, M., Yilmaz, H., ˘ and Turan, N. (2010). Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets.
Br. Poult. Sci. 51, 67–80. doi: 10.1080/00071660903573702
Batz, M. B., Hoffmann, S., and Morris, J. G. Jr. (2012). Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75, 1278–1291. doi: 10.4315/0362-028X.JFP-11-418
Baurhoo, B., Ruiz-Feria, C. A., and Zhao, X. (2008). Purified lignin: nutritional and health impacts on farm animals—A review. Anim. Feed Sci. Technol. 144,
175–184. doi: 10.1016/j.anifeedsci.2007.10.016
Beery, J. T., Hugdahl, M. B., and Doyle, M. P. (1988). Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl. Environ.
Microbiol. 54, 2365–2370.
Benavides, S., Villalobos-Carvajal, R., and Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J. Food Eng. 110, 232–239. doi: 10.1016/j. jfoodeng.2011.05.023
Bengmark, S. (1998). Immunonutrition: role of biosurfactants, fiber, and probiotic bacteria. Nutrition 14, 585–594. doi: 10.1016/s0899-9007(98)00030-6
Berrang, M. E., Buhr, R. J., Cason, J. A., and Dickens, J. A. (2001). Broiler carcass contamination with Campylobacter from feces during defeathering. J. Food
Prot. 64, 2063–2066. doi: 10.4315/0362-028x-64.12.2063
Bolton, D. J. (2015). Campylobacter virulence and survival factors. Food Microbiol.
48, 99–108. doi: 10.1016/j.fm.2014.11.017
Bozkurt, M., Küçükyilmaz, K., Catli, A. U., Çınar, M., Binta¸s, E., and Çöven, F. (2012). Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult. Sci. 91, 1379–1386. doi: 10.3382/ps.2011-02023
Brenes, A., and Roura, E. (2010). Essential oils in poultry nutrition: main effects and modes of action. Anim. Feed Sci. Technol. 158, 1–14. doi: 10.1016/j.anifeedsci.
2010.03.007
Buchbauer, G., Jirovetz, L., and Jäger, W. (1991). Aromatherapy: evidence for sedative effects of the essential oil of lavender after inhalation. Z. Naturforsch. C
46, 1067–1072. doi: 10.1515/znc-1991-11-1223
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94, 223–253. doi: 10.
1016/j.ijfoodmicro.2004.03.022
Cabuk, M., Bozkurt, M., Alcicek, A., Akbaþ, Y., and Küçükyýlmaz, K. (2006). Effect of a herbal essential oil mixture on growth and internal organ weight of broilers from young and old breeder flocks. S. Afr. J. Anim. Sci. 36, 135–141.
Callaway, T. R., Carroll, J. A., Arthington, J. D., Edrington, T. S., Anderson, R. C.,
Ricke, S. C., et al. (2011). “Citrus products and their use against bacteria: potential health and cost benefits,” in Nutrients, Dietary Supplements, and
Nutriceuticals, eds R. R. Watson, J. K. Gerald, and V. R. Preedy (New York,
NY: Humana Press), 277–286. doi: 10.1007/978-1-60761-308-4_17
Callicott, K. A., Friðriksdóttir, V., Reiersen, J., Lowman, R., Bisaillon, J. R.,
Gunnarsson, E., et al. (2006). Lack of evidence for vertical transmission of
Campylobacter spp. in chickens. Appl. Environ. Microbiol. 72, 5794–5798. doi: 10.1128/aem.02991-05
Calo, J. R., Crandall, P. G., O’Bryan, C. A., and Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food Control 54, 111–119. doi: 10.1016/j.foodcont.2014.12.040
Carocho, M., Barreiro, M. F., Morales, P., and Ferreira, I. C. (2014). Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 13, 377–399. doi: 10.1111/1541-4337.
12065
Carson, C. F., Mee, B. J., and Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents
Chemother. 46, 1914–1920. doi: 10.1128/aac.46.6.1914-1920.2002
Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., et al. (2015). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44,
D471–D480. doi: 10.1093/nar/gkv1164
Centers for Disease Control and Prevention [CDC] (2017a). Foodborne
Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance
Report (Final Data). Atlanta, GA: U.S. Department of Health and
Human Services.
Centers for Disease Control and Prevention [CDC] (2017b). Reports of Selected
Campylobacter Outbreak Investigations.
Centers for Disease Control and Prevention [CDC] (2018). Campylobacter (Campylobacteriosis).
Cervantes, H. M. (2015). Antibiotic-free poultry production: is it sustainable?
J. Appl. Poult. Res. 24, 91–97. doi: 10.3382/japr/pfv006
Chalova, V. I., Crandall, P. G., and Ricke, S. C. (2010). Microbial inhibitory and radical scavenging activities of cold-pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents. J. Sci. Food Agric. 90, 870–876. doi:
10.1002/jsfa.3897
Chang, M. H., and Chen, T. C. (2000). Reduction of Campylobacter jejuni in a simulated chicken digestive tract by lactobacilli cultures. J. Food Prot. 63,
1594–1597. doi: 10.4315/0362-028x-63.11.1594
Chapman, B., Otten, A., Fazil, A., Ernst, N., and Smith, B. A. (2016). A review of quantitative microbial risk assessment and consumer process models for
Campylobacter in broiler chickens. Microb. Risk Anal. 2, 3–15. doi: 10.1016/ j.mran.2016.07.001
Chaveerach, P., Lipman, L. J. A., and Van Knapen, F. (2004). Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli.
Int. J. Food Microbiol. 90, 43–50. doi: 10.1016/s0168-1605(03)00170-3
Chouliara, E., Karatapanis, A., Savvaidis, I. N., and Kontominas, M. G. (2007).
Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 C. Food Microbiol.
24, 607–617. doi: 10.1016/j.fm.2006.12.005
Chuma, T., Yamada, T., Yano, K., Okamoto, K., and Yugi, H. (1994). A survey of Campylobacter jejuni in broilers from assignment to slaughter using
DNA-DNA hybridization. J. Vet. Med. Sci. 56, 697–700. doi: 10.1292/jvms.
56.697Clark, A. G., and Bueschkens, D. H. (1985). Laboratory infection of chicken eggs with Campylobacter jejuni by using temperature or pressure differentials. Appl.
Environ. Microbiol. 49, 1467–1471.
Connerton, P. L., Richards, P. J., Lafontaine, G. M., O’Kane, P. M., Ghaffar,
N., Cummings, N. J., et al. (2018). The effect of the timing of exposure to
Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome 6:88. doi: 10.1186/s40168-018-0477-5
Corcionivoschi, N., Alvarez, L. A., Sharp, T. H., Strengert, M., Alemka, A.,
Mantell, J., et al. (2012). Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe
12, 47–59. doi: 10.1016/j.chom.2012.05.018
Corry, J. E. L., and Atabay, H. I. (2001). Poultry as a source of Campylobacter and related organisms. J. Appl. Microbiol. 90, 96S–114S.
Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M. L., Mascia, V., Arzedi, E., et al. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian
Thymus essential oils. Lett. Appl. Microbiol. 29, 130–135. doi: 10.1046/j.1472-
765x.1999.00605.x
Costerton, J. W. (1995). Overview of microbial biofilms. J. Ind. Microbiol. 15,
137–140. doi: 10.1007/bf01569816
Cox, N. A., Richardson, L. J., Buhr, R. J., and Fedorka-Cray, P. J. (2010).
Campylobacter can Remain in Various Organs – WorldPoultry.net.
Dang, S., Sun, L., Huang, Y., Lu, F., Liu, Y., Gong, H., et al. (2010). Structure of a fucose transporter in an outward-open conformation. Nature 467, 734–738. doi: 10.1038/nature09406
Davis, L., and DiRita, V. (2017). Growth and laboratory maintenance of
Campylobacter jejuni. Curr. Protoc. Microbiol. 10, 8A.1.1–8A.1.7. doi: 10.1002/
9780471729259.mc08a01s10
De Cesare, A., Sheldon, B. W., Smith, K. S., and Jykus, L. A. (2003). Survival and persistence of Campylobacter and Salmonella species under varying organic loads on food contact surfaces. J. Food Prot. 66, 1587–1594. doi: 10.4315/0362-
028x-66.9.1587
De Sousa, J. P., de Araújo Torres, R., de Azerêdo, G. A., Figueiredo, R. C., da
Silva Vasconcelos, M. A., and de Souza, E. L. (2012). Carvacrol and 1, 8- cineole alone or in combination at sublethal concentrations induce changes in the cell morphology and membrane permeability of Pseudomonas fluorescens in a vegetable-based broth. Int. J. Food Microbiol. 158, 9–13. doi: 10.1016/j. ijfoodmicro.2012.06.008
Deborde, M., and Von Gunten, U. R. S. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res. 42, 13–51. doi: 10.1016/j.watres.2007.07.025
Debruyne, L., Gevers, D., and Vandamme, P. (2008). “Taxonomy of the Family
Campylobacteraceae,” in Campylobacter, 3rd Edn, eds I. Nachamkin, C.
Szymanski, and M. Blaser (Washington, DC: ASM Press), 3–25. doi: 10.1128/
9781555815554.ch1
Delaquis, P. J., Stanich, K., Girard, B., and Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74, 101–109. doi: 10.1016/s0168-1605(01)
00734-6
Demir, E., Sarica, S., Ozcan, M. A., and Suicmez, M. (2005). The use of natural feed additives as alternatives to an antibiotic growth promoter in broiler diets. Arch.
Geflugelkunde 69, 110–116.
Denli, M., Okan, F., and Uluocak, A. N. (2004). Effect of dietary supplementation of herb essential oils on the growth performance, carcass and intestinal characteristics of quail (Coturnix coturnix japonica). S. Afr. J. Anim. Sci. 34,
174–179.
Di Pasqua, R., Mamone, G., Ferranti, P., Ercolini, D., and Mauriello, G. (2010).
Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10, 1040–1049. doi: 10.1002/pmic.200900568
Diaz-Sanchez, S., D’Souza, D., Biswas, D., and Hanning, I. (2015). Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 94,
1419–1430. doi: 10.3382/ps/pev014
Diener, M., Helmle-Kolb, C., Murer, H., and Scharrer, E. (1993). Effect of shortchain fatty acids on cell volume and intracellular pH in rat distal colon. Pflügers
Arch. 424, 216–223. doi: 10.1007/bf00384345
Dima, C., and Dima, S. (2015). Essential oils in foods: extraction, stabilization, and toxicity. Curr. Opin. Food Sci. 5, 29–35. doi: 10.1016/j.tplants.2016.10.005
Dittoe, D. K., Ricke, S. C., and Kiess, A. S. (2018). Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease.
Front. Vet. Sci. 5:216. doi: 10.3389/fvets.2018.00216
Díaz, E., Ferrández, A., Prieto, M. A., and García, J. L. (2001). Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65, 523–569. doi: 10.1128/mmbr.65.4.523-569.2001
Djenane, D., Yangueela, J., Gomez, D., and Roncales, P. (2012). perspectives on the use of essential oils as antimicrobials against Campylobacter jejuni CECT 7572 in retail chicken meats packaged in microaerobic atmosphere. J. Food Saf. 32,
37–47. doi: 10.1111/j.1745-4565.2011.00342.x
Donlan, R. M., and Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193. doi: 10.1128/cmr.15.2.167-193.2002
Donsi, F., Annunziata, M., Sessa, M., and Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods.
LWT Food Sci. Technol. 44, 1908–1914. doi: 10.1016/j.foodchem.2018.
11.078
Duarte, A., Luís, Â., Oleastro, M., and Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control
Campylobacter spp. Food Control 61, 115–122. doi: 10.1016/j.foodcont.2015.
09.033
Duarte, A., Martinho, A., Luís, A., Figueiras, A., Oleastro, M., Domingues,
F. C., et al. (2015). Resveratrol encapsulation with methyl-b-cyclodextrin for antibacterial and antioxidant delivery applications. LWT Food Sci. Technol. 63,
1254–1260. doi: 10.1016/j.lwt.2015.04.004
Duke, G. E. (1986). “Alimentary canal: anatomy, regulation of feed, and motility,” in Avian Physiology, ed. P. D. Sturkie (New York, NY: Springer-Verlag), 269–
302.
Dunkley, K. D., Dunkley, C. S., Njongmeta, N. L., Callaway, T. R., Hume, M. E.,
Kubena, L. F., et al. (2007). Comparison of in vitro fermentation and molecular microbial profiles of high-fiber feed substrates incubated with chicken cecal inocula. Poult. Sci. 86, 801–810. doi: 10.1093/ps/86.5.801
Economou, K. D., Oreopoulou, V., and Thomopoulos, C. D. (1991). Antioxidant activity of some plant extracts of the family Labiatae. J. Am. Oil Chem. Soc. 68,
109–113. doi: 10.1007/bf02662329
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res. 21, 308–323. doi: 10.1002/ptr.2072
Eeckhaut, V., Van Immerseel, F., Dewulf, J., Pasmans, F., Haesebrouck, F.,
Ducatelle, R., et al. (2008). Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poult. Sci. 87, 2329–2334. doi: 10.3382/ps.2008-00193
Elgayyar, M., Draughon, F. A., Golden, D. A., and Mount, J. R. (2001).
Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 64, 1019–1024. doi: 10.4315/
0362-028x-64.7.1019
Emami, N. K., Samie, A., Rahmani, H. R., and Ruiz-Feria, C. A. (2012). The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim. Feed Sci. Technol. 175, 57–64. doi: 10.1016/j.anifeedsci.2012.04.001
Epps, S. V., Harvey, R. B., Byrd, J. A., Petrujkiæ, B. T., Sedej, I., Beier, R. C., et al. (2015). Comparative effect of thymol or its glucose conjugate, thymol-β-Dglucopyranoside, on Campylobacter in avian gut contents. J. Environ. Sci. Health
Part B 50, 55–61. doi: 10.1080/03601234.2015.965634
European Food Safety Authority [EFSA] (2010). Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 8:1437. doi: 10.2903/j.efsa.2010.1437
Evans, W. C., and Fuchs, G. (1988). Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42, 289–317. doi: 10.1146/annurev.micro.
42.1.289
Fabricant, F. (2008). Earl Grey Flavor, to Serve after Teatime. New York, NY:
New York Times, D2.
Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., and Laganà, P. (2017).
Campylobacter: from microbiology to prevention. J. Prev. Med. Hyg. 58:E79.
Fenton, W. A., and Horwich, A. L. (1997). GroEL mediated protein folding. Prot.
Sci. 6, 743–760. doi: 10.1002/pro.5560060401
Fisher, K., and Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 19, 156–164. doi: 10.1016/j.tifs.2007.11.006
Fisher, K., and Phillips, C. (2009). The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol. 106,
1343–1349. doi: 10.1111/j.1365-2672.2008.04102.x
Fisher, K., and Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and
Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 101,
1232–1240. doi: 10.1111/j.1365-2672.2006.03035.x
Fitzgerald, C., and Nachamkin, I. (2011). “Campylobacter and Arcobacter,” in
Manual of Clinical Microbiology, eds J. Versalovic, K. Carroll, G. Funke, J.
Jorgensen, M. L. Landry, and D. W. Warnock (Washington, DC: ASM Press),
885–899.
Frank, J. F., Ehlers, J., and Wicker, L. (2003). Removal of Listeria monocytogenes and poultry soil-containing biofilms using chemical cleaning and sanitizing agents under static conditions. Food Prot. Trends 23, 654–663.
Franz, C., Baser, K. H. C., and Windisch, W. (2010). Essential oils and aromatic plants in animal feeding–a European perspective. A review. Flavour Fragr. J. 25,
327–340. doi: 10.1002/ffj.1967
Frazer, A. C. (1994). “O-demethylation and other transformations of aromatic compounds by acetogenic bacteria,” in Acetogenesis, ed. H. L. Drake (Boston,
MA: Springer), 445–483. doi: 10.1007/978-1-4615-1777-1_17
Friedman, C. R., Hoekstra, R. M., Samuel, M., Marcus, R., Bender, J., Shiferaw,
B., et al. (2004). Risk factors for sporadic Campylobacter infection in the
United States: a case-control study in FoodNet sites. Clin. Infect. Dis.
38(Suppl._3), S285–S296.
Friedman, M., Henika, P. R., and Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and
Salmonella enterica. J. Food Prot. 65, 1545–1560. doi: 10.4315/0362-028x-65.
10.1545
Gangaiah, D., Liu, Z., Arcos, J., Kassem, I. I., Sanad, Y., Torrelles, J. B., et al. (2010). Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS One 5:e12142. doi: 10.1371/journal. pone.0012142
Garénaux, A., Jugiau, F., Rama, F., De Jonge, R., Denis, M., Federighi, M., et al. (2008). Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: effect of temperature. Curr. Microbiol. 56, 293–297. doi: 10.1007/s00284-007-9082-8
Geissler, C., and Powers, H. (2011). “Chapter 3: food safety,” in Human Nutrition,
12th Edn, eds C. Geissler and H. Powers (Philadelphia, PA: Churchill
Livingstone Elsevier), 51–68.
Gerwe, T., Bouma, A., Wagenaar, J. A., Jacobs-Reitsma, W. F., and Stegeman, A. (2010). Comparison of Campylobacter levels in crops and ceca of broilers at slaughter. Avian Dis. 54, 1072–1074. doi: 10.1637/9113-101809-resnote.1
Gongqiao, X. U., Khatri, I. A., Wang, R., Rahman, S., and Forstner, J. F. (2003).
N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900. doi: 10.1042/bj2003
0096
Gonzalez-Molina, E., Moreno, D. A., and Garcia-Viguera, C. (2009). A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food
Chem. 115, 1364–1372. doi: 10.1016/j.foodchem.2009.01.056
Gous, R. M. (2010). Nutritional limitations on growth and development in poultry.
Livest. Sci. 130, 25–32. doi: 10.1016/j.livsci.2010.02.007
Gracia, M. I., Millan, C., Sanchez, J., Guyard-Nicodeme, M., Mayot, J., Carre, Y., et al. (2015). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period: part B. Poult. Sci. 95, 886–892. doi: 10.3382/ ps/pev346
Grand View Research (2018). Essential Oils Market Size, Share & Trends Analysis
Report By Product (Orange, Corn, Mint, Eucalyptus, Citronella, Pepper Mint,
Lemon, Clove Leaf, Lime, Spearmint), By Application, And Segment Forecasts,
2018 - 2025.
Grilli, E., Vitari, F., Domeneghini, C., Palmonari, A., Tosi, G., Fantinati, P., et al. (2013). Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: from in vitro to in vivo, a proof of concept. J. Appl.
Microbiol. 114, 308–317. doi: 10.1111/jam.12053
Guarner, F., and Malagelada, J. R. (2003). Gut flora in health and disease. Lancet
361, 512–519. doi: 10.1016/s0140-6736(03)12489-0
Guccione, E., Del Rocio Leon-Kempis, M., Pearson, B. M., Hitchin, E., Mulholland,
F., van Diemen, P. M., et al. (2008). Amino acid-dependent growth of
Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol. Microbiol. 69, 77–93. doi: 10.1111/j.1365-2958.2008.
06263.x
Guenther, E. (ed.). (1948). “The essential oils,” in Essential Oils, (New York, NY: D.
Van Nostrand), 8–52.
Guinoiseau, E., Luciani, A., Rossi, P. G., Quilichini, Y., Ternengo, S., Bradesi, P., et al. (2010). Cellular effects induced by Inula graveolens and Santolina corsica essential oils on Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 29,
873–879. doi: 10.1007/s10096-010-0943-x
Gunther, N. W., and Chen, C. Y. (2009). The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 26, 44–51. doi: 10.1016/j. fm.2008.07.012
Guyard-Nicodeme, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le Berre,
B., et al. (2015). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 95, 298–305. doi: 10.3382/ps/pev303
Häggblom, M. M., Rivera, M. D., and Young, L. Y. (1993). Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl. Environ. Microbiol. 59, 1162–1167.
Hajlaoui, H., Trabelsi, N., Noumi, E., Snoussi, M., Fallah, H., Ksouri, R., et al. (2009). Biological activities of the essential oils and methanol extract of two cultivated mint species (Mentha longifolia and Mentha pulegium) used in the
Tunisian folkloric medicine. World J. Microbiol. Biotechnol. 25, 2227–2238. doi: 10.1007/s11274-009-0130-3
Hansen, A. K., Hansen, C. H. F., Krych, L., and Nielsen, D. S. (2014). Impact of the gut microbiota on rodent models of human disease. World J. Gastroenterol.
20:17727. doi: 10.3748/wjg.v20.i47.17727
Hardin, A., Crandall, P. G., and Stankus, T. (2010). Essential oils and antioxidants derived from citrus by-products in food protection and medicine: an introduction and review of recent literature. J. Agric. Food Inf. 11, 99–122. doi: 10.1080/10496501003680680
Hardy, H., Harris, J., Lyon, E., Beal, J., and Foey, A. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5, 1869–1912. doi: 10.3390/nu5061869
Hargis, B. M., Caldwell, D. J., Brewer, R. L., Corrier, D. E., and DeLoach, J. R. (1995). Evaluation of the chicken crop as a source of Salmonella contamination for broiler carcasses. Poult. Sci. 74, 1548–1552. doi: 10.3382/ps.0741548
Hazeleger, W., Wouters, J., Rombuts, F., and Abee, T. (1998). Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl.
Environ. Microbiol. 64, 3917–3922.
Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I.,
Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46, 3590–3595. doi: 10.1021/jf980154m
Hermans, D., Martel, A., Van Deun, K., Verlinden, M., Van Immerseel, F.,
Garmyn, A., et al. (2010). Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult. Sci. 89, 1144–1155. doi: 10.3382/ps.2010-
00717
Hermans, D., Pasmans, F., Heyndrickx, M., Van Immerseel, F., Martel, A., Van
Deun, K., et al. (2012). A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut. Crit. Rev.
Microbiol. 38, 17–29. doi: 10.3109/1040841X.2011.615298
Hermans, D., Martel, A., Van Deun, K., Van Immerseel, F., Heyndrickx,
M., Haesebrouck, F., et al. (2011a). The cinnamon-oil ingredient transcinnamaldehyde fails to target Campylobacter jejuni strain KC 40 in the broiler chicken cecum despite marked in vitro activity. J. Food Prot. 74, 1729–1734. doi: 10.4315/0362-028X.JFP-10-487
Hermans, D., Van Deun, K., Martel, A., Van Immerseel, F., Messens, W.,
Heyndrickx, M., et al. (2011b). Colonization factors of Campylobacter jejuni in the chicken gut. Vet. Res. 42:82. doi: 10.1186/1297-9716-42-82
Hernandez, F., Madrid, J., Garcia, V., Orengo, J., and Megias, M. D. (2004).
Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83, 169–174. doi: 10.1093/ps/83.2.169
Hinton, A. (2006). Growth of Campylobacter in media supplemented with organic acids. J. Food Prot. 69, 34–38. doi: 10.4315/0362-028x-69.1.34
Hofreuter, D., Tsai, J., Watson, R. O., Novik, V., Altman, B., Benitez, M., et al. (2006). Unique features of a highly pathogenic Campylobacter jejuni strain.
Infect. Immun. 74, 4694–4707. doi: 10.1128/iai.00210-06
Holley, R. A., and Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food
Microbiol. 22, 273–292. doi: 10.1016/j.fm.2004.08.006
Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., and
Gordon, J. I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884. doi: 10.1126/science.291.55
05.881
Horrocks, S. M., Anderson, R. C., Nielsbet, D. J., and Ricke, S. C. (2009). Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15, 18–25. doi: 10.1016/j.anaerobe.2008.09.001
Hue, O., Le Bouquin, S., Laisney, M. J., Allain, V., Lalande, F., Petetin, I., et al. (2010). Prevalence of and risk factors for Campylobacter spp. contamination of broiler chicken carcasses at the slaughterhouse. Food Microbiol. 27, 992–999. doi: 10.1016/j.fm.2010.06.004
Hugdahl, M. B., Beery, J. T., and Doyle, M. P. (1988). Chemotactic behavior of
Campylobacter jejuni. Infect. Immun. 56, 1560–1566.
Hyldgaard, M., Mygind, T., and Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3:12. doi: 10.3389/fmicb.2012.00012
Indikova, I., Humphrey, T. J., and Hilbert, F. (2015). Survival with a helping hand:
Campylobacter and microbiota. Front. Microbiol. 6:1266. doi: 10.3389/fmicb.
2015.01266
Jager, W. (2010). “Metabolism of terpenoids in animal models and humans,” in
Handbook of Essential Oils: Science, Technology, and Applications, eds K. H. C.
Baser and G. Buchbauer (Boca Raton, FL: CRC Press), 209–235.
Jahrmann, R. (2007). Metabolismus von Monterpenen und Sesquiterpenen in
Mensch und Säugetier: Bedeutung für die Pharmazeutische Praxis. MPharm.
Diploma thesis, University of Vienna, Vienna.
Jamroz, D., Orda, J., Kamel, C., Wiliczkiewicz, A., Wertelecki, T., and Skorupinska,
J. (2003). The influence of phytogenic extracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens.
J. Anim. Feed Sci. 12, 583–596. doi: 10.22358/jafs/67752/2003
Jamroz, D., Wertelecki, T., Houszka, M., and Kamel, C. (2006). Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken.
J. Anim. Physiol. Anim. Nutr. 90, 255–268. doi: 10.1111/j.1439-0396.2005.
00603.x
Jang, I. S., Ko, Y. H., Kang, S. Y., and Lee, C. Y. (2007). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 134,
304–315. doi: 10.1016/j.anifeedsci.2006.06.009
Jang, I. S., Ko, Y. H., Yang, H. Y., Ha, J. S., Kim, J. Y., Kang, S. Y., et al. (2004). Influence of essential oil components on growth performance and the functional activity of the pancreas and small intestine in broiler chickens. Asian
Australas. J. Anim. Sci. 17, 394–400. doi: 10.5713/ajas.2004.394
Jo, C., Kang, H. J., Lee, M., Lee, N. Y., and Byun, M. W. (2004). The antioxidative potential of lyophilized citrus peel extract in different meat model systems during storage at 20 C. J. Muscle Foods 15, 95–107. doi: 10.1111/j.1745-4573.
2004.tb00714.x
Johnson, L. P., Walton, G. E., Psichas, A., Frost, G. S., Gibson, G. R., and
Barraclough, T. G. (2015). Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Nutrients 7, 4480–4497. doi: 10.3390/nu7064480
Johnson, R. (2015). US-EU Poultry Dispute on the use of Pathogen Reduction
Treatments (PRTs). Washington, DC: Congressional Research Service,
7–57.
Józefiak, D., Rutkowski, A., and Martin, S. A. (2004). Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113, 1–15. doi: 10.1016/j. anifeedsci.2003.09.007
Juliano, C., Mattana, A., and Usai, M. (2000). Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J. Essent. Oil Res. 12, 516–522. doi: 10.1080/10412905.
2000.9699578
Jung, H. G., and Fahey, G. C. Jr. (1983). Nutritional implications of phenolic monomers and lignin: a review 1. J. Anim. Sci. 57, 206–219. doi: 10.2527/ jas1983.571206x
Jyothi, S. S., Seethadevi, A., Prabha, K. S., Muthuprasanna, P., and Pavitra, P. (2012). Microencapsulation: a review. Int. J. Pharma Bio Sci. 3, 509–531.
Kaakoush, N. O., Sodhi, N., Chenu, J. W., Cox, J. M., Riordan, S. M., and Mitchell,
H. M. (2014). The interplay between Campylobacter and Helicobacter species and other gastrointestinal microbiota of commercial broiler chickens. Gut
Pathog. 6:18. doi: 10.1186/1757-4749-6-18
Kalchayanand, N., Dunne, P., Sikes, A., and Ray, B. (2004). Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int. J. Food Microbiol. 91,
91–98. doi: 10.1016/s0168-1605(03)00324-6
Kassem, I. I., Chandrashekhar, K., and Rajashekara, G. (2013). Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in
Campylobacter jejuni. Front. Microbiol. 4:183. doi: 10.3389/fmicb.2013.00183
Kavanaugh, N. L., and Ribbeck, K. (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl. Environ.
Microbiol. 78, 4057–4061. doi: 10.1128/AEM.07499-11
Keener, K. M., Bashor, M. P., Curtis, P. A., Sheldon, B. W., and Kathariou, S. (2004).
Comprehensive review of Campylobacter and poultry processing. Compr. Rev.
Food Sci. Food Saf. 3, 105–116. doi: 10.1111/j.1541-4337.2004.tb00060.x
Kelly, C., Gundogdu, O., Pircalabioru, G., Cean, A., Scates, P., Linton, M., et al. (2017). The in vitro and in vivo effect of carvacrol in preventing Campylobacter infection, colonization and in improving productivity of chicken broilers.
Foodborne Pathog. Dis. 14, 341–349. doi: 10.1089/fpd.2016.2265
Kerekes, E. B., Vidács, A., Török Jenei, J., Gömöri, C., Takó, M., Chandrasekaran,
M., et al. (2015). “Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms,” in The
Battle Against Microbial Pathogens: Basic Science, Technological Advances and
Educational Programs. Microbiology Book Series, Vol. 5, ed. A. Méndez-Vilas (Bajadoz: Formatex Research Center), 429–437.
Keto-Timonen, R., Hietala, N., Palonen, E., Hakakorpi, A., Lindström, M., and
Korkeala, H. (2016). Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front. Microbiol. 7:1151. doi: 10.
3389/fmicb.2016.01151
Khan, I. A., and Abourashed, E. A. (2011). Leung’s Encyclopedia of Common
Natural Ingredients: Used in Food, Drugs and Cosmetics. Hoboken, NJ:
John Wiley & Sons.
Kirkpinar, F., Ünlü, H. B., Serdaroglu, M., and Turp, G. Y. (2014). Effects of dietary ˘ oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. Br. Poult. Sci. 55, 157–166. doi: 10.1080/00071668.2013.879980
Kivanç, M., Akgül, A., and Dogan, A. (1991). Inhibitory and stimulatory effects of cumin, oregano and their essential oils on growth and acid production of
Lactobacillus plantarum and Leuconostoc mesenteroides. Int. J. Food Microbiol.
13, 81–85. doi: 10.1016/0168-1605(91)90140-k
Klancnik, A., Guzej, B., Kolar, H. M., Abramovic, H., and Smole Mozina, S. (2009).
In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. J. Food Prot. 72, 1744–1752. doi: 10.4315/0362-028x-72.8.1744
Kohlert, C., Schindler, G., Marz, R. W., Abel, G., Brinkhaus, B., Derendorf, H., et al. (2002). Systemic availability and pharmacokinetics of thymol in humans. J. Clin.
Pharmocol. 42, 731–737. doi: 10.1177/009127002401102678
Kollanoor-Johny, A., Darre, M. J., Donoghue, A. M., Donoghue, D. J., and
Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. J. Appl. Poult. Res. 19, 237–244. doi: 10.3382/japr.2010-00181
Konkel, M. E., Christensen, J. E., Keech, A. M., Monteville, M. R., Klena, J. D., and Garvis, S. G. (2005). Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Mol. Microbiol. 57, 1022–1035. doi:
10.1111/j.1365-2958.2005.04744.x
Kostaki, M., Giatrakou, V., Savvaidis, I. N., and Kontominas, M. G. (2009).
Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food Microbiol. 26, 475–482. doi: 10.1016/j.fm.
2009.02.008
Koutsos, E. A., and Arias, V. J. (2006). Intestinal ecology: interactions among the gastrointestinal tract, nutrition, and the microflora. J. Appl. Poult. Res. 15,
161–173. doi: 10.1093/japr/15.1.161
Kreydiyyeh, S. I., Usta, J., and Copti, R. (2000). Effect of cinnamon, clove and some of their constituents on the Na+-K+-ATPase activity and alanine absorption in the rat jejunum. Food Chem. Toxicol. 38, 755–762. doi: 10.1016/s0278-6915(00)
00073-9
Kroismayr, A., Sehm, J., Pfaffl, M. W., Schedle, K., Plitzner, C., and Windisch,
W. (2008). Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets. Czech J.
Anim. Sci. 53, 377–387. doi: 10.17221/338-cjas
Kumar, J. K., Tabor, S., and Richardson, C. C. (2004). Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A.
101, 3759–3764. doi: 10.1073/pnas.0308701101
Kurekci, C., Padmanabha, J., Bishop-Hurley, S. L., Hassan, E., Al Jassim, R. A., and McSweeney, C. S. (2013). Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int. J. Food Microbiol. 166, 450–457. doi: 10.1016/j.ijfoodmicro.
2013.08.014
Kwon, J. A., Yu, C. B., and Park, H. D. (2003). Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol.
37, 61–65. doi: 10.1046/j.1472-765x.2003.01350.x
Laanbroek, H. J., Kingma, W., and Veldkamp, H. (1977). Isolation of an aspartate fermenting, free-living Campylobacter species. FEMS Microbiol. Lett. 1, 99–102. doi: 10.1016/0378-1097(77)90010-6
Lambert, R. J. W., Skandamis, P. N., Coote, P. J., and Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453–462. doi: 10.1046/ j.1365-2672.2001.01428.x
Lee, H. W., Park, Y. S., Jung, J. S., and Shin, W. S. (2002). Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidum and Lactobacillus sp. Anaerobe 8, 319–324. doi: 10.1016/s1075-9964(03)00
030-1
Lee, K. W., Everts, H., and Beynen, A. (2004a). Essential oils in broiler nutrition.
Int. J. Poult. Sci. 3, 738–752. doi: 10.3923/ijps.2004.738.752
Lee, K. W., Everts, H., Kappert, H. J., van Der Kuilen, J., Lemmens, A. G., Frehner,
M., et al. (2004b). Growth performance, intestinal viscosity, fat digestibility and plasma cholesterol in broiler chickens fed a rye-containing diet without or with essential oil components. Int. J. Poult. Sci. 3, 613–618. doi: 10.3923/ijps.2004.
613.618
Lee, K. W., Everts, H., Kappert, H. J., Frehner, M., Losa, R., and Beynen, A. C. (2003). Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult.
Sci. 44, 450–457. doi: 10.1080/00071660301985
Leenstra, F. R. (1986). Effect of age, sex, genotype and environment on fat deposition in broiler chickens—a review. Worlds Poult. Sci. J. 42, 12–25. doi: 10.1079/wps19860002
Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. Int. J.
Food Microbiol. 55, 181–186. doi: 10.1016/s0168-1605(00)00161-6
Levin, R. E. (2007). Campylobacter jejuni: a review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol. 21, 271–347. doi: 10.1080/
08905430701536565
Lien, K. A., Sauer, W. C., and He, J. M. (2001). Dietary influences on the secretion into and degradation of mucin in the digestive tract of monogastric animals and humans. J. Anim. Feed Sci. 10, 223–246.
Lin, A. E., Krastel, K., Hobb, R. I., Thompson, S. A., Cvitkovitch, D. G., and
Gaynor, E. C. (2009). Atypical roles for Campylobacter jejuni amino acid ATP binding cassette transporter components PaqP and PaqQ in bacterial stress tolerance and pathogen-host cell dynamics. Infect. Immunol. 77, 4912–4924. doi: 10.1128/IAI.00571-08
Line, J. E. (2001). Development of a selective differential agar for isolation and enumeration of Campylobacter spp. J. Food Prot. 64, 1711–1715. doi: 10.4315/
0362-028x-64.11.1711
Line, J. E., Hiett, K. L., Guard-Bouldin, J., and Seal, B. S. (2010). Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J. Microbiol. Methods 80, 198–202. doi: 10.1016/j.mimet.
2009.12.011
Liu, S., Bennett, D. C., Tun, H. M., Kim, J. E., Cheng, K. M., Zhang, H., et al. (2015).
The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet. Front. Microbiol. 6:1092. doi: 10.3389/fmicb.2015.
01092
Looft, T., Cai, G., Choudhury, B., Lai, L. X., Lippolis, J. D., Reinhardt, T. A., et al. (2019). Avian intestinal mucus modulates Campylobacter jejuni gene expression in a host-specific manner. Front. Microbiol. 9:3215. doi: 10.3389/fmicb.2018.
03215
Los Santos, F. S., Donoghue, A. M., Venkitanarayanan, K., Dirain, M. L., ReyesHerrera, I., Blore, P. J., et al. (2008). Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens.
Poult. Sci. 87, 800–804. doi: 10.3382/ps.2007-00280
Los Santos, F. S., Donoghue, A. M., Venkitanarayanan, K., Metcalf, J. H., ReyesHerrera, I., Dirain, M. L., et al. (2009). The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens.
Poult. Sci. 88, 61–64. doi: 10.3382/ps.2008-00228
Lourenço, M. C., Kuritza, L. N., Hayashi, R. M., Miglino, L. B., Durau, J. F.,
Pickler, L., et al. (2015). Effect of a mannanoligosaccharide-supplemented diet on intestinal mucosa T lymphocyte populations in chickens challenged with
Salmonella Enteritidis. J. Appl. Poult. Res. 24, 15–22. doi: 10.3382/japr/pfu002
Mack, D. R., Michail, S., Wei, S., McDougall, L., and Hollingsworth, M. A. (1999).
Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276, G941–G950. doi: 10.1152/ ajpgi.1999.276.4.G941
Manzanilla, E. G., Baucells, F., Kamel, C., Morales, J., Perez, J. F., and Gasa, J. (2001). Effects of plant extracts on the performance and lower gut microflora of early weaned piglets. J. Anim. Sci. 1:473. doi: 10.1111/jpn.12976
Manzanilla, E. G., Perez, J. F., Martin, M., Kamel, C., Baucells, F., and Gasa, J. (2004). Effect of plant extracts and formic acid on the intestinal equilibrium of early– weaned pigs. J. Anim. Sci. 82, 3210–3218. doi: 10.2527/2004.82113210x
Martucci, J. F., Gende, L. B., Neira, L. M., and Ruseckaite, R. A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crops Prod. 71, 205–213. doi: 10.1016/j.indcrop.2015.03.079
Messaoudi, S., Kergourlay, G., Dalgalarrondo, M., Choiset, Y., Ferchichi, M.,
Prévost, H., et al. (2012). Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51.
Food Microbiol. 32, 129–134. doi: 10.1016/j.fm.2012.05.002
Metcalf, J. H., Donoghue, A. M., Venkitanarayanan, K., Reyes-Herrera, I., Aguiar,
V. F., Blore, P. J., et al. (2011). Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers. Poult. Sci. 90, 494–497. doi: 10.3382/ps.2010-00891
Meunier, J. P., Cardot, J. M., Gauthier, P., Beyssac, E., and Alric, M. (2006). Use of rotary fluidized-bed technology for development of sustained-release plant extracts pellets: potential application for feed additive delivery. J. Anim. Sci. 84,
1850–1859. doi: 10.2527/jas.2005-361
Micciche, A. C., Foley, S. L., Pavlidis, H. O., McIntyre, D. R., and Ricke, S. C. (2018a). A review of prebiotics against Salmonella in poultry: current and future potential for microbiome research applications. Front. Vet. Sci. 5:191. doi: 10.3389/fvets.2018.00191
Micciche, A. C., Rubinelli, P. M., and Ricke, S. C. (2018b). Source of water and potential sanitizers and biological antimicrobials for alternative poultry processing food safety applications. Front. Sustain. Food Syst. 2:82. doi: 10.3389/ fsufs.2018.00082
Michiels, J., Missotten, J., Dierick, N., Fremaut, D., Maene, P., and De Smet, S. (2008). In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets.
J. Sci. Food Agric. 88, 2371–2381. doi: 10.1002/jsfa.3358
Mohammadhosseini, M., Sarker, S. D., and Akbarzadeh, A. (2017). Chemical composition of the essential oils and extracts of Achillea species and their biological activities: a review. J. Ethnopharmacol. 199, 257–315. doi: 10.1016/ j.jep.2017.02.010
Moleyar, V., and Narasimham, P. (1992). Antibacterial activity of essential oil components. Int. J. Food Microbiol. 16, 337–342. doi: 10.1016/0168-1605(92)
90035-2
Montagne, L., Pluske, J. R., and Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals.
Monteville, M. R., Yoon, J. E., and Konkel, M. E. (2003). Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149,
153–165. doi: 10.1099/mic.0.25820-0
Montrose, M. S., Shane, S. M., and Harrington, K. S. (1985). Role of litter in the transmission of Campylobacter jejuni. Avian Dis. 29, 392–399.
Moreira, M. R., Ponce, A. G., Del Valle, C. E., and Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci.
Technol. 38, 565–570. doi: 10.1016/j.lwt.2004.07.012
Motojima, F. (2015). How do chaperonins fold protein? Biophysics 11, 93–102. doi: 10.2142/biophysics.11.93
Muraoka, W. T., and Zhang, Q. (2010). Phenotypic and genotypic evidence for
L-fucose utilization by Campylobacter jejuni. J. Bacteriol. 193, 1065–1075. doi: 10.1128/JB.01252-10
Murray, C. J., Barber, R. M., Foreman, K. J., Ozgoren, A. A., Abd-Allah, F., Abera,
S. F., et al. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for
188 countries, 1990–2013: quantifying the epidemiological transition. Lancet
386, 2145–2191.
Nakatsu, T., Lupo, A. T. Jr., Chinn, J. W. Jr., and Kang, R. K. (2000). “Biological activity of essential oils and their constituents,” in Studies in Natural Products
Chemistry, Vol. 21, ed. A. Rahman (Amsterdam: Elsevier), 571–631. doi: 10.
1016/s1572-5995(00)80014-9
Namkung, H., Li, J., Gong, M., Yu, H., Cottrill, M., and De Lange, C. F. M. (2004). Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can.
J. Anim. Sci. 84, 697–704. doi: 10.4141/a04-005
Nannapaneni, R., Chalova, V. I., Crandall, P. G., Ricke, S. C., Johnson, M. G., and O’Bryan, C. A. (2009). Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int. J. Food Microbiol. 129, 43–49. doi: 10.1016/j.ijfoodmicro.2008.11.008
National Organic Program (2018). National Organic Program, 7 C.F.R. 205.601-
603.
Naughton, J. A., Mariño, K., Dolan, B., Reid, C., Gough, R., Gallagher, M. E., et al. (2013). Divergent mechanisms of interaction of Helicobacter pylori and
Campylobacter jejuni with mucus and mucins. Infect. Immun. 81, 2838–2850. doi: 10.1128/IAI.00415-13
Nauta, M., Hill, A., Rosenquist, H., Brynestad, S., Fetsch, A., van der Logt, P., et al. (2009). A comparison of risk assessments on Campylobacter in broiler meat.
Int. J. Food Microbiol. 129, 107–123. doi: 10.1016/j.ijfoodmicro.2008.12.001
Navarro, M., Stanley, R., Cusack, A., and Sultanbawa, Y. (2015). Combinations of plant-derived compounds against Campylobacter in vitro. J. Appl. Poult. Res. 24,
352–363. doi: 10.3382/japr/pfv035
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., and De Feo, V. (2013).
Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6, 1451–1474. doi: 10.3390/ph6121451
Netzer, F., Kuntze, K., Vogt, C., Richnow, H. H., Boll, M., and Lueders, T. (2016).
Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments.
J. Mol. Microbiol. Biotechnol. 26, 180–194. doi: 10.1159/000441946
Nguefack, J., Tamgue, O., Dongmo, J. B. L., Dakole, C. D., Leth, V., Vismer,
H. F., et al. (2012). Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against
Penicillium expansum. Food Control 23, 377–383. doi: 10.1016/j.foodcont.2011.
08.002
Nofrarias, M., Manzanilla, E. G., Pujols, J., Gibert, X., Majo, N., Segalés, J., et al. (2006). Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 84,
2735–2742. doi: 10.2527/jas.2005-414
Oakley, B. B., Lillehoj, H. S., Kogut, M. H., Kim, W. K., Maurer, J. J., Pedroso, A., et al. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett.
360, 100–112. doi: 10.1111/1574-6968.12608
O’Bryan, C. A., Crandall, P. G., Chalova, V. I., and Ricke, S. C. (2008). Orange essential oils antimicrobial activities against Salmonella spp. J. Food Sci. 73,
M264–M267.
O’Bryan, C. A., Pendleton, S. J., Crandall, P. G., and Ricke, S. C. (2015). Potential of plant essential oils and their components in animal agriculture–in vitro studies on antibacterial mode of action. Front. Vet. Sci. 2:35. doi: 10.3389/fvets.2015.
00035
Overhage, J., Steinbuchel, A., and Priefert, H. (2003). Highly efficient ´l biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl. Environ. Microbiol. 69,
6569–6576.
Overhage, J., Steinbüchel, A., and Priefert, H. (2006). Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of
Amycolatopsis sp. HR167. J. Biotechnol. 125, 369–376. doi: 10.1016/j.jbiotec.
2006.03.024
Oyen, L. P. A., and Dung, N. X. (1999). “Essential-oil plants,” in Plant Resources of South East Asia, eds L. P. A. Oyen and N. X. Dung (Leiden: Backhuys
Publishers), 15–49.
Özek, K., Wellmann, K. T., Ertekin, B., and Tarım, B. (2011). Effects of dietary herbal essential oil mixture and organic acid preparation on laying traits, gastrointestinal tract characteristics, blood parameters and immune response of laying hens in a hot summer season. J. Anim. Feed Sci. 20, 575–586. doi: 10.22358/jafs/66216/2011
Pan, K., Chen, H., Davidson, P. M., and Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties.
J. Agric. Food Chem. 62, 1649–1657. doi: 10.1021/jf4055402
Papatsiros, V. G., Katsoulos, P. D., Koutoulis, K. C., Karatzia, M., Dedousi, A., and Christodoulopoulos, G. (2013). Alternatives to antibiotics for farm animals.
CAB Rev. 8, 1–15.
Parker, C. T., Miller, W. G., Horn, S. T., and Lastovica, A. J. (2007). Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni. BMC Microbiol. 7:50. doi: 10.1186/1471-2180-7-50
Parker, C. T., Quiñones, B., Miller, W. G., Horn, S. T., and Mandrell, R. E. (2006).
Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221.
J. Clin. Microbiol. 44, 4125–4135. doi: 10.1128/jcm.01231-06
Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., et al. (2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668. doi: 10.1038/3500
1088
Parsons, C. M. (1984). Influence of caecectomy and source of dietary fibre or starch on excretion of endogenous amino acids by laying hens. Br. J. Nutr. 51, 541–548.
Perez-Vilar, J., and Hill, R. L. (1999). The structure and assembly of secreted mucins. J. Biol. Chem. 274, 31751–31754. doi: 10.1074/jbc.274.45.31751
Phadtare, S., and Severinov, K. (2010). RNA remodeling and gene regulation by cold shock proteins. RNA Biol. 7, 788–795. doi: 10.4161/rna.7.6.13482
Piskernik, S., Klanènik, A., Riedel, C. T., Brøndsted, L., and Možina, S. S. (2011).
Reduction of Campylobacter jejuni by natural antimicrobials in chicken meatrelated conditions. Food Control 22, 718–724. doi: 10.1016/j.foodcont.2010.
11.002
Piva, G., and Rossi, F. (1998). “Possible alternatives to the use of antibiotics as growth promoters: new additives,” in Proceedings of the IFIF II Conference of
Mixed–Feed Manufactures in the Mediterranean, Reus, 83–106.
Prior, R. L., and Cao, G. (2000). Analysis of botanicals and dietary supplements for antioxidant capacity: a review. J. AOAC Int. 83, 950–956.
Quaroni, A., Isselbacher, K. J., and Ruoslahti, E. (1978). Fibronectin synthesis by epithelial crypt cells of rat small intestine. Proc. Natl. Acad. Sci. U.S.A. 75,
5548–5552. doi: 10.1073/pnas.75.11.5548
Raut, J. S., and Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Ind. Crops Prod. 62, 250–264. doi: 10.1016/j.indcrop.
2014.05.055
Ravindran, V., and Bryden, W. L. (1999). Amino acid availability in poultry—
In vitro and in vivo measurements. Aust. J. Agric. Res. 50, 889–908.
Ricke, S. C. (2003). The gastrointestinal tract ecology of Salmonella Enteritidis colonization in molting hens. Poult. Sci. 82, 1003–1007. doi: 10.1093/ps/82.6.
1003
Ricke, S. C. (2018). Impact of prebiotics on poultry production and food safety.
Yale J. Biol. Med. 91, 151–159.
Ricke, S. C., Dunkley, C. S., and Durant, J. A. (2013). A review on development of novel strategies for controlling Salmonella Enteritidis colonization in laying hens: fiber-based molt diets. Poult. Sci. 92, 502–525. doi: 10.3382/ps.2012-
02763
Ricke, S. C., Van der Aar, P. J., Fahey, G. C. Jr., and Berger, L. L. (1982). Influence of dietary fibers on performance and fermentation characteristics of gut contents from growing chicks. Poult. Sci. 61, 1335–1343. doi: 10.3382/ps.0611335
Rimini, S., Petracci, M., and Smith, D. P. (2014). The use of thyme and orange essential oils blend to improve quality traits of marinated chicken meat. Poult.
Sci. 93, 2096–2102. doi: 10.3382/ps.2013-03601
Robbe, C., Capon, C., Coddeville, B., and Michalski, J. C. (2004). Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384, 307–316. doi: 10.1042/bj20040605
Rosenquist, H., Nielsen, N. L., Sommer, H. M., Norrung, B., and Christensen, B. B. (2003). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 83,
87–103. doi: 10.1016/s0168-1605(02)00317-3
Rossi, P. G., Bao, L., Luciani, A., Panighi, J., Desjobert, J. M., Costa, J., et al. (2007). (E)-Methylisoeugenol and elemicin: antibacterial components of Daucus carota
L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 55, 7332–7336. doi: 10.1021/jf070674u
Roto, S. M., Rubinelli, P. M., and Ricke, S. C. (2015). An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Front. Vet. Sci. 2:28. doi: 10.3389/fvets.2015.00028
Ruberto, G., Baratta, M. T., Deans, S. G., and Dorman, H. D. (2000). Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 66, 687–693. doi: 10.1055/s-2000-9773
Rubinchik, S., Seddon, A., and Karlyshev, A. V. (2012). Molecular mechanisms and biological role of Campylobacter jejuni attachment to host cells. Eur. J.
Microbiol. Immunol. 2, 32–40. doi: 10.1556/EuJMI.2.2012.1.6
Ryu, J. H., and Beuchat, L. R. (2005). Biofilm formation by Escherichia coli O157:
H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 71, 247–254. doi: 10.1128/aem.
71.1.247-254.2005
Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G., and Zhang, Q. (2015).
Campylobacter in poultry: ecology and potential interventions. Avian Dis. 59,
185–200. doi: 10.1637/11072-032315-Review
Sanders, S. Q., Frank, J. F., and Arnold, J. W. (2008). Temperature and nutrient effects on Campylobacter jejuni attachment on multispecies biofilms on stainless steel. J. Food Prot. 71, 271–278. doi: 10.4315/0362-028x-71.2.271
Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., et al. (2010). Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int. J. Food Microbiol. 141, S98–S108. doi: 10.1016/j.ijfoodmicro.2010.03.039
Scallan, E., Hoekstra, R. M., Mahon, B. E., Jones, T. F., and Griffin, P. M. (2015). An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol. Infect. 143,
2795–2804. doi: 10.1017/S0950268814003185
Scher, K., Romling, U., and Yaron, S. (2005). Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 71, 1163–1168. doi: 10.1128/aem.71.3.1163-1168.2005
Schets, F. M., Jacobs-Reitsma, W. F., van der Plaats, R. Q., Heer, L. K. D., van Hoek,
A. H., Hamidjaja, R. A., et al. (2017). Prevalence and types of Campylobacter on poultry farms and in their direct environment. J. Water Health 15, 849–862. doi: 10.2166/wh.2017.119
Sergeant, M. J., Constantinidou, C., Cogan, T. A., Bedford, M. R., Penn, C. W., and Pallen, M. J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9:e91941. doi: 10.1371/journal.pone.
0091941
Shin, E., Hong, H., Oh, Y., and Lee, Y. (2015). First report and molecular characterization of a Campylobacter jejuni isolate with extensive drug resistance from a travel-associated human case. Antimicrob. Agents Chemother. 59,
6670–6672. doi: 10.1128/aac.01395-15
Si, W., Gong, J., Tsao, R., Zhou, T., Yu, H., Poppe, C., et al. (2006). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 100, 296–305. doi: 10.1111/j.1365-2672.2005.02789.x
Sibanda, N., McKenna, A., Richmond, A., Ricke, S. C., Callaway, T., Stratakos,
A. C., et al. (2018). A review of the effect of management practices on
Campylobacter prevalence in poultry farms. Front. Microbiol. 9:2002. doi: 10.
3389/fmicb.2018.02002
Sikkema, J., de Bont, J. A., and Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222.
Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P. A., and Teixeira, P. (2011).
Campylobacter spp. as a foodborne pathogen: a review. Front. Microbiol. 2:200. doi: 10.3389/fmicb.2011.00200
Sima, F., Stratakos, A. C., Ward, P., Linton, M., Kelly, C., Pinkerton, L., et al. (2018).
A novel natural antimicrobial can reduce the in vitro and in vivo pathogenicity of T6SS positive Campylobacter jejuni and Campylobacter coli chicken isolates.
Front. Microbiol. 9:2139. doi: 10.3389/fmicb.2018.02139
Skandamis, P., Koutsoumanis, K., Nychas, G. J. E., and Fasseas, K. (2001).
Inhibition of oregano essential oil and EDTA on Escherichia coli O157: H7 [food hygiene]. Ital. J. Food Sci. 13:65.
Smithard, R. (2002). “Chapter 14: secondary plant metabolites in poultry nutrition,” in Poultry Feedstuffs: Supply, Composition and Nutritive Value, eds J. M. McNab and K. N. Boorman (Wallingford, CT: CABI Publishing), 237–278. doi: 10.
1079/9780851994642.0237
Smith-Palmer, A., Stewart, J., and Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 26, 118–122. doi: 10.1046/j.1472-765x.1998.
00303.x
Son, I., Englen, M. D., Berrang, M. E., Fedorka-Cray, P. J., and Harrison, M. A. (2007). Prevalence of Arcobacter and Campylobacter on broiler carcasses during processing. Int. J. Food Microbiol. 113, 16–22. doi: 10.1016/j.ijfoodmicro.2006.
06.033
Srey, S., Jahid, I. K., and Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food Control 31, 572–585. doi: 10.1016/j.foodcont.2012.
12.001
Stahl, M., Butcher, J., and Stintzi, A. (2012). Nutrient acquisition and metabolism by Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2:5. doi: 10.3389/fcimb.
2012.00005
Stahl, M., Friis, L. M., Nothaft, H., Liu, X., Li, J., Szymanski, C. M., et al. (2011). Lfucose utilization provides Campylobacter jejuni with a competitive advantage.
Proc. Natl. Acad. Sci. U.S.A. 108, 7194–7199. doi: 10.1073/pnas.101412
5108
Stanley, D., Hughes, R. J., and Moore, R. J. (2014). Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease.
Appl. Microbiol. Biotechnol. 98, 4301–4310. doi: 10.1007/s00253-014-
5646-2
Stern, N. J. (2008). Salmonella species and Campylobacter jejuni cecal colonization model in broilers. Poult. Sci. 87, 2399–2403. doi: 10.3382/ps.2008-00140
Stern, N. J., Fedorka-Cray, P., Bailey, J. S., Cox, N. A., Craven, S. E., Hiett, K. L., et al. (2001). Distribution of Campylobacter spp. in selected US poultry production and processing operations. J. Food Prot. 64, 1705–1710. doi: 10.4315/0362-
028x-64.11.1705
Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V.,
Mitsevich, I. P., et al. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother. 50, 3111–3116. doi: 10.1128/aac.00259-06
Szczepanski, S., and Lipski, A. (2014). Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 36, 224–229. doi: 10.1016/j. foodcont.2013.08.023
Thanissery, R., Kathariou, S., and Smith, D. P. (2014). Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and
Campylobacter in vitro. J. Appl. Poult. Res. 23, 221–227. doi: 10.3382/japr.2013-
00888
Thanissery, R., and Smith, D. P. (2014). Marinade with thyme and orange oils reduces Salmonella Enteritidis and Campylobacter coli on inoculated broiler breast fillets and whole wings. Poult. Sci. 93, 1258–1262. doi: 10.3382/ps.2013-
03697
Thibodeau, A., Fravalo, P., Gauthier, R., Guévremont, E., Bergeron, N., LaurentLewandowski, S., et al. (2014). Modification of Campylobacter jejuni broiler colonization by a feed additive composed of encapsulated organic acids and essential oils. J. Agric. Sci. Technol. A 4, 853–864.
Thibodeau, A., Fravalo, P., Yergeau, É., Arsenault, J., Lahaye, L., and Letellier, A. (2015). Chicken caecal microbiome modifications induced by Campylobacter jejuni colonization and by a non-antibiotic feed additive. PLoS One
10:e0131978. doi: 10.1371/journal.pone.0131978
Thomas, M. T., Shepherd, M., Poole, R. K., van Vliet, A. H., Kelly, D. J., and
Pearson, B. M. (2011). Two respiratory enzyme systems in Campylobacter jejuni
NCTC 11168 contribute to growth on L-lactate. Environ. Microbiol. 13, 48–61. doi: 10.1111/j.1462-2920.2010.02307.x
Tiihonen, K., Kettunen, H., Bento, M. H. L., Saarinen, M., Lahtinen, S., Ouwehand,
A. C., et al. (2010). The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 51, 381–392. doi: 10.1080/00071668.2010.
496446
Troxell, B., Petri, N., Daron, C., Pereira, R., Mendoza, M., Hassan, H. M., et al. (2015). Poultry body temperature contributes to invasion control through reduced expression of Salmonella pathogenicity island 1 genes in Salmonella enterica serovars Typhimurium and Enteritidis. Appl. Environ. Microbiol. 81,
8192–8201. doi: 10.1128/AEM.02622-15
Tschech, A., and Schink, B. (1985). Fermentative degradation of resorcinol and resorcylic acids. Arch. Microbiol. 143, 52–59. doi: 10.1007/bf00414768
Tsuneki, H., Ma, E. L., Kobayashi, S., Sekizaki, N., Maekawa, K., Sasaoka, T., et al. (2005). Antiangiogenic activity of β-eudesmol in vitro and in vivo. Eur.
J. Pharmocol. 512, 105–115.
Tu, Q. V., McGuckin, M. A., and Mendz, G. L. (2008). Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol. 57, 795–802. doi: 10.1099/jmm.
0.47752-0
Turnberg, L. A. (1987). Gastric mucus, bicarbonate and pH gradients in mucosal protection. Clin. Invest. Med. 10, 178–180.
Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nat.
Rev. Immunol. 9, 799–809. doi: 10.1038/nri2653
U.S Food and Drug Administration [FDA] (2018). GRAS Substances (SCOGS)
Database.
Ultee, A., Bennik, M. H. J., and Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68, 1561–1568. doi: 10.1128/aem.68.4.1561-
1568.2002
Umaraw, P., Prajapati, A., Verma, A. K., Pathak, V., and Singh, V. P. (2017).
Control of Campylobacter in poultry industry from farm to poultry processing unit: a review. Crit. Rev. Food Sci. Nutr. 57, 659–665. doi: 10.1080/10408398.
2014.935847
Upadhyay, A., Arsi, K., Wagle, B. R., Upadhyaya, I., Shrestha, S., Donoghue,
A. M., et al. (2017). Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Front. Microbiol. 8:713. doi: 10.3389/fmicb.2017.
00713 van der Aar, P. J., Fahey, G. C. Jr., Ricke, S. C., Allen, S. E., and Berger, L. L. (1983). Effects of dietary fibers on mineral status of chicks. J. Nutr. 113, 653–661. doi: 10.1093/jn/113.3.653 van der Wielen, P. W., Biesterveld, S., Notermans, S., Hofstra, H., Urlings, B. A., and van Knapen, F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol.
66, 2536–2540. doi: 10.1128/aem.66.6.2536-2540.2000
Van Deun, K., Haesebrouck, F., Van Immerseel, F., Ducatelle, R., and Pasmans,
F. (2008). Short-chain fatty acids and L-lactate as feed additives to control
Campylobacter jejuni infections in broilers. Avian Pathol. 37, 379–383. doi: 10.1080/03079450802216603
Van Immerseel, F., Fievez, V., De Buck, J., Pasmans, F., Martel, A.,
Haesebrouck, F., et al. (2004). Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella
Enteritidis in young chickens. Poult. Sci. 83, 69–74. doi: 10.1093/ps/
83.1.69
Vandamme, P., Dewhirst, F. E., Paster, B. J., and On, S. L. W. (2006). Bergey’s
Manual of Systematic Bacteriology: The Proteobacteria (Part C), 2nd Edn,
Vol. 2, eds G. Garrity, D. J. Brenner, J. T. Staley, N. R. Krieg, D. R.
Boone, P. DeVos, et al. (Berlin: Springer Science & Business Media),
1147–1160.
Vegge, C. S., Brøndsted, L., Li, Y. P., Bang, D. D., and Ingmer, H. (2009).
Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl. Environ. Mmicrobiol. 75, 5308–5314. doi: 10.1128/AEM.00
287-09
Velayudhan, J., Jones, M. A., Barrow, P. A., and Kelly, D. J. (2004). Lserine catabolism via an oxygen-labile L-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72,
260–268. doi: 10.1128/iai.72.1.260-268.2004
Velayudhan, J., and Kelly, D. J. (2002). Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. doi: 10.1099/00221287-148-
3-685
Vidanarachchi, J. K., Mikkelsen, L. L., Sims, I. M., Iji, P. A., and Choct, H. (2005).
Phytobiotics: alternatives to antibiotic growth promoters in monogastric animal feeds. Recent Adv. Anim. Nutr. 15, 131–144.
Villemur, R. (1995). Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds. Can. J. Microbiol. 41, 855–861. doi: 10.1139/ m95-118
Wallace, R. B. (2003). “Campylobacter,” in Foodborne Microorganisms of Public
Health Significance, 6th Edn, ed. A. D. Hocking (Sydney: Australian Institute of Food Science and Technology), 311–331.
Wang, G., Clark, C. G., Taylor, T. M., Pucknell, C., Barton, C., Price, L., et al. (2002). Colony multiplex PCR assay for identification and differentiation of
Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus.
J. Clin. Microbiol. 40, 4744–4747.
Wang, X., Farnell, Y. Z., Peebles, E. D., Kiess, A. S., Wamsley, K. G. S., and Zhai,
W. (2016). Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult. Sci. 95, 1332–1340. doi: 10.3382/ps/pew030
Wang, Y. H., Avula, B., Nanayakkara, N. D., Zhao, J., and Khan, I. A. (2013).
Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem. 61, 4470–4476. doi: 10.1021/jf4005862
Wei, A., and Shibamoto, T. (2007). Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 55, 1737–1742. doi: 10.1021/ jf062959x
Wei, S., Morrison, M., and Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. Poult. Sci. 92, 671–683. doi: 10.3382/ps.2012-02822
Wenk, C. (2003). Herbs and botanicals as feed additive in monogastric animals.
Asian Australas. J. Anim. Sci. 16, 282–289. doi: 10.5713/ajas.2003.282
White, P. L., Baker, A. R., and James, W. O. (1997). Strategies to control Salmonella and Campylobacter in raw poultry products. Sci. Tech. 16, 525–541. doi: 10.
20506/rst.16.2.1046
Wilkinson, N., Hughes, R. J., Aspden, W. J., Chapman, J., Moore, R. J., and Stanley,
D. (2016). The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl. Microbiol. Biotechnol. 100, 4201–4209. doi: 10.1007/s00253-015-
7280-z
Williams, P., and Losa, R. (2001). The use of essential oils and their compounds in poultry nutrition. Worlds Poult. Sci. J. 17, 14–15.
Windisch, W., and Kroismayr, A. (2006). The Effects of Phytobiotics on Performance and Gut Function in Monogastrics. Cape Town: World Nutrition Forum, 85–90.
Windisch, W., and Kroismayr, A. (2007). Natural phytobiotics for health of young piglets and poultry: mechanisms and application. Poult. Sci. 86:643.
Woodward, C. L., Kwon, Y. M., Kubena, L. F., Byrd, J. A., Moore, R. W.,
Nisbet, D. J., et al. (2005). Reduction of Salmonella enterica serovar Enteritidis colonization and invasion by an alfalfa diet during molt in Leghorn hens. Poult.
Sci. 84, 185–193. doi: 10.1093/ps/84.2.185
World Health Organization [WHO] (2013). The Global View of
Campylobacteriosis: Report of an Expert Consultation. Utrecht: World
Health Organization.
Wright, J. A., Grant, A. J., Hurd, D., Harrison, M., Guccione, E. J., Kelly, D. J., et al. (2009). Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology
155, 80–94. doi: 10.1099/mic.0.021790-0
Xu, J., Zhou, F., Ji, B. P., Pei, R. S., and Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 47,
174–179. doi: 10.1111/j.1472-765X.2008.02407.x
Yousaf, M. S., Ahmad, I., Ashraf, K., Rashid, M. A., Hafeez, A., Ahmad,
A., et al. (2017). Comparative effects of different dietary concentrations of β-galacto-oligosaccharides on serum biochemical metabolites, selected caecel microbiota and immune response in broilers. J. Anim. Plant Sci. 27,
98–105.
Zemek, J., Košíková, B., Augustin, J., and Joniak, D. (1979). Antibiotic properties of lignin components. Folia Microbiol. 24, 483–486. doi: 10.1007/bf02927180
Ziprin, R. L., Young, C. R., Stanker, L. H., Hume, M. E., and Konkel, M. E. (1999).
The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis. 43,
586–589.
Zoetendal, E. G., Collier, C. T., Koike, S., Mackie, R. I., and Gaskins, H. R. (2004).
Molecular ecological analysis of the gastrointestinal microbiota: a review.
J. Nutr. 134, 465–472. doi: 10.1093/jn/134.2.465
Zviely, M. (2004). “Aromatic chemicals,” in Kirk-Othmer Encyclopedia of Chemical
Technology, 5th Edn, ed. A. Seidel (New York, NY: Wiley Interscience),
226–262.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2019 Micciche, Rothrock, Yang and Ricke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.