Aguiar, V. F., Donoghue, A. M., Arsi, K., Reyes-Herrera, I., Metcalf, J. H., de los Santos, F. S., et al. (2013). Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathog. Dis. 10, 435–441. doi: 10.1089/fpd.2012.1302
Allos, B. M. (2001). Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32, 1201–1206. doi: 10.1086/319760
Applegate, T. J., Klose, V., Steiner, T., Ganner, A., and Schatzmayr, G. (2010).
Probiotics and phytogenics for poultry: myth or reality? J. Appl. Poultry Res.
19, 194–210. doi: 10.3382/japr.2010-00168
Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., and Donoghue, D. J. (2015a).
Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. J. Food Prot. 78, 209–213. doi: 10.4315/0362-028X.JFP-14-326
Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., and Donoghue, D. J. (2015b).
The efficacy of selected probiotic and prebiotic combinations in reducing
Campylobacter colonization in broiler chickens. J. Appl. Poult. Res. 24, 327–334. doi: 10.3382/japr/pfv032
Awad, W. A., Hess, C., and Hess, M. (2018). Re-thinking the chicken–
Campylobacter jejuni interaction: a review. Avian. Pathol. 47, 352–363. doi:
10.1080/03079457.2018.1475724
Awad, W. A., Mann, E., Dzieciol, M., Hess, C., Schmitz-Esser, S., Wagner, M., et al. (2016). Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection. Front. Cell Infect. Microbiol. 6:154. doi10.3389/fcimb.2016.00154
Awad, W. A., Molnár, A., Aschenbach, J. R., Ghareeb, K., Khayal, B., Hess, C., et al. (2015). Campylobacter infection in chickens modulates the intestinal epithelial barrier function. Innate Immun. 21, 151–160. doi: 10.1177/1753425914521648
Ayala, D. I, Cook, P. W., Franco, J. G., Bugarel, M., Loneragan, G. H., Brashears,
M. M., et al. (2019). A systematic approach to identify and characterize the effectiveness and safety of novel probiotic strains to control foodborne pathogens. Front. Microbiol. 10:1108. doi: 10.3389/fmicb.2019.01108
Baffoni, L., Gaggìa, F., Garofolo, G., Di Serafino, G., Buglione, E., Di Giannatale,
E., et al. (2017). Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int. J. Food Microbiol. 251, 41–47. doi: 10.1016/j.ijfoodmicro.2017.04.001
Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L., and Wang, T. (2017). Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Sci. 96, 74–82. doi: 10.3382/ps/pew246
Battersby, T., Whyte, P., and Bolton, D. J. (2016). The pattern of Campylobacter contamination on broiler farms; external and internal sources. J. Appl.
Microbiol. 120, 1108–1118. doi: 10.1111/jam.13066
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol.
45, 493–496. doi: 10.1093/ajcp/45.4_ts.493
Beery, J. T., Hugdahl, M. B., and Doyle, M. P. (1988). Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl. Environ.
Microbiol. 54, 2365–2370. doi: 10.1128/aem.54.10.2365-2370.1988
Bhatia, S. J., Kochar, N., Abraham, P., Nair, N. G., and Mehta, A. P. (1989).
Lactobacillus acidophilus inhibits growth of Campylobacter pylori in vitro.
J. Clin. Microbiol. 27, 2328–2330. doi: 10.1128/jcm.27.10.2328-2330.1989
Blajman, J., Gaziano, C., Zbrun, M. V., Soto, L., Astesana, D., Berisvil, A., et al. (2015). In vitro and in vivo screening of native lactic acid bacteria toward their selection as a probiotic in broiler chickens. Res. Vet. Sci. 101, 50–56. doi: 10.1016/j.rvsc.2015.05.017
Boulianne, M., Logue, C. M., McDougald, L. R., Nair, V., and Suarez, D. L. (2019).
Diseases of Poultry. Hoboken, NJ: John Wiley & Sons.
Bratz, K., Gölz, G., Janczyk, P., Nöckler, K., and Alter, T. (2015). Analysis of in vitro and in vivo effects of probiotics against Campylobacter spp. Berliner und Münchener tierärztliche Wochenschrift 128, 155–162. doi: 10.2376/0005-9366-128-155
Brisbin, J. T., Davidge, L., Roshdieh, A., and Sharif, S. (2015). Characterization of the effects of three Lactobacillus species on the function of chicken macrophages. Res. Vet. Sci. 100, 39–44. doi: 10.1016/j.rvsc.2015.03.003
Butzler, J.-P. (2004). Campylobacter, from obscurity to celebrity. Clin. Microbiol.
Infect. 10, 868–876. doi: 10.1111/j.1469-0691.2004.00983.x
Callicott, K. A., Friðriksdóttir, V., Reiersen, J., Lowman, R., Bisaillon, J.-R.,
Gunnarsson, E., et al. (2006). Lack of evidence for vertical transmission of
Campylobacter spp. in chickens. Appl. Environ. Microbiol. 72, 5794–5798. doi: 10.1128/AEM.02991-05
Cawthraw, S. A., and Newell, D. G. (2010). Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens. AvianDis. 54, 86–93. doi: 10.1637/9004-072709-Reg.1
CDC (2019). Antibiotic Resistance | Campylobacter | CDC. Available online at: https://www.cdc.gov/campylobacter/campy-antibiotic-resistance.html (accessed May 16, 2020).
Cean, A., Stef, L., Simiz, E., Julean, C., Dumitrescu, G., Vasile, A., et al. (2015).
Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathog. Dis. 12, 122–130. doi: 10.1089/fpd.2014.1849
Centers for Disease Control and Prevention (2018). Reports of Selected
Campylobacter Outbreak Investigations. Available online at: https://www.cdc. gov/campylobacter/outbreaks/outbreaks.html (accessed May 12, 2019).
Chaveerach, P., Lipman, L. J. A., and van Knapen, F. (2004). Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. Int. J. Food Microbiol. 90, 43–50. doi: 10.1016/S0168-1605(03)00170-3
Chintoan-Uta, C. (2016). The host-pathogen interaction in Campylobacter jejuni infection of chickens: an understudied aspect that is crucial for effective control.
Virulence 8, 241–243. doi: 10.1080/21505594.2016.1240860
CLSI (2018). M100Ed29 | Performance Standards for Antimicrobial Susceptibility
Testing, 29th Edn. Available online at: https://clsi.org/standards/products/ microbiology/documents/m100/ (accessed May 12, 2019).
Connerton, P. L., Richards, P. J., Lafontaine, G. M., O’Kane, P. M., Ghaffar,
N., Cummings, N. J., et al. (2018). The effect of the timing of exposure to
Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome 6:88. doi: 10.1186/s40168-018-0477-5
Cox, C. M., and Dalloul, R. A. (2015). Immunomodulatory role of probiotics in poultry and potential in ovo application. Benef Microbes 6, 45–52. doi: 10.3920/BM2014.0062
Cox, N. A., Richardson, L. J., Maurer, J. J., Berrang, M. E., Fedorka-Cray, P. J.,
Buhr, R. J., et al. (2012). Evidence for horizontal and vertical transmission in
Campylobacter passage from hen to her progeny. J. Food Prot. 75, 1896–1902. doi: 10.4315/0362-028.JFP-11-322
Cox, N. A., Stern, N. J., Hiett, K. L., and Berrang, M. E. (2002). Identification of a new source of Campylobacter contamination in poultry: transmission from breeder hens to broiler chickens. Avian Dis. 46, 535–541. doi: 10.1637/0005-2086(2002)046[0535:ioanso]2.0.co;2
Danielsen, M., and Wind, A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82, 1–11. doi: 10.1016/S0168-1605(02)00254-4
Dec, M., Nowaczek, A., Urban-Chimiel, R., Stêpien-py ´ ´sniak, D., and Wernicki,
A. (2018). Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. J. Vet. Med. Sci. 80, 1195–1203. doi: 10.1292/jvms.18-0092
Dittoe, D. K., Ricke, S. C., and Kiess, A. S. (2018). Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease.
Front. Vet. Sci. 5:216. doi: 10.3389/fvets.2018.00216
Dobson, A., Cotter, P. D., Ross, R. P., and Hill, C. (2012). Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78, 1–6. doi: 10.1128/AEM.05576-11
Domingues, A. R., Pires, S. M., Halasa, T., and Hald, T. (2012). Source attribution of human campylobacteriosis using a meta-analysis of casecontrol studies of sporadic infections. Epidem. Infect. 140, 970–981. doi: 10.1017/S0950268811002676
Eeckhaut, V., Wang, J., Van Parys, A., Haesebrouck, F., Joossens, M.,
Falony, G., et al. (2016). The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front. Microbiol. 7:1416. doi: 10.3389/fmicb.2016.01416
Ehrmann, M. A., Kurzak, P., Bauer, J., and Vogel, R. F. (2002). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol.
92, 966–975. doi: 10.1046/j.1365-2672.2002.01608.x
Erf, G. F. (2004). Cell-mediated immunity in poultry. Poultry Sci. 83, 580–590. doi: 10.1093/ps/83.4.580
European Food Safety Authority (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in
2017. EFSA J. 16:e05500. doi: 10.2903/j.efsa.2018.5500
Fathi, M. M., Ebeid, T. A., Al-Homidan, I., Soliman, N. K., and Abou-Emera, O. K. (2017). Influence of probiotic supplementation on immune response in broilers raised under hot climate. Br. Poultry Sci. 58, 512–516. doi: 10.1080/00071668.
2017.1332405
Feye, K. M., Baxter, M. F. A., Tellez-Isaias, G., Kogut, M. H., and Ricke,
S. C. (2020). Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Sci. 99, 653–659. doi: 10.1016/j.psj.2019.12.013
Fooks, L. J., and Gibson, G. R. (2002). In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS
Microbiol. Ecol. 39, 67–75. doi: 10.1111/j.1574-6941.2002.tb00907.x
Forte, C., Manuali, E., Abbate, Y., Papa, P., Vieceli, L., Tentellini, M., et al. (2018).
Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poultry Sci. 97,
930–936. doi: 10.3382/ps/pex396
FSAI Ireland (2002). Control of Campylobacter species in the food chain. Available online at: https://www.lenus.ie/handle/10147/44795 (accessed April 5, 2019).
Ganan, M., Martinez-Rodriguez, A. J., Carrascosa, A. V., Vesterlund, S., Salminen,
S., and Satokari, R. (2013). Interaction of Campylobacter spp. and human probiotics in chicken intestinal mucus. Zoonoses Pub. Health 60, 141–148. doi: 10.1111/j.1863-2378.2012.01510.x
García-Hernández, Y., Pérez-Sánchez, T., Boucourt, R., Balcázar, J. L., Nicoli, J. R.,
Moreira-Silva, J., et al. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet.
Sci. 108, 125–132. doi: 10.1016/j.rvsc.2016.08.009
Garriga, M., Pascual, M., Monfort, J. M., and Hugas, M. (1998). Selection of lactobacilli for chicken probiotic adjuncts. J. Appl. Microbiol. 84, 125–132. doi:
10.1046/j.1365-2672.1997.00329.x
Geissler, A. L., Bustos Carrillo, F., Swanson, K., Patrick, M. E., Fullerton, K. E.,
Bennett, C., et al. (2017). Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clin. Infect. Dis. 65,
1624–1631. doi: 10.1093/cid/cix624
Ghareeb, K., Awad, W. A., Mohnl, M., Porta, R., Biarnés, M., Böhm, J., et al. (2012).
Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poultry Sci. 91, 1825–1832. doi:
10.3382/ps.2012-02168
Gillor, O., Giladi, I., and Riley, M. A. (2009). Persistence of colicinogenic
Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 9:165. doi:
10.1186/1471-2180-9-165
Gong, J., Forster, R. J., Yu, H., Chambers, J. R., Wheatcroft, R., Sabour, P. M., et al. (2002). Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 41,
171–179. doi: 10.1111/j.1574-6941.2002.tb00978.x
Gong, J., Si, W., Forster, R. J., Huang, R., Yu, H., Yin, Y., et al. (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol.
59, 147–157. doi: 10.1111/j.1574-6941.2006.00193.x
Gupta, A., Nelson, J. M., Barrett, T. J., Tauxe, R. V., Rossiter, S. P.,
Friedman, C. R., et al. (2004). Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg. Infect. Dis. 10, 1102–1109. doi: 10.3201/eid1006.030635
Guyard-Nicodème, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le
Berre, B., et al. (2016). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poultry Sci. 95, 298–305. doi: 10.3382/ps/pev303
Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Zhou, H., Sanei, B., et al. (2006). Probiotics stimulate production of natural antibodies in chickens. Clin.
Vaccine Immunol. 13, 975–980. doi: 10.1128/CVI.00161-06
Hald, T., Aspinall, W., Devleesschauwer, B., Cooke, R., Corrigan, T.,
Havelaar, A. H., et al. (2016). World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS One 11:e0145839. doi: 10.1371/journal.pone.0145839
Han, Z., Willer, T., Li, L., Pielsticker, C., Rychlik, I., Velge, P., et al. (2017). Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect. Immun. 85:e00380-17. doi: 10.1128/IAI.00380-17
Helmy, Y. A., Kassem, I. I., Kumar, A., and Rajashekara, G. (2017). In vitro evaluation of the impact of the probiotic E. coli Nissle 1917 on Campylobacter jejuni’s invasion and intracellular survival in human colonic cells. Front.
Microbiol. 8:1588. doi: 10.3389/fmicb.2017.01588
Hermans, D., Van Deun, K., Messens, W., Martel, A., Van Immerseel,
F., Haesebrouck, F., et al. (2011). Campylobacter control in poultry by current intervention measures ineffective: urgent need for intensified fundamental research. Vet. Microbiol. 152, 219–228. doi: 10.1016/j.vetmic.2011.03.010
Hoang, K. V., Stern, N. J., and Lin, J. (2011a). Development and stability of bacteriocin resistance in Campylobacter spp. J. Appl. Microbiol. 111, 1544–1550. doi: 10.1111/j.1365-2672.2011.05163.x
Hoang, K. V., Stern, N. J., Saxton, A. M., Xu, F., Zeng, X., and Lin, J. (2011b). Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter. Appl. Environ. Microbiol. 77, 2309–2316. doi: 10.1128/AEM.02094-10
Hossain, M. I., Sadekuzzaman, M., and Ha, S.-D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review.
Food Res. Inter. 100, 63–73. doi: 10.1016/j.foodres.2017.07.077
Humphrey, S., Chaloner, G., Kemmett, K., Davidson, N., Williams, N., Kipar,
A., et al. (2014). Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio 5:e01364-14. doi: 10.1128/mBio.01364-14
Hwang, H., and Singer, R. S. (2020). Survey of the U.S. broiler industry regarding pre- and post-harvest interventions targeted to mitigate Campylobacter contamination on broiler chicken products. J. Food Prot. 83, 1137–1148. doi:
10.4315/JFP-19-527
Imperial, I. C. V. J., and Ibana, J. A. (2016). Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect.
Front. Microbiol. 7:1983. doi: 10.3389/fmicb.2016.01983
Indikova, I., Humphrey, T. J., and Hilbert, F. (2015). Survival with a helping hand:
Campylobacter and microbiota. Front. Microbiol. 6:1266. doi: 10.3389/fmicb.
2015.01266
Iovine, N. M., and Blaser, M. J. (2004). Antibiotics in animal feed and spread of resistant Campylobacter from poultry to humans. Emerg. Infect. Dis. 10,
1158–1189. doi: 10.3201/eid1006.040403
Ishikawa, H., Kutsukake, E., Fukui, T., Sato, I., Shirai, T., Kurihara, T., et al. (2010). Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica serovar Typhimurium. Biosci.
Biotechnol. Biochem. 74, 1338–1342. doi: 10.1271/bbb.90871
Jin, L. Z., Ho, Y. W., Abdullah, N., Ali, M. A., and Jalaludin, S. (1996). Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 23, 67–71. doi: 10.1111/j.1472-765x.1996.tb00032.x
Johnson, T. J., Shank, J. M., and Johnson, J. G. (2017). Current and potential treatments for reducing Campylobacter colonization in animal hosts and disease in humans. Front. Microbiol. 8:487. doi: 10.3389/fmicb.2017.00487
Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., and Man, S. M. (2015).
Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28,
687–720. doi: 10.1128/CMR.00006-15
Kabir, S. M. L., Rahman, M. M., Rahman, M. B., Rahman, M. M., and Ahmed, S. U. (2004). The dynamics of probiotics on growth performance and immune response in broilers. Int. J. Poultry Sci. 3, 361–364. doi: 10.3923/ijps.2004.361.364
Kalupahana, R. S., Kottawatta, K. S. A., Kanankege, K. S. T., van Bergen, M. A. P.,
Abeynayake, P., and Wagenaar, J. A. (2013). Colonization of Campylobacter spp. in broiler chickens and laying hens reared in tropical climates with lowbiosecurity housing. Appl. Environ. Microbiol. 79, 393–395. doi: 10.1128/AEM.
02269-12
Kergourlay, G., Messaoudi, S., Dousset, X., and Prévost, H. (2012). Genome sequence of Lactobacillus salivarius SMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-Campylobacter activity. J. Bacteriol.
194, 3008–3009. doi: 10.1128/JB.00344-12
Kim, J.-A., Bayo, J., Cha, J., Choi, Y. J., Jung, M. Y., Kim, D.-H., et al. (2019). Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS One 14:e0218922. doi: 10.1371/ journal.pone.0218922
Kim, W. H., and Lillehoj, H. S. (2019). Immunity, Immunomodulation, and
Antibiotic Alternatives to Maximize the Genetic Potential of Poultry for Growth and Disease Response. Available online at: https://pubag.nal.usda.gov/catalog/
6161486 (accessed June 23, 2019).
Kmet, V., Callegari, M. L., Bottazzi, V., and Morelli, L. (1995). Aggregationpromoting factor in pig intestinal Lactobacillus strains. Lett. Appl. Microbiol.
21, 351–353. doi: 10.1111/j.1472-765X.1995.tb01079.x
Kmet, V., and Lucchini, F. (1997). Aggregation-promoting factor in human vaginal
Lactobacillus strains. FEMS Immunol. Med. Microbiol. 19, 111–114. doi: 10.
1111/j.1574-695X.1997.tb01079.x
Kobierecka, P. A., Olech, B., Ksiâzek, M., Derlatka, K., Adamska, ˙
I., Majewski, P. M., et al. (2016a). Cell wall anchoring of the
Campylobacter antigens to Lactococcus lactis. Front. Microbiol. 7:165. doi: 10.3389/fmicb.2016.00165
Kobierecka, P. A., Wyszynska, A. K., Aleksandrzak-Piekarczyk, T., Kuczkowski, ´
M., Tuzimek, A., Piotrowska, W., et al. (2017). In vitro characteristics of
Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. MicrobiologyOpen 6:e00512. doi: 10.1002/mbo3.512
Kobierecka, P. A., Wyszynska, A. K., Gubernator, J., Kuczkowski, M., Wi ´ ´sniewski,
O., Maruszewska, M., et al. (2016b). Chicken anti-Campylobacter vaccine – comparison of various carriers and routes of immunization. Front. Microbiol.
7:740. doi: 10.3389/fmicb.2016.00740
La Ragione, R. M., Narbad, A., Gasson, M. J., and Woodward, M. J. (2004).
In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett. Appl.
Microbiol. 38, 197–205. doi: 10.1111/j.1472-765x.2004.01474.x
Lacharme-Lora, L., Chaloner, G., Gilroy, R., Humphrey, S., Gibbs, K., Jopson, S., et al. (2017). B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Sci. Rep. 7:45090. doi: 10.1038/ srep45090
Lagha, A. B., Haas, B., Gottschalk, M., and Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 48:22. doi: 10.1186/s13567-017-0425-6
Lebeer, S., Vanderleyden, J., and De Keersmaecker, S. C. J. (2008). Genes and molecules of Lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev.
72, 728–764. doi: 10.1128/MMBR.00017-08
Lehri, B., Seddon, A. M., and Karlyshev, A. V. (2017). Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 8,
1753–1760. doi: 10.1080/21505594.2017.1362533
Lillehoj, H. S., and Trout, J. M. (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 9,
349–360. doi: 10.1128/cmr.9.3.349-360.1996
Lin, J. (2009). Novel approaches for Campylobacter control in poultry. Foodborne
Pathog. Dis. 6, 755–765. doi: 10.1089/fpd.2008.0247
Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J. J., and Lee, M. D. (2003).
Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 69, 6816–6824. doi: 10.1128/AEM.69.
11.6816-6824.2003
Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M., and Zhang, Q. (2009). Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol. 4, 189–200. doi: 10.2217/17460913.4.2.189
Lutful Kabir, S. M. (2009). The role of probiotics in the poultry industry. Int. J. Mol.
Sci. 10, 3531–3546. doi: 10.3390/ijms10083531
Mahfuz, S., Nahar, M. J., Mo, C., Ganfu, Z., Zhongjun, L., and Hui, S. (2017).
Inclusion of probiotic on chicken performance and immunity: a review. Int.
J. Poultry Sci. 16, 328–335. doi: 10.3923/ijps.2017.328.335
Marder, E. P., Griffin, P. M., Cieslak, P. R., Dunn, J., Hurd, S., Jervis, R., et al. (2018).
Preliminary incidence and trends of infections with pathogens transmitted commonly through food — foodborne diseases active surveillance network,
10 U.S. Sites, 2006–2017. MMWR Morb. Mortal. Wkly. Rep. 67, 324–328. doi:
10.15585/mmwr.mm6711a3
Marotta, F., Garofolo, G., Di Donato, G., Aprea, G., Platone, I., Cianciavicchia,
S., et al. (2015). Population diversity of Campylobacter jejuni in poultry and its dynamic of contamination in chicken meat. BioMed Res. Int. 2015:859845. doi: 10.1155/2015/859845
Massacci, F. R., Lovito, C., Tofani, S., Tentellini, M., Genovese, D. A., De Leo,
A. A. P., et al. (2019). Dietary Saccharomyces cerevisiae boulardii CNCM
I-1079 Positively affects performance and intestinal ecosystem in broilers during a Campylobacter jejuni infection. Microorganisms 7:596. doi: 10.3390/ microorganisms7120596
Mead, G. C. (2000). Prospects for “competitive exclusion” treatment to control
Salmonellas and other foodborne pathogens in poultry. Vet. J. 159, 111–123. doi: 10.1053/tvjl.1999.0423
Messaoudi, S., Kergourlay, G., Rossero, A., Ferchichi, M., Prévost, H., Drider,
D., et al. (2011). Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int. Microbiol. 14, 103–110. doi: 10.2436/
20.1501.01.140
Messaoudi, S., Manai, M., Kergourlay, G., Prévost, H., Connil, N., Chobert, J.-M., et al. (2013). Lactobacillus salivarius: bacteriocin and probiotic activity. Food
Microbiol. 36, 296–304. doi: 10.1016/j.fm.2013.05.010
Meunier, M., Guyard-Nicodème, M., Dory, D., and Chemaly, M. (2016). Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. J. Appl. Microbiol. 120, 1139–1173. doi: 10.1111/jam.12986
Meunier, M., Guyard-Nicodème, M., Vigouroux, E., Poezevara, T., Beven,
V., Quesne, S., et al. (2017). Promising new vaccine candidates against
Campylobacter in broilers. PLoS One 12:e0188472. doi: 10.1371/journal.pone.
0188472
Micciche, A., Rothrock, M. J. J., Yang, Y., and Ricke, S. C. (2019). Essential oils as an intervention strategy to reduce Campylobacter in poultry production: a review.
Front. Microbiol. 10:1051. doi: 10.3389/fmicb.2019.01058
Mortada, M., Cosby, D. E., Shanmugasundaram, R., and Selvaraj, R. K. (2020).
In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J. Appl. Poultry Res. 29,
435–446. doi: 10.1016/j.japr.2020.02.001
Mughini-Gras, L., Smid, J. H., Wagenaar, J. A., Boer, A. D., Havelaar, A. H.,
Friesema, I. H. M., et al. (2014). Campylobacteriosis in returning travelers and potential secondary transmission of exotic strains. Epid. Infect. 142, 1277–1288. doi: 10.1017/S0950268813002069
Nami, Y., Vaseghi Bakhshayesh, R., Mohammadzadeh Jalaly, H., Lotfi, H.,
Eslami, S., and Hejazi, M. A. (2019). Probiotic properties of Enterococcus isolated from artisanal dairy products. Front. Microbiol. 10:300. doi: 10.3389/fmicb.2019.00300
Neal-McKinney, J. M., Lu, X., Duong, T., Larson, C. L., Call, D. R., Shah, D. H., et al. (2012). Production of organic acids by probiotic Lactobacilli can be used to reduce pathogen load in poultry. PLoS One 7:e0043928. doi: 10.1371/journal. pone.0043928
Newell, D. G., and Fearnley, C. (2003). Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 69, 4343–4351. doi: 10.1128/AEM.
69.8.4343-4351.2003
Nishiyama, K., Nakazato, A., Ueno, S., Seto, Y., Kakuda, T., Takai, S., et al. (2015). Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni. Mol. Microbiol. 98, 712–726. doi: 10.1111/mmi.13153
Nishiyama, K., Seto, Y., Yoshioka, K., Kakuda, T., Takai, S., Yamamoto, Y., et al. (2014). Lactobacillus gasseri SBT2055 reduces infection by and colonization of
Campylobacter jejuni. PLoS One 9:e108827. doi: 10.1371/journal.pone.0108827
Nothaft, H., Perez-Muñoz, M. E., Gouveia, G. J., Duar, R. M., Wanford, J. J.,
Lango-Scholey, L., et al. (2017). Co-administration of the Campylobacter jejuni
N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens. Appl. Environ. Microbiol. 83:e01523-17. doi: 10.1128/AEM.
01523-17
Nurmi, E., and Rantala, M. (1973). New aspects of Salmonella infection in broiler production. Nature 241:210. doi: 10.1038/241210a0
Oakley, B. B., Buhr, R. J., Ritz, C. W., Kiepper, B. H., Berrang, M. E., Seal, B. S., et al. (2014). Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet. Res. 10:282. doi: 10.1186/s12917-014-0282-8
Oakley, B. B., and Kogut, M. H. (2016). Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front. Vet. Sci. 3:11. doi: 10.3389/fvets.2016.00011
Oakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann,
R. J., Tillman, G. E., et al. (2013). The poultry-associated microbiome: network analysis and farm-to-fork characterization. PLoS One 8:e57190. doi: 10.1371/journal.pone.0057190
Oakley, B. B., Vasconcelos, E. J. R., Diniz, P. P. V. P., Calloway, K. N., Richardson,
E., Meinersmann, R. J., et al. (2018). The cecal microbiome of commercial broiler chickens varies significantly by season. Poult. Sci. 97, 3635–3644. doi: 10.3382/ps/pey214
Ocaña, V., Silva, C., and Nader-Macías, M. E. (2006). Antibiotic susceptibility of potentially probiotic vaginal Lactobacilli. Infect. Dis. Obstet. Gynecol.
2006:18182. doi: 10.1155/IDOG/2006/18182
Olnood, C. G., Beski, S. S. M., Choct, M., and Iji, P. A. (2015). Novel probiotics: their effects on growth performance, gut development, microbial community and activity of broiler chickens. Anim. Nutr. 1, 184–191. doi: 10.1016/j.aninu.
2015.07.003
On, S. L. W. (2001). Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns.
J. Appl. Microbiol. 90, 1S–15S. doi: 10.1046/j.1365-2672.2001.01349.x
Ostad, S. N., Salarian, A. A., Ghahramani, M. H., Fazeli, M. R., Samadi, N., and
Jamalifar, H. (2009). Live and heat-inactivated lactobacilli from feces inhibit
Salmonella typhi and Escherichia coli adherence to Caco-2 cells. Folia Microbiol.
54, 157–160. doi: 10.1007/s12223-009-0024-7
Pan, D., and Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119. doi: 10.4161/gmic.26945
Papadimitriou, K., Zoumpopoulou, G., Foligné, B., Alexandraki, V., Kazou,
M., Pot, B., et al. (2015). Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front. Microbiol. 6:58. doi: 10.3389/fmicb.2015.00058
Park, Y. H., Hamidon, F., Rajangan, C., Soh, K. P., Gan, C. Y., Lim, T. S., et al. (2016). Application of probiotics for the production of safe and high-quality poultry meat. Korean J. Food Sci. Anim. Resour. 36, 567–576. doi: 10.5851/kosfa.
2016.36.5.567
Peralta-Sánchez, J. M., Martín-Platero, A. M., Ariza-Romero, J. J., Rabelo-Ruiz,
M., Zurita-González, M. J., Baños, A., et al. (2019). Egg Production in poultry farming is improved by probiotic bacteria. Front. Microbiol. 10:1042. doi: 10.
3389/fmicb.2019.01042
Pielsticker, C., Glünder, G., and Rautenschlein, S. (2012). Colonization properties of Campylobacter jejuni in chickens. Eur. J. Microbiol. Immunol. 2, 61–65. doi: 10.1556/EuJMI.2.2012.1.9
Popova, T. (2017). Effect of probiotics in poultry for improving meat quality. Curr.
Opin. Food Sci. 14, 72–77. doi: 10.1016/j.cofs.2017.01.008
Prudêncio, C. V., dos Santos, M. T., and Vanetti, M. C. D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.
J. Food Sci. Technol. 52, 5408–5417. doi: 10.1007/s13197-014-1666-2
Qu, K., Guo, F., Liu, X., Lin, Y., and Zou, Q. (2019). Application of machine learning in microbiology. Front. Microbiol. 10:827. doi: 10.3389/fmicb.2019.
00827
Rebollar, E. A., Antwis, R. E., Becker, M. H., Belden, L. K., Bletz, M. C., Brucker,
R. M., et al. (2016). Using “omics” and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front. Microbiol. 7:68. doi: 10.3389/fmicb.2016.00068
Ren, H., Zentek, J., and Vahjen, W. (2019). Optimization of production parameters for probiotic Lactobacillus strains as feed additive. Molecules 24:3286. doi: 10.
3390/molecules24183286
Reniero, R., Cocconcelli, P., Bottazzi, V., and Morelli, L. (1992). High frequency of conjugation in Lactobacillus mediated by an aggregationpromoting factor. Microbiology 138, 763–768. doi: 10.1099/00221287-138-4-
763
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82, 632–639. doi: 10.1093/ps/82.4.632
Ricke, S. C., Feye, K. M., Chaney, W. E., Shi, Z., Pavlidis, H., and Yang, Y. (2019).
Developments in rapid detection methods for the detection of foodborne
Campylobacter in the United States. Front. Microbiol. 9:3280. doi: 10.3389/ fmicb.2018.03280
Riley, M. A., and Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137. doi: 10.1146/annurev.micro.56.
012302.161024
Ringoir, D. D., Szylo, D., and Korolik, V. (2007). Comparison of 2-day-old and 14- day-old chicken colonization models for Campylobacter jejuni. FEMS Immunol.
Med. Microbiol. 49, 155–158. doi: 10.1111/j.1574-695X.2006.00181.x
Ritzi, M. M., Abdelrahman, W., Mohnl, M., and Dalloul, R. A. (2014). Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poultry Sci. 93, 2772–2778. doi: 10.3382/ps.
2014-04207
Robyn, J., Rasschaert, G., Hermans, D., Pasmans, F., and Heyndrickx, M. (2013).
In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live
Enterococcus faecalis strain. Poult. Sci. 92, 265–271. doi: 10.3382/ps.2012-02712
Robyn, J., Rasschaert, G., Messens, W., Pasmans, F., and Heyndrickx, M. (2012).
Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Benef. Microbes
3, 299–308. doi: 10.3920/BM2012.0021
Robyn, J., Rasschaert, G., Pasmans, F., and Heyndrickx, M. (2015). Thermotolerant
Campylobacter during broiler rearing: risk factors and intervention. Compr.
Rev. Food Sci. Food Saf. 14, 81–105. doi: 10.1111/1541-4337.12124
Rosenberg, M., Gutnick, D., and Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity.
FEMS Microbiol. Lett. 9, 29–33. doi: 10.1111/j.1574-6968.1980.tb05599.x
Rossi, D. A., Fonsec, B. B., de Melo, R. T., Felipe, G. S., da Silva, P. L., Mendonça,
E. P., et al. (2012). Transmission of Campylobacter coli in chicken embryos.
Braz. J. Microbiol. 43, 535–543. doi: 10.1590/S1517-8382201200002000014
Sadeghi, A. A., Shawrang, P., and Shakorzadeh, S. (2015). Immune response of Salmonella challenged broiler chickens fed diets containing
Gallipro
R
, a Bacillus subtilis probiotic. Probiot. Antimicro. Prot. 7, 24–30. doi: 10.1007/s12602-014-9175-1
Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G., and Zhang, Q. (2015).
Campylobacter in poultry: ecology and potential interventions. Avian Dis. 59,
185–200. doi: 10.1637/11072-032315-Review
Sahin, O., Luo, N., Huang, S., and Zhang, Q. (2003). Effect of Campylobacterspecific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl. Environ. Microbiol. 69, 5372–5379. doi: 10.1128/AEM.69.9.
5372-5379.2003
Saint-Cyr, M. J., Guyard-Nicodème, M., Messaoudi, S., Chemaly, M., Cappelier,
J.-M., Dousset, X., et al. (2016). Recent advances in screening of antiCampylobacter activity in probiotics for use in poultry. Front. Microbiol. 7:553. doi: 10.3389/fmicb.2016.00553
Saint-Cyr, M. J., Haddad, N., Taminiau, B., Poezevara, T., Quesne, S., Amelot,
M., et al. (2017). Use of the potential probiotic strain Lactobacillus salivarius
SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 247,
9–17. doi: 10.1016/j.ijfoodmicro.2016.07.003
Sakaridis, I., Ellis, R. J., Cawthraw, S. A., van Vliet, A. H. M., Stekel, D. J., Penell,
J., et al. (2018). Investigating the association between the caecal microbiomes of broilers and Campylobacter burden. Front. Microbiol. 9:927. doi: 10.3389/fmicb.
2018.00927
Salaheen, S., White, B., Bequette, B. J., and Biswas, D. (2014). Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between
Campylobacter jejuni and host epithelial cells. Food Res. Int. 62, 1141–1146. doi: 10.1016/j.foodres.2014.05.061
Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., et al. (2010). Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int. J. Food Microbiol. 141(Suppl. 1),
S98–S108. doi: 10.1016/j.ijfoodmicro.2010.03.039
Schillinger, U., and Lücke, F. K. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55, 1901–1906. doi: 10.1128/aem.
55.8.1901-1906.1989
Schneitz, C. (2005). Competitive exclusion in poultry—-30 years of research. Food
Control 16, 657–667. doi: 10.1016/j.foodcont.2004.06.002
Schneitz, C., and Hakkinen, M. (2016). The efficacy of a commercial competitive exclusion product on Campylobacter colonization in broiler chickens in a 5-week pilot-scale study. Poultry Sci. 95, 1125–1128. doi: 10.3382/ps/pew020
Schoeni, J. L., and Doyle, M. P. (1992). Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Appl. Environ. Microbiol. 58, 664–670. doi: 10.1128/aem.58.2.664-
670.1992
Schoeni, J. L., and Wong, A. C. (1994). Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Appl. Environ.
Microbiol. 60, 1191–1197. doi: 10.1128/aem.60.4.1191-1197.1994
Šefcová, M., Larrea-Álvarez, M., Larrea-Álvarez, C., Karaffová, V., Revajová,
V., Gancarèíková, S., et al. (2020). Lactobacillus fermentum administration modulates cytokine expression and lymphocyte subpopulation levels in broiler chickens challenged with Campylobacter coli. Foodborne Pathog. Dis. 17, 485–
493. doi: 10.1089/fpd.2019.2739
Shang, Y., Kumar, S., Oakley, B., and Kim, W. K. (2018). Chicken gut microbiota: importance and detection technology. Front. Vet. Sci. 5:254. doi: 10.3389/fvets.
2018.00254
Shaughnessy, R. G., Meade, K. G., Cahalane, S., Allan, B., Reiman, C., Callanan,
J. J., et al. (2009). Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet. Immunol.
Immunop. 132, 191–198. doi: 10.1016/j.vetimm.2009.06.007
Shoaf-Sweeney, K. D., Larson, C. L., Tang, X., and Konkel, M. E. (2008).
Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl. Environ. Microbiol. 74, 6867–6875. doi: 10.1128/
AEM.01097-08
Shojadoost, B., Kulkarni, R. R., Brisbin, J. T., Quinteiro-Filho, W., Alkie, T. N., and
Sharif, S. (2019). Interactions between lactobacilli and chicken macrophages induce antiviral responses against avian influenza virus. Res. Vet. Sci. 125,
441–450. doi: 10.1016/j.rvsc.2017.10.007
Sibanda, N., McKenna, A., Richmond, A., Ricke, S. C., Callaway, T., Stratakos,
A. C., et al. (2018). A review of the effect of management practices on
Campylobacter prevalence in poultry farms. Front. Microbiol. 9:2002. doi: 10.
3389/fmicb.2018.02002
Šikiæ Pogaèar, M., Langerholc, T., Mièetiæ-Turk, D., Možina, S. S., and Klanènik,
A. (2020). Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines.
BMC Vet. Res. 16:34. doi: 10.1186/s12917-020-2238-5
Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P. A., and Teixeira, P. (2011).
Campylobacter spp. as a foodborne pathogen: a review. Front. Microbiol. 2:200. doi: 10.3389/fmicb.2011.00200
Skarp, C. P. A., Hänninen, M.-L., and Rautelin, H. I. K. (2016). Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 22, 103–109. doi: 10.1016/j.cmi.
2015.11.019
Smialek, M., Burchardt, S., and Koncicki, A. (2018). The influence of probiotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp. - Field study. Res. Vet. Sci. 118, 312–316. doi: 10.1016/ j.rvsc.2018.03.009
Smith, D. P., and Berrang, M. E. (2006). Prevalence and numbers of bacteria in broiler crop and gizzard contents. Poultry Sci. 85, 144–147. doi: 10.1093/ps/85.1.144
Sofka, D., Pfeifer, A., Gleiß, B., Paulsen, P., and Hilbert, F. (2015). Changes within the intestinal flora of broilers by colonisation with Campylobacter jejuni. Berl.
Munch. Tierarztl. Wochenschr. 128, 104–110. doi: 10.2376/0005-9366-128-104
Song, J., Xiao, K., Ke, Y. L., Jiao, L. F., Hu, C. H., Diao, Q. Y., et al. (2014).
Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Sci. 93, 581–588. doi: 10.3382/ps.2013-03455
Stanley, D., Hughes, R. J., and Moore, R. J. (2014). Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl.
Microbiol. Biotechnol. 98, 4301–4310. doi: 10.1007/s00253-014-5646-2
Stern, D. N. J., Eruslanov, B. V., Pokhilenko, V. D., Kovalev, Y. N., Volodina,
L. L., Perelygin, V. V., et al. (2008). Bacteriocins reduce Campylobacter jejuni colonization while bacteria producing bacteriocins are ineffective. Microb. Ecol.
Health. Dis. 20, 74–79. doi: 10.1080/08910600802030196
Stern, N. J., Cox, N. A., Bailey, J. S., Berrang, M. E., and Musgrove, M. T. (2001).
Comparison of mucosal competitive exclusion and competitive exclusion treatment to reduce Salmonella and Campylobacter spp. colonization in broiler chickens. Poultry Sci. 80, 156–160. doi: 10.1093/ps/80.2.156
Stern, N. J., and Meinersmann, R. J. (1989). Potentials for colonization control of
Campylobacter jejuni in the chicken. J. Food Prot. 52, 427–430. doi: 10.4315/
0362-028X-52.6.427
Sun, Y., and O’Riordan, M. X. D. (2013). Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 85, 93–118. doi:
10.1016/B978-0-12-407672-3.00003-4
Svetoch, E. A., and Stern, N. J. (2010). Bacteriocins to control Campylobacter spp. in poultry-A review. Poultry Sci. 89, 1763–1768. doi: 10.3382/ps.2010-00659
Tabashsum, Z., Peng, M., Kahan, E., Rahaman, S. O., and Biswas, D. (2019). Effect of conjugated linoleic acid overproducing Lactobacillus with berry pomace phenolic extracts on Campylobacter jejuni pathogenesis. Food Funct. 10, 296–
303. doi: 10.1039/c8fo01863d
Tabashsum, Z., Peng, M., Salaheen, S., Comis, C., and Biswas, D. (2018).
Competitive elimination and virulence property alteration of Campylobacter jejuni by genetically engineered Lactobacillus casei. Food Control 85, 283–291. doi: 10.1016/j.foodcont.2017.10.010
Taha-Abdelaziz, K., Astill, J., Kulkarni, R. R., Read, L. R., Najarian, A., Farber,
J. M., et al. (2019). In vitro assessment of immunomodulatory and antiCampylobacter activities of probiotic lactobacilli. Sci. Rep. 9, 1–15. doi: 10.1038/ s41598-019-54494-3
Taheri, H. R., Moravej, H., Tabandeh, F., Zaghari, M., and Shivazad, M. (2009).
Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poultry Sci. 88, 1586–1593. doi: 10.3382/ps.2009-00041
Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema,
H. W., et al. (2017). Restriction in the Use of Antibiotics in Food Animals and Antibiotic Resistance in Food Animals and Humans – a Systematic Review and Meta-Analysis (University of Calgary, Canada). Geneva: World Health
Organization.
Tareb, R., Bernardeau, M., Gueguen, M., and Vernoux, J.-P. (2013). In vitro characterization of aggregation and adhesion properties of viable and heatkilled forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J. Med. Microbiol.
62, 637–649. doi: 10.1099/jmm.0.049965-0
Taylor, E. V., Herman, K. M., Ailes, E. C., Fitzgerald, C., Yoder, J. S.,
Mahon, B. E., et al. (2013). Common source outbreaks of Campylobacter infection in the USA, 1997-2008. Epidemiol. Infect. 141, 987–996. doi: 10.1017/S0950268812001744
Telke, A. A., Ovchinnikov, K. V., Vuoristo, K. S., Mathiesen, G., Thorstensen, T., and Diep, D. B. (2019). Over 2000-fold increased production of the leaderless bacteriocin garvicin KS by increasing gene dose and optimization of culture conditions. Front. Microbiol. 10:389. doi: 10.3389/fmicb.2019.00389
Thibodeau, A., Letellier, A., Yergeau, É, Larrivière-Gauthier, G., and Fravalo,
P. (2017). Lack of evidence that selenium-yeast improves chicken health and modulates the caecal microbiota in the context of colonization by Campylobacter jejuni. Front. Microbiol. 8:451. doi: 10.3389/fmicb.2017.
00451
Umaraw, P., Prajapati, A., Verma, A. K., Pathak, V., and Singh, V. P. (2017).
Control of Campylobacter in poultry industry from farm to poultry processing unit: a review. Crit. Rev. Food Sci. Nutr. 57, 659–665. doi: 10.1080/10408398.
2014.935847
Upadhyay, A., Arsi, K., Upadhyaya, I., Donoghue, A. M., and Donoghue,
D. J. (2019). “Natural and environmentally friendly strategies for controlling
Campylobacter jejuni colonization in poultry, survival in poultry products and infection in humans,” in Food Safety in Poultry Meat Production Food
Microbiology and Food Safety, eds K. Venkitanarayanan, S. Thakur, and S. C.
Ricke (Cham: Springer), 67–93. doi: 10.1007/978-3-030-05011-5_4
US Food and Drug Administration (2018). Generally Recognized as Safe (GRAS).
Available online at: /food/food-ingredients-packaging/generally-recognizedsafe-gras (accessed May 11, 2019).
Vaezirad, M. M., Keestra-Gounder, A. M., de Zoete, M. R., Koene, M. G., Wagenaar,
J. A., and van Putten, J. P. M. (2017). Invasive behavior of Campylobacter jejuni in immunosuppressed chicken. Virulence 8, 248–260. doi: 10.1080/21505594.
2016.1221559 van den Bogert, B., Boekhorst, J., Pirovano, W., and May, A. (2019). On the role of bioinformatics and data science in industrial microbiome applications. Front.
Genet. 10:721. doi: 10.3389/fgene.2019.00721 van Gerwe, T., Miflin, J. K., Templeton, J. M., Bouma, A., Wagenaar, J. A., JacobsReitsma, W. F., et al. (2009). Quantifying transmission of Campylobacter jejuni in commercial broiler flocks. Appl. Environ. Microbiol. 75, 625–628. doi: 10.
1128/AEM.01912-08
Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye,
P., Catry, B., et al. (2013). Antimicrobial resistance in the food chain: a review. Int. J. Environ. Res. Public. Health 10, 2643–2669. doi: 10.3390/ijerph10072643
Vinderola, C. G., and Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36, 895–904. doi: 10.1016/S0963-
9969(03)00098-X
Wang, C., Zhou, H., Guo, F., Yang, B. S., Su, X., Lin, J., et al. (2019). Oral immunization of chickens with Lactococcus lactis expressing cjaA temporarily reduces Campylobacter jejuni colonization. Foodborne Pathog. Dis. 17, 366–372. doi: 10.1089/fpd.2019.2727
Wang, Y., Sun, J., Zhong, H., Li, N., Xu, H., Zhu, Q., et al. (2017). Effect of probiotics on the meat flavour and gut microbiota of chicken. Sci. Rep. 7, 1–13. doi: 10.1038/s41598-017-06677-z
Wigley, P. (2013). Immunity to bacterial infection in the chicken. Dev. Comp.
Immunol. 41, 413–417. doi: 10.1016/j.dci.2013.04.008
Willson, N.-L., Nattrass, G. S., Hughes, R. J., Moore, R. J., Stanley, D., Hynd,
P. I., et al. (2018). Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Appl. Microbiol. Biotechnol. 102, 9317–9329. doi: 10.
1007/s00253-018-9281-1
Wise, M. G., and Siragusa, G. R. (2007). Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibioticfree vegetable-based diets. J. Appl. Microbiol. 102, 1138–1149. doi: 10.1111/j.1365-2672.2006.03153.x
Yang, Y., Feye, K. M., Shi, Z., Pavlidis, H. O., Kogut, M., Ashworth, J., et al. (2019).
A historical review on antibiotic resistance of foodborne Campylobacter. Front.
Microbiol. 10:1509. doi: 10.3389/fmicb.2019.01509
Zhang, G., Ma, L., and Doyle, M. P. (2007). Potential competitive exclusion bacteria from poultry inhibitory to Campylobacter jejuni and Salmonella. J. Food Prot.
70, 867–873. doi: 10.4315/0362-028x-70.4.867
Zhou, Y.-H., and Gallins, P. (2019). A review and tutorial of machine learning methods for microbiome host trait prediction. Front. Genet. 10:579. doi: 10.
3389/fgene.2019.00579