As global demand increases for poultry products, innovative feeding strategies that reduce resource efficiency and improve food safety are urgently needed. This paper explores the potential of alternative sustainable poultry feeding strategies aimed at achieving SDG2 (Zero Hunger) while increasing production performance and food quality, focusing on the potential recycling of byproducts, plants, and food waste derived from fruits, vegetables, and seeds, which account for up to 35% annually. The paper provides a review analysis of the nutritional (protein, fat, fiber, and ash) and minerals (i.e., calcium, phosphorus, zinc, manganese, copper, and iron) content as well as the bioactive compounds (polyphenols, antioxidants, carotenoids, fatty acids, and vitamins) of alternative feed ingredients, which can contribute to resource efficiency, reduce dependency on conventional feeds, and lower production costs by 25%. The nutritional benefits of these alternative feed ingredients, including their effects on poultry production and health, and their potential for improving poultry product quality, are presented. Carrot, paprika, rosehip, and some berry waste represent a great source of carotenoids, polyphenols, and vitamins, while the seed meals (flax, rapeseed, and sea buckthorn) have been reported to enhance the essential fatty acid composition in eggs and meat. Numerous plants (basil, sage, rosemary, and lettuce) are natural reservoirs of bioactive compounds with benefits for both animal and food products. Some challenges in implementing these alternative sustainable feeding strategies, including inconsistencies in quality and availability, the presence of anti-nutrients, and regulatory barriers, are also explored. In conclusion, future research directions in sustainable poultry feeding with alternative feed ingredients should be considered to achieve SDG2.
Keywords: food quality; poultry; eggs; meat; sustainability; zero hunger; SDG; feed ingredients
1. Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [CrossRef] [PubMed]
2. Siddiqui, S.A.; Elsheikh, W.; Ucak, ˙I.; Hasan, M.; Perlita, Z.C.; Yudhistira, B. Replacement of soy by mealworms for livestock feed-A comparative review between soy and mealworms considering environmental aspects. Environ. Dev. Sustain. 2024, 1–44. [CrossRef]
3. Martens, S.D.; Tiemann, T.T.; Bindelle, J.; Peters, M.; Lascano, C.E. Alternative plant protein sources for pigs and chickens in the tropics–nutritional value and constraints: A review. J. Agric. Rural Dev. Trop. Subtrop. (JARTS) 2012, 113, 101–123.
4. Juodka, R.; Nainiene, R.; Juškien ˙ e, V.; Juška, R.; Leikus, R.; Kadžien ˙ e, G.; Stankeviˇcien ˙ e, D. Camelina ( ˙ Camelina sativa (L.) crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals 2022, 12, 295. [CrossRef] [PubMed]
5. Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [CrossRef]
6. Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Panaite, T.D.; Saracila, M. Rosehip (Rosa canina L.) meal as a natural antioxidant on lipid and protein quality and shelf-life of polyunsaturated fatty acids enriched eggs. Antioxidants 2022, 11, 1948. [CrossRef]
7. Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace–effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2022, 101, 101519. [CrossRef]
8. Mustafa, A.F.; Baurhoo, B. Effects of feeding dried broccoli floret residues on performance, ileal and total digestive tract nutrient digestibility, and selected microbial populations in broiler chickens. J. Appl. Poult. Res. 2016, 25, 561–570. [CrossRef]
9. Vlaicu, P.A.; Untea, A.E.; Lefter, N.A.; Oancea, A.G.; Saracila, M.; Varzaru, I. Influence of rosehip (Rosa canina L.) leaves as feed additive during first stage of laying hens on performances and egg quality characteristics. Poult. Sci. 2024, 103, 103990. [CrossRef]
10. Seidavi, A.; Azizi, M.; Swelum, A.A.; Abd El-Hack, M.E.; Naiel, M.A. Practical application of some common agro-processing wastes in poultry diets. World’s Poult. Sci. J. 2021, 77, 913–927. [CrossRef]
11. Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production. Process. Nutr. 2020, 2, 6. [CrossRef]
12. Amoroso, L. Post-2015 Agenda and Sustainable Development Goals: Where are we now? Global opportunities to address malnutrition in all its forms, including hidden hunger. Hidden Hunger Strateg. Improv. Nutr. Qual. 2018, 118, 45–56.
13. Shahmohamadloo, R.S.; Febria, C.M.; Fraser, E.D.; Sibley, P.K. The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integr. Environ. Assess. Manag. 2022, 18, 1199–1205. [CrossRef] [PubMed]
14. Lee, J.Y.; Lee, S.E.; Lee, D.W. Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2453–2509. [CrossRef]
15. Food and Agriculture Organization of the United Nations (FAO). Development of a Code of Conduct on Food Loss and Food Waste Prevention. 2019. Available online: http://www.fao.org/fsnforum/es/node/4877 (accessed on 22 September 2024).
16. Sheffield, S.; Fiorotto, M.L.; Davis, T.A. Nutritional importance of animal-sourced foods in a healthy diet. Front. Nutr. 2024, 11, 1424912. [CrossRef]
17. Neumann, C.; Harris, D.M.; Rogers, L.M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 2002, 22, 193–220. [CrossRef]
18. Bergeron, N.; Chiu, S.; Williams, P.T.; King, S.M.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [CrossRef]
19. Pesti, G.M.; Choct, M. The future of feed formulation for poultry: Toward more sustainable production of meat and eggs. Anim. Nutr. 2023, 15, 71–87. [CrossRef]
20. Masters, W.A.; Rosettie, K.L.; Kranz, S.; Danaei, G.; Webb, P.; Mozaffarian, D. Designing programs to improve diets for maternal and child health: Estimating costs and potential dietary impacts of nutrition-sensitive programs in Ethiopia, Nigeria, and India. Health Policy Plan. 2018, 33, 564–573. [CrossRef]
21. Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [CrossRef]
22. Dumont, B.; Puillet, L.; Martin, G.; Savietto, D.; Aubin, J.; Ingrand, S.; Niderkorn, V.; Steinmetz, L.; Thomas, M. Incorporating diversity into animal production systems can increase their performance and strengthen their resilience. Front. Sustain. Food Syst. 2020, 4, 109. [CrossRef]
23. Scanes, C.; Pierzchała-Koziec, K. Poultry and Livestock Production: Environmental Impacts. In Modern Technology and Traditional Husbandry of Broiler Farming; IntechOpen: London, UK, 2024. [CrossRef]
24. Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022, 11, 1105. [CrossRef] [PubMed]
25. Leroy, F.; Abraini, F.; Beal, T.; Dominguez-Salas, P.; Gregorini, P.; Manzano, P.; Rowntree, J.; Van Vliet, S. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets—An argument against drastic limitation of livestock in the food system. Animal 2022, 16, 100457. [CrossRef] [PubMed]
26. Gauchan, D.; Shrestha, R.B. Improve Socio-Economic Inclusion, Resilience and Wellbeing of Family Farmers, Rural Households and Communities in South Asia. In Regional Action Plan to Implement the UNDFF for Achieving the SDGs in South Asia; Rudra, B.S., Pierre, F., Ma, E.P., Mohit, D., Younus, A., Eds.; SAARC Agriculture Center/FAO/AFA/ICA-AP: Dhaka, Bangladesh, 2021; pp. 161–173.
27. Doumkou, S. Circular Economy and Sustainable Agriculture: A Comparative Analysis of EU and MENA Regions. Master’s Thesis, International Hellenic University, Thessaloniki, Greece, 2024.
28. Muleta, C.E. The Major Potential of Non-Conventional Feed Resources in Poultry Nutrition in Ethiopia: A Review. Anim. Vet. Sci. 2024, 13, 68–77. [CrossRef]
29. Murta, D. The future of animal feeding. In Insects as Animal Feed: Novel Ingredients for Use in Pet, Aquaculture and Livestock Diets; Publisher CABI, Brithish Library: London, UK, 2021; pp. 126–138.
30. Samani, S.A.; Jafari, M.; Sahafi, S.M.; Roohinejad, S. Applications of algae and algae extracts in human food and feed. Recent. Adv. Micro Macroalgal Process. Food Health Perspect. 2021, 465–486. [CrossRef]
31. Vlaicu, P.A.; Panaite, T.D.; Dragotoiu, D.; Ropota, M.; Bobe, E.; Olteanu, M.; Criste, R.D. Feeding quality of the meat from broilers fed with dietary food industry by-products (flaxseed, rapeseeds and buckthorn meal, grape pomace). Sci. Pap. Ser. D Anim. Sci. 2017, 60, 123–130.
32. Wang, J.; Singh, A.K.; Kong, F.; Kim, W.K. Effect of almond hulls as an alternative ingredient on broiler performance, nutrient digestibility, and cecal microbiota diversity. Poult. Sci. 2021, 100, 100853. [CrossRef]
33. Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Effect of Processing and In Vitro Digestion on Bioactive Constituents of Powdered IV Range Carrot (Daucus carota L.) Wastes. Foods 2023, 12, 731. [CrossRef]
34. Panaite, T.D.; Nour, V.; Vlaicu, P.A.; Ropota, M.; Corbu, A.R.; Saracila, M. Flaxseed and dried tomato waste used together in laying hens diet. Arch. Anim. Nutr. 2019, 73, 222–238. [CrossRef]
35. Malenica, D.; Kass, M.; Bhat, R. Sustainable Management and Valorization of Agri-Food Industrial Wastes and By-Products as Animal Feed: For Ruminants, Non-Ruminants and as Poultry Feed. Sustainability 2023, 15, 117. [CrossRef]
36. Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The potential of insect protein to reduce food-based carbon footprints in Europe: The case of broiler meat production. J. Clean. Prod. 2021, 320, 128799. [CrossRef]
37. Kazancoglu, Y.; Ekinci, E.; Ozen, Y.D.O.; Pala, M.O. Reducing food waste through lean and sustainable operations: A case study from the poultry industry. Rev. Adm. Empresas 2021, 61, e2020-0226. [CrossRef]
38. Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resources. Conserv. Recycl. 2021, 165, 105236. [CrossRef]
39. Mahmudul, H.M.; Rasul, M.G.; Akbar, D.; Narayanan, R.; Mofijur, M. Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis. Renew. Sustain. Energy Rev. 2022, 166, 112577. [CrossRef]
40. Raak, N.; Symmank, C.; Zahn, S.; Aschemann-Witzel, J.; Rohm, H. Processing-and product-related causes for food waste and implications for the food supply chain. Waste Manag. 2017, 61, 461–472. [CrossRef] [PubMed]
41. Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [CrossRef]
42. Vlaicu, P.A.; Untea, A.E.; Varzaru, I.; Saracila, M.; Oancea, A.G. Designing Nutrition for Health—Incorporating Dietary ByProducts into Poultry Feeds to Create Functional Foods with Insights into Health Benefits, Risks, Bioactive Compounds, Food Component Functionality and Safety Regulations. Foods 2023, 12, 4001. [CrossRef]
43. Salvador, R.; Barros, M.V.; Donner, M.; Brito, P.; Halog, A.; Antonio, C. How to advance regional circular bioeconomy systems? Identifying barriers, challenges, drivers, and opportunities. Sustain. Prod. Consum. 2022, 32, 248–269. [CrossRef]
44. Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: Are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [CrossRef]
45. Focker, M.; Van Asselt, E.D.; Berendsen BJ, A.; Van De Schans, M.G.M.; Van Leeuwen, S.P.J.; Visser, S.M.; Van der Fels-Klerx, H.J. Review of food safety hazards in circular food systems in Europe. Food Res. Int. 2022, 158, 111505. [CrossRef]
46. Coon, C.N. Major feed ingredients: Feed management and analysis. In Commercial Chicken Meat and Egg Production; Springer: Boston, MA, USA, 2002; pp. 215–241.
47. Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 2018, 187, 338–347. [CrossRef]
48. Van der Poel, A.F.B.; Abdollahi, M.R.; Cheng, H.; Colovic, R.; Den Hartog, L.A.; Miladinovic, D.; Page, G.; Sijssens, K.; Smillie, J.F.; Thomas, M.; et al. Future directions of animal feed technology research to meet the challenges of a changing world. Anim. Feed. Sci. Technol. 2020, 270, 114692. [CrossRef]
49. Piercy, E.; Verstraete, W.; Ellis, P.R.; Banks, M.; Rockström, J.; Smith, P.; OlWitard, C.; Hallett, J.; Hogstrand, C.; Knott, G.; et al. A sustainable waste-to-protein system to maximise waste resource utilisation for developing food-and feed-grade protein solutions. Green. Chem. 2023, 25, 808–832. [CrossRef]
50. Panaite, T.D.; Nour, V.; Saracila, M.; Turcu, R.P.; Untea, A.E.; Vlaicu, P.A. Effects of Linseed Meal and Carotenoids from Different Sources on Egg Characteristics, Yolk Fatty Acid and Carotenoid Profile and Lipid Peroxidation. Foods 2021, 10, 1246. [CrossRef] [PubMed]
51. Blando, F.; Marchello, S.; Maiorano, G.; Durante, M.; Signore, A.; Laus, M.N.; Soccio, M.; Mita, G. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace “Polignano” Carrot. Plants 2021, 10, 564. [CrossRef]
52. Kim, J.S.; Lim, J.H.; Cho, S.K. Effect of antioxidant and anti-inflammatory on bioactive components of carrot (Daucus carota L.) leaves from Jeju Island. Appl. Biol. Chem. 2023, 66, 34. [CrossRef]
53. Purewal, S.S.; Verma, P.; Kaur, P.; Sandhu, K.S.; Singh, R.S.; Kaur, A.; Salar, R.K. A comparative study on proximate composition, mineral profile, bioactive compounds and antioxidant properties in diverse carrot (Daucus carota L.) flour. Biocatal. Agric. Biotechnol. 2023, 48, 102640. [CrossRef]
54. Golubkina, N.; Zayachkovsky, V.; Stepanov, V.; Deryagina, V.; Rizhova, N.; Kirsanov, K.; Caruso, G. High temperature and humidity effect on biochemical characteristics of organically-grown parsnip roots compared to garlic bulbs. Plant Foods Hum. Nutr. 2020, 75, 292–297. [CrossRef]
55. Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [CrossRef]
56. Nikoli´c, N.; Cvetkovi´c, D.; Todorovi´c, Z. A characterization of content, composition and antioxidant capacity of phenolic compounds in celery roots. Ital. J. Food Sci. 2011, 23, 214–219.
57. Liu, D.K.; Xu, C.C.; Zhang, L.; Ma, H.; Chen, X.J.; Sui, Y.C.; Zhang, H.Z. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. Int. J. Food Prop. 2020, 23, 1097–1109. [CrossRef]
58. Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 2010, 75, C9–C13. [CrossRef] [PubMed]
59. Grover, S.; Malik, C.P.; Hora, A.; Kushwaha, H.B. Botany, cultivation, chemical constituents and genetic diversity in fennel (Foeniculum vulgare Mill): A review. LS Int. J. Life Sci. 2013, 2, 128–139. [CrossRef]
60. Barros, L.; Carvalho, A.M.; Ferreira, I.C. The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT-Food Sci. Technol. 2010, 43, 814–818. [CrossRef]
61. Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [CrossRef]
62. Ghosh, A.; Saleh-e-In, M.M.; Abukawsar, M.M.; Ahsan, M.A.; Rahim, M.M.; Bhuiyan, M.N.H.; Roy, S.K.; Naher, S. Characterization of quality and pharmacological assessment of Pimpinella anisum L. (Anise) seeds cultivars. J. Food Meas. Charact. 2019, 13, 2672–2685. [CrossRef]
63. Bhat, S.; Kaushal, P.; Kaur, M.; Sharma, H.K. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects. Afr. J. Plant Sci. 2014, 8, 25–33.
64. Abbassi, A.; Mahmoudi, H.; Zaouali, W.; M’rabet, Y.; Casabianca, H.; Hosni, K. Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J. Food Sci. Technol. 2018, 55, 3065–3076. [CrossRef]
65. Cornescu, G.M.; Panaite, T.D.; Untea, A.E.; Varzaru, I.; Saracila, M.; Dumitru, M.; Vlaicu, P.A.; Gavris, T. Mitigation of heat stress effects on laying hens’ performances, egg quality, and some blood parameters by adding dietary zinc-enriched yeasts, parsley, and their combination. Front. Vet. Sci. 2023, 10, 1202058. [CrossRef]
66. Dobriˇcevi´c, N.; Šic Žlabur, J.; Vo´ca, S.; Pliesti´c, S.; Gali´c, A.; Deli´c, A.; Fabek Uher, S. Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill.). J. Cent. Eur. Agric. 2019, 20, 900–910. [CrossRef]
67. Lisiewska, Z.; Kmiecik, W.; Korus, A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Compos. Anal. 2006, 19, 134–140. [CrossRef]
68. Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C. Chemical and bioactive characterization of the aromatic plant Levisticum officinale WDJ Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [CrossRef] [PubMed]
69. Jakubczyk, A.; Złotek, U.; Szymanowska, U.; Rybczy´nska-Tkaczyk, K.; J˛ederka, K.; Lewicki, S. In vitro Antioxidant, Antiinflammatory, Anti-metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants 2020, 9, 554. [CrossRef] [PubMed]
70. Özgen, M.; Scheerens, J.C.; Reese, R.N.; Miller, R.A. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacogn. Mag. 2010, 6, 198. [CrossRef] [PubMed]
71. Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [CrossRef]
72. Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Sambucus nigra L. fruits and flowers: Chemical composition and related bioactivities. Food Rev. Int. 2022, 38, 1237–1265. [CrossRef]
73. Afoakwah, N.A.; Dong, Y.; Zhao, Y.; Xiong, Z.; Owusu, J.; Wang, Y.; Zhang, J. Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT-Food Sci. Technol. 2015, 64, 74–81. [CrossRef]
74. Ersahince, A.; Kara, K. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J. Anim. Feed. Sci. 2017, 26, 213–225. [CrossRef]
75. Wang, Y.; Zhao, Y.; Xue, F.; Nan, X.; Wang, H.; Hua, D.; Liu, J.; Yang, L.; Jiang, L.; Xiong, B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 2020, 6, 429–437. [CrossRef]
76. Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci. World J. 2017, 2017, 7343928. [CrossRef]
77. Jangra, S.S.; Madan, V.K. Proximate, mineral and chemical composition of different parts of chicory (Cichorium intybus L.). J. Pharmacogn. Phytochem. 2018, 7, 3311–3315.
78. Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.Á.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L.(flowers) and Mentha cervina L.(leaves). Food Funct. 2016, 7, 2223–2232. [CrossRef] [PubMed]
79. Olennikov, D.N.; Kashchenko, N.I. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves. Sci. World J. 2014, 2014, 654193. [CrossRef] [PubMed]
80. Dedi´c, S.; Džaferovi´c, A.; Juki´c, H. Chemical Composition and Antioxidant Activity of Water-Ethanol Extracts of Dandelion (Taraxacum officinale). Hrana Zdr. Boles. Znan.-Struˇcni Casopis Nutr. Dijetetiku ˇ 2022, 11, 8–14.
81. Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 2016, 39, 805–815. [CrossRef]
82. Park, C.H.; Yeo, H.J.; Baskar, T.B.; Kim, J.K.; Park, S.U. Metabolic profiling and chemical-based antioxidant assays of green and red lettuce (Lactuca sativa). Nat. Product. Commun. 2018, 13, 1934578X1801300313. [CrossRef]
83. Pandino, G.; Lombardo, S.; Mauromicale, G. Chemical and Morphological Characteristics of New Clones and Commercial Varieties of Globe Artichoke (Cynara cardunculus var. scolymus). Plant Foods Hum. Nutr. 2011, 66, 291–297. [CrossRef]
84. Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C. Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem. 2018, 267, 296–302. [CrossRef]
85. Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [CrossRef]
86. Ewansiha, C.J.; Ebhoaye, J.E.; Asia, I.O.; Ekebafe, L.O.; Ehigie, C. Proximate and mineral composition of coconut (Cocos nucifera) shell. Int. J. Pure Appl. Sci. Technol. 2012, 13, 57.
87. Gheorghe, A.; Vlaicu, P.A.; Olteanu, M.; Vis,inescu, P.; Criste, R.D. Obtaining eggs enriched in polyunsaturated fatty acids (PUFA). 1. Use of vegetable sources rich in PUFA as functional ingredients in laying hens diets: A review. Arch. Zootech. 2019, 22, 54–85.
88. Sikora, E.; Bodziarczyk, I. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. Acta Sci. Pol. Technol. Aliment. 2012, 11, 239–248. [PubMed]
89. Oancea, A.-G.; Dragomir, C.; Untea, A.E.; Saracila, M.; Cismileanu, A.E.; Vlaicu, P.A.; Varzaru, I. The Effects of Flax and Mustard Seed Inclusion in Dairy Goats’ Diet on Milk Nutritional Quality. Agriculture 2024, 14, 1009. [CrossRef]
90. Brito, T.B.N.; Pereira, A.P.A.; Pastore, G.M.; Moreira, R.F.A.; Ferreira, M.S.L.; Fai, A.E.C. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. LWT 2020, 124, 109028. [CrossRef]
91. Mierlita, D.; Teus,dea, A.C.; Matei, M.; Pascal, C.; Simeanu, D.; Pop, I.M. Effect of Dietary Incorporation of Hemp Seeds Alone or with Dried Fruit Pomace on Laying Hens’ Performance and on Lipid Composition and Oxidation Status of Egg Yolks. Animals 2024, 14, 750. [CrossRef]
92. Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [CrossRef]
93. Agatemor, U.M.M.; Nwodo, O.F.C.; Anosike, C.A. Phytochemical and proximate composition of cucumber (Cucumis sativus) fruit from Nsukka, Nigeria. Afr. J. Biotechnol. 2018, 17, 1215–1219.
94. Olayinka, B.U.; Etejere, E.O. Proximate and Chemical Compositions of Watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai cv Red and Cucumber (Cucumis sativus L. cv Pipino). Int. Food Res. J. 2018, 25, 1060–1066.
95. Vlaicu, P.A.; Panaite, T.D. Effect of dietary pumpkin (Cucurbita moschata) seed meal on layer performance and egg quality characteristics. Anim. Biosci. 2022, 35, 236. [CrossRef]
96. Saracila, M.; Untea, A.E.; Panaite, T.D.; Varzaru, I.; Oancea, A.-G.; Turcu, R.P.; Vlaicu, P.A. Effects of Supplementing Sea Buckthorn Leaves (Hippophae rhamnoides L.) and Chromium (III) in Broiler Diet on the Nutritional Quality and Lipid Oxidative Stability of Meat. Antioxidants 2022, 11, 2220. [CrossRef]
97. Saboonchian, F.; Jamei, R.; Sarghein, S.H. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J. Phytomed. 2014, 4, 231. [PubMed]
98. Fakı, R.; Canbay, H.S.; Gürsoy, O.; Yılmaz, Y. Antioxidant activity, physico-chemical and fatty acid composition of oleaster (Elaeagnus angustifolia L.) varieties naturally grown in western mediterranean region of Turkey. Akad. Gıda 2022, 20, 329–335. [CrossRef]
99. Untea, A.E.; Turcu, R.P.; Saracila, M.; Vlaicu, P.A.; Panaite, T.D.; Oancea, A.G. Broiler meat fatty acids composition, lipid metabolism, and oxidative stability parameters as affected by cranberry leaves and walnut meal supplemented diets. Sci. Rep. 2022, 12, 21618. [CrossRef] [PubMed]
100. Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Varzaru, I.; Oancea, A.G. Chemical composition of dietary alfalfa and its effectiveness on broiler chicken thigh meat quality. Czech J. Food Sci. 2023, 41, 279–286. [CrossRef]
101. Zia-Ul-Haq, M.; Ahmad, S.; Amarowicz, R.; Ercisli, S. Compositional studies of some pea (Pisum sativum L.) seed cultivars commonly consumed in Pakistan. Ital. J. Food Sci. /Riv. Ital. Di Sci. Degli Aliment. 2013, 25, 295–302.
102. Liberal, Â.; Almeida, D.; Fernandes, Â.; Pereira, C.; Ferreira, I.C.; Vivar-Quintana, A.M.; Barros, L. Nutritional, chemical and antioxidant evaluation of Armuña lentil (Lens culinaris spp.): Influence of season and soil. Food Chem. 2023, 411, 135491. [CrossRef]
103. Wang, F.; Huang, L.; Yuan, X.; Zhang, X.; Guo, L.; Xue, C.; Chen, X. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiate L.) genotypes. Food Prod. Process. Nutr. 2021, 3, 28. [CrossRef]
104. Scherer, R.; Lemos, M.F.; Lemos, M.F.; Martinelli, G.C.; Martins, J.D.L.; da Silva, A.G. Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Ind. Crops Prod. 2013, 50, 408–413. [CrossRef]
105. Paula, T.R.; Olteanu, M.; Untea, A.E.; Saracila, M.; Varzaru, I.; Vlaicu, P.A. Nutritional characterization of some natural plants used in poultry nutrition. Arch. Zootech. 2020, 23, 58–72. [CrossRef]
106. J˛edrszczyk, E.; Kope´c, A.; Bucki, P.; Ambroszczyk, A.M.; Skowera, B. The enhancing effect of plants growth biostimulants in garlic cultivation on the chemical composition and level of bioactive compounds in the garlic leaves, stems and bulbs. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 81–91. [CrossRef]
107. Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of industrial onion wastes (Allium cepa L.): Dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [CrossRef] [PubMed]
108. Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.H.; Hall, R.D. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites 2020, 10, 17. [CrossRef] [PubMed]
109. Tsado, A.N.; Okoli, N.R.; Jiya, A.G.; Gana, D.; Saidu, B.; Zubairu, R.; Salihu, I.Z. Proximate, minerals, and amino acid compositions of banana and plantain peels. BIOMED Nat. Appl. Sci. 2021, 1, 032–042.
110. Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jiménez-López, J.; Alché, J.D.D. Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [CrossRef]
111. Manzoor, M.; Anwar, F.; Saari, N.; Ashraf, M. Variations of Antioxidant Characteristics and Mineral Contents in Pulp and Peel of Different Apple (Malus domestica Borkh.) Cultivars from Pakistan. Molecules 2012, 17, 390–407. [CrossRef]
112. Ilyaso˘glu, H. Characterization of rosehip (Rosa canina L.) seed and seed oil. Int. J. Food Prop. 2014, 17, 1591–1598. [CrossRef]
113. Varzaru, I.; Oancea, A.G.; Vlaicu, P.A.; Saracila, M.; Untea, A.E. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants 2023, 12, 2125. [CrossRef]
114. Salas-Arias, K.; Irías-Mata, A.; Sánchez-Kopper, A.; Hernández-Moncada, R.; Salas-Morgan, B.; Villalta-Romero, F.; Calvo-Castro, L.A. Strawberry Fragaria x ananassa cv. Festival: A Polyphenol-Based Phytochemical Characterization in Fruit and Leaf Extracts. Molecules 2023, 28, 1865. [CrossRef]
115. Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. [CrossRef]
116. Vlaicu, P.A.; Untea, A.E.; Panaite, T.D.; Turcu, R.P. Effect of dietary orange and grapefruit peel on growth performance, health status, meat quality and intestinal microflora of broiler chickens. Ital. J. Anim. Sci. 2020, 19, 1394–1405. [CrossRef]
117. Janati, S.S.F.; Beheshti, H.R.; Feizy, J.; Fahim, N.K. Chemical composition of lemon (Citrus limon) and peels its considerations as animal food. Gida 2012, 37, 267–271.
118. Anaya-Esparza, L.M.; Mora, Z.V.-d.l.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [CrossRef] [PubMed]
119. Silva, G.F.P.; Pereira, E.; Melgar, B.; Stojkovi´c, D.; Sokovic, M.; Calhelha, R.C.; Pereira, C.; Abreu, R.M.V.; Ferreira, I.C.F.R.; Barros, L. Eggplant Fruit (Solanum melongena L.) and Bio-Residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. Appl. Sci. 2021, 11, 151. [CrossRef]
120. Olteanu, M.; Panaite, T.D.; Turcu, R.P.; Ropota, M.; Vlaicu, P.A.; Mitoi, M. Using grapeseed meal as natural antioxidant in slow-growing Hubbard broiler diets enriched in polyunsaturated fatty acids. Rev. Mex. De Cienc. Pecu. 2022, 13, 43–63. [CrossRef]
121. Turcu, R.P.; Olteanu, M.; Criste, R.D.; Panaite, T.D.; Ropotă, M.; Vlaicu, P.A.; Drăgotoiu, D. Grapeseed meal used as natural antioxidant in high fatty acid diets for Hubbard broilers. Braz. J. Poult. Sci. 2019, 21, eRBCA-2018. [CrossRef]
122. Yeh, H.Y.; Chuang, C.H.; Chen, H.C.; Wan, C.J.; Chen, T.L.; Lin, L.Y. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT-Food Sci. Technol. 2014, 55, 329–334. [CrossRef]
123. Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.; Salem, A.Z.; Márquez-Molina, O.; Rene Rivas-Caceres, R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechnol. 2022, 33, 369–391. [CrossRef]
124. Harouna, D.V.; Kawe, P.C.; Mohammed, E.M.I. Under-utilized legumes as potential poultry feed ingredients: A mini-review. Arch. Anim. Poult. Sci. 2018, 1, 1–3.
125. Nalluri, N.; Karri, V.R. Grain legumes and their by-products: As a nutrient rich feed supplement in the sustainable intensification of commercial poultry industry. In Sustainable Agriculture Reviews 51: Legume Agriculture and Biotechnology; Springer Nature: Cham, Switzerland, 2021; Volume 2, pp. 51–96. [CrossRef]
126. Panaite, T.D.; Vlaicu, P.A.; Saracila, M.; Cismileanu, A.; Varzaru, I.; Voicu, S.N.; Hermenean, A. Impact of Watermelon Rind and Sea Buckthorn Meal on Performance, Blood Parameters, and Gut Microbiota and Morphology in Laying Hens. Agriculture 2022, 12, 177. [CrossRef]
127. Erinle, T.J.; Adewole, D.I. Fruit pomaces—Their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. Anim. Nutr. 2022, 9, 357–377. [CrossRef]
128. Untea, A.E.; Varzaru, I.; Saracila, M.; Panaite, T.D.; Oancea, A.G.; Vlaicu, P.A.; Grosu, I.A. Antioxidant Properties of Cranberry Leaves and Walnut Meal and Their Effect on Nutritional Quality and Oxidative Stability of Broiler Breast Meat. Antioxidants 2023, 12, 1084. [CrossRef] [PubMed]
129. Saracila, M.; Panaite, T.D.; Predescu, N.C.; Untea, A.E.; Vlaicu, P.A. Effect of Dietary Salicin Standardized Extract from Salix alba Bark on Oxidative Stress Biomarkers and Intestinal Microflora of Broiler Chickens Exposed to Heat Stress. Agriculture 2023, 13, 698. [CrossRef]
130. Ponnampalam, E.N.; Holman, B.W. Sustainability II: Sustainable animal production and meat processing. In Lawrie’s Meat Science; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, MA, USA; Kidlington, UK, 2023; pp. 727–798. [CrossRef]
131. Lefter, N.A.; Gheorghe, A.; Habeanu, M.; Ciurescu, G.; Dumitru, M.; Untea, A.E.; Vlaicu, P.A. Assessing the effects of microencapsulated Lactobacillus salivarius and cowpea seed supplementation on broiler chicken growth and health status. Front. Vet. Sci. 2023, 10, 1279819. [CrossRef] [PubMed]
132. Alshelmani, M.I.; Abdalla, E.A.; Kaka, U.; Basit, M.A. Nontraditional feedstuffs as an alternative in poultry feed. In Advances in Poultry Nutrition Research; IntechOpen: London, UK, 2021. [CrossRef]
133. Khalifah, A.; Abdalla, S.; Rageb, M.; Maruccio, L.; Ciani, F.; El-Sabrout, K. Could Insect Products Provide a Safe and Sustainable Feed Alternative for the Poultry Industry? A Comprehensive Review. Animals 2023, 13, 1534. [CrossRef]
134. Kusmayadi, A.; Leong, Y.K.; Yen, H.W.; Huang, C.Y.; Chang, J.S. Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [CrossRef]
135. Brunetti, L.; Leuci, R.; Colonna, M.A.; Carrieri, R.; Celentano, F.E.; Bozzo, G.; Loiodice, F.; Selvaggi, M.; Tufarelli, V.; Piemontese, L. Food Industry Byproducts as Starting Material for Innovative, Green Feed Formulation: A Sustainable Alternative for Poultry Feeding. Molecules 2022, 27, 4735. [CrossRef]
136. Babatunde, O.O.; Park, C.S.; Adeola, O. Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. Animals 2021, 11, 1196. [CrossRef]
137. Davis, K.F.; Downs, S.; Gephart, J.A. Towards food supply chain resilience to environmental shocks. Nat. Food 2021, 2, 54–65. [CrossRef]
138. Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [CrossRef]
139. Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [CrossRef]
140. David, L.S.; Nalle, C.L.; Abdollahi, M.R.; Ravindran, V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals 2024, 14, 619. [CrossRef] [PubMed]
141. Rehal, J.; Kaur, K.; Kaur, P. Cereals and Their By-Products. In Cereal Grains; CRC Press: Boca Raton, FL, USA, 2023; pp. 147–176.
142. Purohit, P.; Rawat, H.; Verma, N.; Mishra, S.; Nautiyal, A.; Anshul; Bhatt, S.; Bisht, N.; Aggarwal, K.; Bora, A.; et al. Analytical approach to assess anti-nutritional factors of grains and oilseeds: A comprehensive review. J. Agric. Food Res. 2023, 14, 100877. [CrossRef]
143. Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [CrossRef]
144. Kustar, A.; Patino-Echeverri, D. A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods. Sustainability 2021, 13, 9926. [CrossRef]
145. Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239. [CrossRef]
146. Kolev, N.; Vlahova-Vangelova, D.; Balev, D.; Dragoev, S.; Dimov, K.; Petkov, E.; Popova, T. Effect of the Addition of Soybean Protein and Insect Flours on the Quality of Cooked Sausages. Foods 2024, 13, 2194. [CrossRef]
147. Jagtap, S.; Garcia-Garcia, G.; Duong, L.; Swainson, M.; Martindale, W. Codesign of Food System and Circular Economy Approaches for the Development of Livestock Feeds from Insect Larvae. Foods 2021, 10, 1701. [CrossRef]
148. Chavez, M. The sustainability of industrial insect mass rearing for food and feed production: Zero waste goals through by-product utilization. Curr. Opin. Insect Sci. 2021, 48, 44–49. [CrossRef]
149. Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. [CrossRef]
150. Zuk-Gołaszewska, K.; Gał˛ecki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of ˙ the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [CrossRef]
151. Madau, F.A.; Arru, B.; Furesi, R.; Pulina, P. Insect Farming for Feed and Food Production from a Circular Business Model Perspective. Sustainability 2020, 12, 5418. [CrossRef]
152. Veldkamp, T.; Meijer, N.; Alleweldt, F.; Deruytter, D.; Van Campenhout, L.; Gasco, L.; Roos, N.; Smetana, S.; Fernandes, A.; van der Fels-Klerx, H.J. Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective. Insects 2022, 13, 281. [CrossRef] [PubMed]
153. Colombino, E.; Biasato, I.; Ferrocino, I.; Bellezza Oddon, S.; Caimi, C.; Gariglio, M.; Dabbou, S.; Caramori, M.; Battisti, E.; Zanet, S.; et al. Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation. Animals 2021, 11, 2819. [CrossRef] [PubMed]
154. Elahi, U.; Xu, C.C.; Wang, J.; Lin, J.; Wu, S.G.; Zhang, H.J.; Qi, G.H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332. [CrossRef] [PubMed]
155. Barakat, D.; El-Far, A.; Sadek, K.; Mahrous, U.; Ellakany, H.; Abdel-Latif, M. Anise (Pimpinella anisum) enhances the growth performance, immunity and antioxidant activities in broilers. Int. J. Pharm. Sci. Rev. Res. 2016, 37, 134–140.
156. Khubeiz, M.M.; Shirif, A.M. Effect of coriander (Coriandrum sativum L.) seed powder as feed additives on performance and some blood parameters of broiler chickens. Open Vet. J. 2020, 10, 198–205. [CrossRef]
157. Ali, N.A.L.; Gaakd, M.; AL-Nasrawi, A.M. Effect of addition different levels of Parsley leaves powder (Petroselinum sativum) to the ration on some blood serum biochemical traits of broiler Ross 308. J. Nat. Sci. Res. 2016, 6, 18–21.
158. Hammod, A.J.; Abd El-Aziz, A.H.; Areaaer, A.H.; Alfertosi, K.A. Effect of Dill Powder (Anethum graveolens) as a Dietary Supplement on Productive Performance, Mortality and Economic Figure in Broiler. IOP Conf. Ser. Earth Environ. Sci. 2020, 553, 012018. [CrossRef]
159. Abadi, K.M.A.; Andi, M.A. Effects of using coriander (Coriandrum sativum L.), savory (Satureja hortensis L.) and dill (Anethum graveolens L.) herb powder in diet on performance and some blood parameters of broilers. Open Vet J. 2014, 5, 95–103. [CrossRef]
160. Al-Abboodi, A.A.; Jawad, H.S. Effect of supplementing different levels of Jerusalem artichoke (Helianthus tuberosus L.) on broiler production performance. Plant Arch. 2018, 18, 1570–1574.
161. Khoobani, M.; Hasheminezhad, S.-H.; Javandel, F.; Nosrati, M.; Seidavi, A.; Kadim, I.T.; Laudadio, V.; Tufarelli, V. Effects of Dietary Chicory (Chicorium intybus L.) and Probiotic Blend as Natural Feed Additives on Performance Traits, Blood Biochemistry, and Gut Microbiota of Broiler Chickens. Antibiotics 2020, 9, 5. [CrossRef] [PubMed]
162. Kop-Bozbay, C.; Akdag, A.; Bozkurt-Kiraz, A.; Gore, M.; Kurt, O.; Ocak, N. Laying Performance, Egg Quality Characteristics, and Egg Yolk Fatty Acids Profile in Layer Hens Housed with Free Access to Chicory- and/or White Clover-Vegetated or Non-Vegetated Areas. Animals 2021, 11, 1708. [CrossRef] [PubMed]
163. Foroutankhah, M.; Toghyani, M.; Landy, N. Evaluation of Calendula officinalis L.(marigold) flower as a natural growth promoter in comparison with an antibiotic growth promoter on growth performance, carcass traits and humoral immune responses of broilers. Anim. Nutr. 2019, 5, 314–318. [CrossRef] [PubMed]
164. Mim, Y.Z.; Sultana, F.; Dey, B.; Ray, B.C.; Nishat, N.J. Effects of Marigold Petal and Leaves on Yolk Pigmentation in Laying Hens. J. Bangladesh Agric. Univ. 2021, 19, 325–331. [CrossRef]
165. Du, J.; Zhao, Y.; Wang, Y.; Xie, M.; Wang, R.; Liu, N.; An, X.; Qi, J. Growth, carcase characteristics, meat quality, nutrient digestibility and immune function of broilers fed with enzymatically treated or raw dandelion (Taraxacum mongolicum hand.-mazz.). Ital. J. Anim. Sci. 2022, 21, 1117–1125. [CrossRef]
166. Wang, Y.; Duan, T.; Wang, W.; Mao, J.; Yin, N.; Guo, T.; Liu, N.; An, X.; Qi, J. Impact of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) supplementation on carcase traits, breast meat quality, muscle fatty and amino acid composition and antioxidant capacity in broiler chickens. Ital. J. Anim. Sci. 2023, 22, 441–451. [CrossRef]
167. Qureshi, S.; Banday, M.T.; Shakeel, I.; Adil, S.; Khan, A.A. Effect of raw and enzyme-treated dandelion leaves and fenugreek seed supplemented diet on gut microflora of broiler chicken. Appl. Biol. Res. 2016, 18, 76–79. [CrossRef]
168. Saenz, F.M.C.; Saucedo-Uriarte, J.A.; Sotelo-Mendez, A.; Zamora-Huamán, S.J. A prebiotic diet based on dandelion (Taraxacum officinale) improves the productive performance and intestinal morphology of laying hens. Sci. Agropecu. 2021, 12, 403–410. [CrossRef]
169. Hashem, M.A.; Neamat-Allah, A.N.; Hammza, H.E.; Abou-Elnaga, H.M. Impact of dietary supplementation with Echinacea purpurea on growth performance, immunological, biochemical, and pathological findings in broiler chickens infected by pathogenic E. coli. Trop. Anim. Health Prod. 2020, 52, 1599–1607. [CrossRef]
170. Kang, H.K.; Park, S.B.; Kim, C.H. Effect of dietary supplementation of red ginseng by-product on laying performance, blood biochemistry, serum immunoglobulin and microbial population in laying hens. Asian-Australas. J. Anim. Sci. 2016, 29, 1464. [CrossRef]
171. Yadav, S.; Teng, P.Y.; Choi, J.; Singh, A.K.; Vaddu, S.; Thippareddi, H.; Kim, W.K. Influence of rapeseed, canola meal and glucosinolate metabolite (AITC) as potential antimicrobials: Effects on growth performance, and gut health in Salmonella Typhimurium challenged broiler chickens. Poult. Sci. 2022, 101, 101551. [CrossRef] [PubMed]
172. Oryschak, M.A.; Smit, M.N.; Beltranena, E. Brassica napus and Brassica juncea extruded-expelled cake and solvent-extracted meal as feedstuffs for laying hens: Lay performance, egg quality, and nutrient digestibility. Poult. Sci. 2020, 99, 350–363. [CrossRef] [PubMed]
173. Hu, C.H.; Wang, D.G.; Pan, H.Y.; Zheng, W.B.; Zuo, A.Y.; Liu, J.X. Effects of broccoli stem and leaf meal on broiler performance, skin pigmentation, antioxidant function, and meat quality. Poult. Sci. 2012, 91, 2229–2234. [CrossRef] [PubMed]
174. Hu, C.H.; Zuo, A.Y.; Wang, D.G.; Pan, H.Y.; Zheng, W.B.; Qian, Z.C.; Zou, X.T. Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens. Anim. Feed. Sci. Technol. 2011, 170, 117–121. [CrossRef]
175. Mustafa, A.F.; Baurhoo, B. Evaluation of dried vegetables residues for poultry: II. Effects of feeding cabbage leaf residues on broiler performance, ileal digestibility and total tract nutrient digestibility. Poult. Sci. 2017, 96, 681–686. [CrossRef]
176. Mustafa, A.F.; Baurhoo, B. Evaluation of dried vegetable residues for poultry: III Effects of feeding cabbage leaf residues on laying performance, egg quality, and apparent total tract digestibility. J. Appl. Poult. Res. 2018, 27, 145–151. [CrossRef]
177. Tufarelli, V.; Losacco, C.; Tedone, L.; Passantino, L.; Tarricone, S.; Laudadio, V.; Colonna, M.A. Hemp seed (Cannabis sativa L.) cake as sustainable dietary additive in slow-growing broilers: Effects on performance, meat quality, oxidative stability and gut health. Vet. Q. 2023, 43, 1–12. [CrossRef]
178. Wafar, R.; Hannison, M.; Abdullahi, U.; Makinta, A. Effect of Pumpkin (Cucurbita pepo L.) seed meal on the performance and carcass characteristics of broiler chickens. Asian J. Adv. Agric. Res. 2017, 2, 1–7. [CrossRef]
179. Kithama, M.; Ross, K.; Diarra, M.S.; Kiarie, E.G. Utilization of grape (Vitis vinifera), cranberry (Vaccinium macrocarpon), wild blueberry (Vaccinium angustifolium), and apple (Malus pumila/domestica) pomaces in broiler chickens when fed without or with multi-enzyme supplement. Can. J. Anim. Sci. 2022, 103, 15–25. [CrossRef]
180. Vlaicu, P.A.; Panaite, T.D.; Untea, A.E.; Idriceanu, L.; Cornescu, G.M. Herbal plants as feed additives in broiler chicken diets. Arch. Zootech. 2021, 24, 76–95. [CrossRef]
181. Zheng, M.; Mao, P.; Tian, X.; Guo, Q.; Meng, L. Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken. Poult. Sci. 2019, 98, 2250–2259. [CrossRef] [PubMed]
182. Cui, Y.; Diao, Z.; Fan, W.; Wei, J.; Zhou, J.; Zhu, H.; Li, D.; Guo, L.; Tian, Y.; Song, H.; et al. Effects of dietary inclusion of alfalfa meal on laying performance, egg quality, intestinal morphology, caecal microbiota and metabolites in Zhuanghe Dagu chickens. Ital. J. Anim. Sci. 2022, 21, 831–846. [CrossRef]
183. Dotas, V.; Bampidis, V.A.; Sinapis, E.; Hatzipanagiotou, A.; Papanikolaou, K. Effect of dietary field pea (Pisum sativum L.) supplementation on growth performance, and carcass and meat quality of broiler chickens. Livest. Sci. 2014, 164, 135–143. [CrossRef]
184. Laudadio, V.; Tufarelli, V. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronizeddehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal. Poult. Sci. 2010, 89, 1537–1543. [CrossRef] [PubMed]
185. Arab Ameri, S.; Samadi, F.; Dastar, B.; Zerehdaran, S. Effect of peppermint (Mentha piperita) powder on immune response of broiler chickens in heat stress. Iran. J. Appl. Anim. Sci. 2016, 6, 435–445.
186. Abdel-Wareth, A.A.; Kehraus, S.; Südekum, K.H. Peppermint and its respective active component in diets of broiler chickens: Growth performance, viability, economics, meat physicochemical properties, and carcass characteristics. Poult. Sci. 2019, 98, 3850–3859. [CrossRef]
187. Abu Isha, A.A.; Abd El-Hamid, A.E.; Ziena, H.M.; Ahmed, H.A. Effect of spearmint (Mentha spicata) on productive and physiological parameters of broiler chicks. Egypt. Poult. Sci. J. 2018, 38, 815–829. [CrossRef]
188. Rostami, H.; Seidavi, A.; Dadashbeiki, M.; Asadpour, Y.; Simões, J.; Shah, A.A.; Laudadio, V.; Losacco, C.; Perillo, A.; Tufarelli, V. Supplementing dietary rosemary (Rosmarinus officinalis L.) powder and vitamin E in broiler chickens: Evaluation of humoral immune response, lymphoid organs, and blood proteins. Environ. Sci. Pollut. Res. 2018, 25, 8836–8842. [CrossRef]
189. Norouzi, B.; Qotbi AA, A.; Seidavi, A.; Schiavone, A.; Marín AL, M. Effect of different dietary levels of rosemary (Rosmarinus officinalis) and yarrow (Achillea millefolium) on the growth performance, carcass traits and ileal micro-biota of broilers. Ital. J. Anim. Sci. 2015, 14, 3930. [CrossRef]
190. George, O.S.; Allison, G.H.; Ekine, O.A. Performance and biochemical parameters of broiler chickens fed avocado (Persea americana) seed meal based diet. Niger. J. Anim. Prod. 2020, 47, 188–193. [CrossRef]
191. Adelowo, O.V.; Shon, E.M.; Kwaghaondo, B.A.; Gambo, C.D. Haematology and serum biochemistry of broiler chickens fed diets with avocado (Persea americana) seed meal. In Proceedings of the 49th Conference, Nigeria Society for Animal Production, Ibadan, Nigeria, 24–27 March 2024; pp. 484–487.
192. Omer, H.A.; Ahmed, S.M.; Abdel-Magid, S.S.; El-Mallah, G.M.; Bakr, A.A.; Abdel Fattah, M.M. Nutritional impact of inclusion of garlic (Allium sativum) and/or onion (Allium cepa L.) powder in laying hens’ diets on their performance, egg quality, and some blood constituents. Bull. Natl. Res. Cent. 2019, 43, 23. [CrossRef]
193. Onibi, G.E.; Adebisi, O.E.; Fajemisin, A.N.; Adetunji, A.V. Response of broiler chickens in terms of performance and meat quality to garlic (Allium sativum) supplementation. Afr. J. Agric. Res. 2009, 4, 511–517.
194. Uchegbu, M.C.; Ogbuewu, I.P.; Ezebuiro, L.E. Blood chemistry and haematology of finisher broilers fed with plantain (Musa paradisiaca L.) peel in their diets. Comp. Clin. Pathol. 2017, 26, 605–609. [CrossRef]
195. Cayan, H.; Erener, G. Effect of olive leaf (Olea europaea) powder on laying hens performance, egg quality and egg yolk cholesterol levels. Asian-Australas. J. Anim. Sci. 2015, 28, 538. [CrossRef]
196. Dedousi, A.; Kotzamanidis, C.; Kritsa, M.-Z.; Tsoureki, A.; Andreadelli, A.; Patsios, S.I.; Sossidou, E. Growth Performance, Gut Health, Welfare and Qualitative Behavior Characteristics of Broilers Fed Diets Supplemented with Dried Common (Olea europaea) Olive Pulp. Sustainability 2023, 15, 501. [CrossRef]
197. Monesa, S.B.; Oluremi OI, A. Effect of Adding Different Levels of Undecorticated Rosehip (Rosa canina L.) Fruit in the Diets on Productive Performance of Broiler Chickens. Asian J. Res. Anim. Vet. Sci. 2024, 7, 122– 133. [CrossRef]
198. Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals 2022, 12, 2239. [CrossRef]
199. Qorbanpour, M.; Fahim, T.; Javandel, F.; Nosrati, M.; Paz, E.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Effect of Dietary Ginger (Zingiber officinale Roscoe) and Multi-Strain Probiotic on Growth and Carcass Traits, Blood Biochemistry, Immune Responses and Intestinal Microflora in Broiler Chickens. Animals 2018, 8, 117. [CrossRef]
200. Siti, N.W.; Bidura, I.G.N.G. Effects of carrot leaves on digestibility of feed, and cholesterol and β-carotene content of egg yolks. S. Afr. J. Anim. Sci. 2021, 51, 786–792. [CrossRef]
201. Majeed, R.H.; Aziz, A.A.; Aziz KO, H.; Faraj, H.A. Utilization of Parsley (Petroselinum crispum) as feed additive for broiler chickens performance. J. Anim. Poult. Prod. 2021, 12, 363–366. [CrossRef]
202. Marmelstein, S.; Costa, I.P.d.A.; Terra, A.V.; Silva, R.F.d.; Capela, G.P.d.O.; Moreira, M.Â.L.; Junior, C.d.S.R.; Gomes, C.F.S.; Santos, M.d. Advancing Efficiency Sustainability in Poultry Farms through Data Envelopment Analysis in a Brazilian Production System. Animals 2024, 14, 726. [CrossRef]
203. Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products— A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [CrossRef] [PubMed]
204. Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [CrossRef] [PubMed]
205. Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.W.; Zhang, Z.; Pan, J. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [CrossRef]
206. De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sustain. Energy Rev. 2018, 88, 326–346. [CrossRef]
207. Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [CrossRef]
208. Busse, M.; Kernecker, M.L.; Zscheischler, J.; Zoll, F.; Siebert, R. Ethical concerns in poultry production: A German consumer survey about dual purpose chickens. J. Agric. Environ. Ethics 2019, 32, 905–925. [CrossRef]
209. Kleyn, F.J.; Ciacciariello, M. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies? World’s Poult. Sci. J. 2021, 77, 267–278. [CrossRef]
210. Henchion, M.M.; De Backer, C.J.; Hudders, L.; O’Reilly, S. Ethical and sustainable aspects of meat production; consumer perceptions and system credibility. In New Aspects of Meat Quality; Woodhead Publishing Series in Food Science; Technology and Nutrition; Woodhead Publishing: Cambridge, MA, USA; Kidlington, UK, 2022; pp. 829–851. [CrossRef]
211. Patra, J.K.; Shin, H.-S.; Yang, I.-J.; Nguyen, L.T.H.; Das, G. Sustainable Utilization of Food Biowaste (Papaya Peel) Extract for Gold Nanoparticle Biosynthesis and Investigation of Its Multi-Functional Potentials. Antioxidants 2024, 13, 581. [CrossRef]
212. Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valor. 2019, 10, 1755–1766. [CrossRef]
213. Han, Z.; Park, A.; Su, W.W. Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids. RSC Adv. 2018, 8, 27963–27972. [CrossRef] [PubMed]