Abdollahi, M. R., Ravindran, V., & Svihus, B. (2013). Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology, 179, 1–23. https://doi. org/10.1016/j.anifeedsci.2012.10.011
Abro, Z., Kassie, M., Tanga, C., Beesigamukama, D., & Diiro, G. (2020).
Socio‐economic and environmental implications of replacing conventional poultry feed with insect‐based feed in Kenya. Journal of
Cleaner Production, 265, 121871. https://doi.org/10.1016/j.jclepro.
2020.121871
Ahmadi‐Sefat, A. A., Taherpour, K., Ghasemi, H. A., Akbari Gharaei, M.,
Shirzadi, H., & Rostami, F. (2022). Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein. Poultry
Science, 101, 102145. https://doi.org/10.1016/j.psj.2022.102145
Ahn, Y. T., Kim, G. B., Lim, K. S., Baek, Y. J., & Kim, H. U. (2003).
Deconjugation of bile salts by Lactobacillus acidophilus isolates.
International Dairy Journal, 13, 303–311. https://doi.org/10.1016/
S0958-6946(02)00174-7
Aho, P. (2007). Impact on the world poultry industry of the global shift to biofuels. Poultry Science, 86, 2291–2294. https://doi.org/10.3382/ ps.2007-00013
Allahyari‐Bake, S., & Jahanian, R. (2017). Effects of dietary fat source and supplemental lysophosphatidylcholine on performance, immune responses, and ileal nutrient digestibility in broilers fed corn/ soybean meal‐ or corn/wheat/soybean meal‐based diets. Poultry
Science, 96, 1149–1158. https://doi.org/10.3382/ps/pew330
An, J. S., Yun, W., Lee, J. H., Oh, H. J., Kim, T. H., Cho, E. A., Kim, G. M.,
Kim, K. H., Lee, S. D., & Cho, J. H. (2020). Effects of exogenous emulsifier supplementation on growth performance, energy digestibility, and meat quality in broilers. Journal of Animal Science and
Technology, 62, 43–51. https://doi.org/10.5187/jast.2020.62.1.43
Aviagen, W. (2022). Ross 308/308 FF Broiler: Performance Objectives. Aviagen
Huntsville, Alabama, USA. https://en.aviagen.com/assets/Tech_Center/
Ross_Broiler/RossxRoss308-BroilerPerformanceObjectives2022-
EN.pdf
Bai, G., He, W., Yang, Z., Fu, H., Qiu, S., Gao, F., & Shi, B. (2019). Effects of different emulsifiers on growth performance, nutrient digestibility, and digestive enzyme activity in weanling pigs1. Journal of Animal
Science, 97, 4235–4241. https://doi.org/10.1093/jas/skz276
Baião, N., & Lara, L. (2005). Oil and fat in broiler nutrition. Revista Brasileira de Ciência Avícola, 7, 129–141. https://doi.org/10.1590/S1516-
635X2005000300001
Balnave, D. (1970). Essential fatty acids in poultry nutrition. World's
Poultry Science Journal, 26, 442–460. https://doi.org/10.1079/
WPS19700006
Bancroft, W. D. (1912). The theory of emulsification, I. The Journal of Physical
Chemistry, 16, 177–233. https://doi.org/10.1021/j150129a001
Bauer, E., Jakob, S., & Mosenthin, R. (2005). Principles of physiology of lipid digestion. Asian‐Australasian Journal of Animal Sciences, 18,
282–295. https://doi.org/10.5713/ajas.2005.282
Bontempo, V., Comi, M., Jiang, X. R., Rebucci, R., Caprarulo, V.,
Giromini, C., Gottardo, D., Fusi, E., Stella, S., Tirloni, E.,
Cattaneo, D., & Baldi, A. (2018). Evaluation of a synthetic emulsifier product supplementation on broiler chicks. Animal Feed Science and
Technology, 240, 157–164. https://doi.org/10.1016/j.anifeedsci.
2018.04.010
Boontiam, W., Jung, B., & Kim, Y. Y. (2017). Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens.
Poultry Science, 96, 593–601. https://doi.org/10.3382/ps/pew269
Bosc‐Bierne, I., Rathelot, J., Perrot, C., & Sarda, L. (1984). Studies on chicken pancreatic lipase and colipase. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 794, 65–71. https://doi.org/10.
1016/0005-2760(84)90298-4
Brautigan, D. L., Li, R., Kubicka, E., Turner, S. D., Garcia, J. S.,
Weintraut, M. L., & Wong, E. A. (2017). Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Poultry Science, 96, 2889–2898. https://doi.org/10.
3382/ps/pex078
Brindley, D. N. (1984). Digestion, absorption and transport of fats: General principles. Fats in Animal Nutrition, 85–103. https://doi.org/10.
1016/B978-0-408-10864-5.50010-3
Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A.‐M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250,
9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
Cherian, G. (2015). Nutrition and metabolism in poultry: Role of lipids in early diet. Journal of Animal Science and Biotechnology, 6, 28. https:// doi.org/10.1186/s40104-015-0029-9
Choi, S., & Snider, A. J. (2019). Diet, lipids and colon cancer. International
Review of Cell and Molecular Biology, 105–144. doi:10.1016/bs. ircmb.2019.07.001
Christensen, V. L. (2009). Development during the first seven days post‐ hatching. Avian Biology Research, 2, 27–33. https://doi.org/10.3184/
175815509x430417
Cloft, S. E., Jia, M., & Wong, E. A. (2021). Research note: Intestinal morphology and gene expression changes in broilers supplemented with lysolecithin. Poultry Science, 100, 101192. https://doi.org/10.
1016/j.psj.2021.101192
Cooper, A. D. (1997). Hepatic uptake of chylomicron remnants. Journal of
Lipid Research, 38, 2173–2192. https://doi.org/10.1016/S0022-
2275(20)34932-4
Dabbou, S., Schiavone, A., Gai, F., Martinez, S., Madrid, J., Hernandez, F.,
Martínez Marín, A. L., Soglia, D., Sartore, S., Kalmar, I. D., Gasco, L., &
Nery, J. (2019). Effect of dietary globin, a natural emulsifier, on the growth performance and digestive efficiency of broiler chickens.
Italian Journal of Animal Science, 18, 530–537. https://doi.org/10.
1080/1828051X.2018.1547127
De Boever, P., & Verstraete, W. (1999). Bile salt deconjugation by lactobacillus plantarum 80 and its implication for bacterial toxicity.
Journal of Applied Microbiology, 87, 345–352. https://doi.org/10.
1046/j.1365-2672.1999.00019.x
Deng, S., Xu, Y., & Zheng, L. (2022). HDL structure. Advances in
Experimental Medicine and Biology, 1377, 1–11. https://doi.org/10.
1007/978-981-19-1592-5_1
Dibner, J. J., & Richards, J. D. (2004). The digestive system: Challenges and opportunities. Journal of Applied Poultry Research, 13, 86–93. https://doi.org/10.1093/japr/13.1.86
Drackley, J. K. (2000). Lipid metabolism. Farm Animal Metabolism and
Nutrition, 1, 97–119.
Fan, H. P., Xie, M., Wang, W. W., Hou, S. S., & Huang, W. (2008).
Effects of dietary energy on growth performance and carcass quality of white growing pekin ducks from two to six weeks of age. Poultry Science, 87, 1162–1164. https://doi.org/10.3382/ps.
2007-00460
Fedde, M. R., Waibel, P. E., & Burger, R. E. (1960). Factors affecting the absorbability of certain dietary fats in the chick. The Journal of
Nutrition, 70, 447–452. https://doi.org/10.1093/jn/70.4.447
Feingold, K. R. (2021). Introduction to lipids and lipoproteins. National
Library of Medicine. https://www.ncbi.nlm.nih.gov/books/
NBK305896/
Fouad, A. M., & El‐Senousey, H. K. (2014). Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian‐Australasian
Journal of Animal Sciences, 27, 1057–1068. https://doi.org/10.5713/ ajas.2013.13702
Freeman, C. P. (1984). The digestion, absorption and transport of fats— non‐ruminants. Fats in Animal Nutrition, 105–122. doi:10.1016/ b978-0-408-10864-5.50011-5
Ge, X. K., Wang, A. A., Ying, Z. X., Zhang, L. G., Su, W. P., Cheng, K.,
Feng, C. C., Zhou, Y. M., Zhang, L. L., & Wang, T. (2019). Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poultry Science, 98,
887–895. https://doi.org/10.3382/ps/pey434
Gordon, M. H. (2003). FATS | Classification. Encyclopedia of Food Sciences and Nutrition, 2287–2292. doi:10.1016/b0-12-227055-x/00701-x
Griffin, H. D., Guo, K., Windsor, D., & Butterwith, S. C. (1992). Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. The
Journal of Nutrition, 122, 363–368. https://doi.org/10.1093/jn/122.
2.363
Guerreiro Neto, A., Pezzato, A., Sartori, J., Mori, C., Cruz, V., Fascina, V.,
Pinheiro, D., Madeira, L., & Gonçalvez, J. (2011). Emulsifier in broiler diets containing different fat sources. Revista Brasileira de Ciência Avícola, 13, 119–125. https://doi.org/10.1590/S1516-
635X2011000200006
Haetinger, V. S., Dalmoro, Y. K., Godoy, G. L., Lang, M. B., de Souza, O. F.,
Aristimunha, P., & Stefanello, C. (2021). Optimizing cost, growth performance, and nutrient absorption with a bio‐emulsifier based on lysophospholipids for broiler chickens. Poultry Science, 100, 101025. https://doi.org/10.1016/j.psj.2021.101025
Hartmann, P., Szabó, A., Erős, G., Gurabi, D., Horváth, G., Németh, I.,
Ghyczy, M., & Boros, M. (2009). Anti‐inflammatory effects of phosphatidylcholine in neutrophil leukocyte‐dependent acute arthritis in rats. European Journal of Pharmacology, 622, 58–64. https://doi. org/10.1016/j.ejphar.2009.09.012Hermier, D. (1997). Lipoprotein metabolism and fattening in poultry. The
Journal of Nutrition, 127, 805S–808S. https://doi.org/10.1093/jn/
127.5.805S
Ho Cho, J., Zhao, P., & Kim, I. H. (2012). Effects of emulsifier and multi‐enzyme in different energy density diet on growth performance, blood profiles, and relative organ weight in broiler chickens.
Journal of Agricultural Science, 4, 4. https://doi.org/10.5539/jas. v4n10p161
Huang, J., Yang, D., & Wang, T. (2007). Effects of replacing soy‐oil with soy‐lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn‐based diets. Asian‐Australasian
Journal of Animal Sciences, 20, 1880–1886. https://doi.org/10.
5713/ajas.2007.1880
Jansen, M., Nuyens, F., Buyse, J., Leleu, S., & Van Campenhout, L. (2015).
Interaction between fat type and lysolecithin supplementation in broiler feeds. Poultry Science, 94, 2506–2515. https://doi.org/10.
3382/ps/pev181
Jin, S.‐H., Corless, A., & Sell, J. L. (1998). Digestive system development in post‐hatch poultry. World's Poultry Science Journal, 54, 335–345. https://doi.org/10.1079/WPS19980023
Jones, D. B., Hancock, J. D., Harmon, D. L., & Walker, C. E. (1992). Effects of exogenous emulsifiers and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs. Journal of
Animal Science, 70, 3473–3482. https://doi.org/10.2527/1992.
70113473x
Katongole, J. B. D., & March, B. E. (1979). Fatty acid binding protein in the intestine of the chicken. Poultry Science, 58, 372–375. https://doi. org/10.3382/ps.0580372
Katongole, J. B. D., & March, B. E. (1980). Fat utilization in relation to intestinal fatty acid binding protein and bile salts in chicks of different ages and different genetic sources. Poultry Science, 59,
819–827. https://doi.org/10.3382/ps.0590819
Khonyoung, D., Yamauchi, K., & Suzuki, K. (2015). Influence of dietary fat sources and lysolecithin on growth performance, visceral organ size, and histological intestinal alteration in broiler chickens.
Livestock Science, 176, 111–120. https://doi.org/10.1016/j.livsci.
2015.03.011
Kim, Y. B., Kim, D.‐H., Jeong, S.‐B., Lee, J.‐W., Kim, T.‐H., Lee, H.‐G., &
Lee, K.‐W. (2020). Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poultry Science, 99, 3133–3143. https:// doi.org/10.1016/j.psj.2020.01.018
Klasing, K. C. (1999). Avian gastrointestinal anatomy and physiology.
Seminars in Avian and Exotic Pet Medicine, 8, 42–50. https://doi.org/
10.1016/S1055-937X(99)80036-X
Ko, H., Wang, J., Chiu, J. W.‐C., & Kim, W. K. (2023). Effects of metabolizable energy and emulsifier supplementation on growth performance, nutrient digestibility, body composition, and carcass yield in broilers. Poultry Science, 102, 102509. https://doi.org/10.
1016/j.psj.2023.102509
Krogdahl, Å. (1985). Digestion and absorption of lipids in poultry. The
Journal of Nutrition, 115, 675–685. https://doi.org/10.1093/jn/115.
5.675
Kubiś, M., Kołodziejski, P., Pruszyńska‐Oszmałek, E., Sassek, M.,
Konieczka, P., Górka, P., Flaga, J., Katarzyńska‐Banasik, D.,
Hejdysz, M., Wiśniewska, Z., & Kaczmarek, S. A. (2020). Emulsifier and xylanase can modulate the gut microbiota activity of broiler chickens. Animals: An Open Access Journal from MDPI, 10, 2197. https://www.mdpi.com/2076-2615/10/12/2197
Lack, L., & Weiner, I. M. (1961). In vitro absorption of bile salts by small intestine of rats and guinea pigs. American Journal of Physiology‐
Legacy Content, 200(2), 313–317. doi:10.1152/ajplegacy.1961.200.
2.313
Lai, W., Huang, W., Dong, B., Cao, A., Zhang, W., Li, J., Wu, H., & Zhang, L. (2018). Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poultry Science, 97, 196–202. https://doi.org/10.3382/ps/pex288
Laudadio, V., & Tufarelli, V. (2011). Influence of substituting dietary soybean meal for dehulled‐micronized lupin (Lupinus albus cv.
Multitalia) on early phase laying hens production and egg quality.
Livestock Science, 140, 184–188. https://doi.org/10.1016/j.livsci.
2011.03.029
Leeson, S., & Atteh, J. O. (1995). Utilization of fats and fatty acids by turkey poults. Poultry Science, 74, 2003–2010. https://doi.org/10.
3382/ps.0742003
Lentle, R. G., Reynolds, G., de Loubens, C., Hulls, C., Janssen, P. W. M., &
Ravindran, V. (2013). Spatiotemporal mapping of the muscular activity of the gizzard of the chicken (Gallus domesticus). Poultry
Science, 92, 483–491. https://doi.org/10.3382/ps.2012-02689
Lundbæk, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R., &
Andersen, O. S. (2009). Lipid bilayer regulation of membrane protein function: Gramicidin channels as molecular force probes. Journal of the Royal Society, Interface, 7, 373–395. https://doi.org/10.1098/ rsif.2009.0443
Macdonald, I. A., Bokkenheuser, V. D., Winter, J., McLernon, A. M., &
Mosbach, E. H. (1983). Degradation of steroids in the human gut.
Journal of Lipid Research, 24, 675–700. https://doi.org/10.1016/
S0022-2275(20)37944-X
McClements, D. J., & Jafari, S. M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review.
Advances in Colloid and Interface Science, 251, 55–79. https://doi. org/10.1016/j.cis.2017.12.001
Meng, X., Slominski, B. A., & Guenter, W. (2004). The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat‐based diets. Poultry
Science, 83, 1718–1727. https://doi.org/10.1093/ps/83.10.1718
Mohammadigheisar, M., Kim, H. S., & Kim, I. H. (2018). Effect of inclusion of lysolecithin or multi‐enzyme in low energy diet of broiler chickens. Journal of Applied Animal Research, 46, 1198–1201. https://doi.org/10.1080/09712119.2018.1484358
Nir, I., Nitsan, Z., & Mahagna, M. (1993). Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. British Poultry Science, 34,
523–532. https://doi.org/10.1080/00071669308417607
Nitsan, Z., Ben‐Avraham, G., Zoref, Z., & Nir, I. (1991). Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. British Poultry Science, 32, 515–523. https:// doi.org/10.1080/00071669108417376
Noy, Y., & Sklan, D. (1995). Digestion and absorption in the young chick.
Poultry Science, 74, 366–373. https://doi.org/10.3382/ps.0740366
Noy, Y., & Sklan, D. (1997). Posthatch development in poultry. Journal of
Applied Poultry Research, 6, 344–354. https://doi.org/10.1093/japr/
6.3.344
Noy, Y., & Uni, Z. (2010). Early nutritional strategies. World's Poultry Science
Journal, 66, 639–646. https://doi.org/10.1017/S0043933910000620
Ockner, R. K., & Manning, J. A. (1974). Fatty acid‐binding protein in small intestine identification, isolation, and evidence for its role in cellular fatty acid transport. Journal of Clinical Investigation, 54, 326–338. https://doi.org/10.1172/JCI107768
Ockner, R. K., Manning, J. A., Poppenhausen, R. B., & Ho, W. K. L. (1972).
A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science, 177, 56–58. https://doi.org/
10.1126/science.177.4043.56
Oketch, E. O. (2022). Physiological responses of broiler chickens to exogenous emulsifier supplementation in tallow‐incorporated reduced‐ energy diets. (MSc Thesis). Chungnam National University, Daejeon,
South Korea. http://www.riss.kr/link?id=T16512212
Oketch, E. O., Lee, J. W., Yu, M., Hong, J. S., Kim, Y. B., Nawarathne, S. R.,
Chiu, J. W.‐C., & Heo, J. M. (2022). Physiological responses of broiler chickens fed reduced‐energy diets supplemented with emulsifiers.
Animal Bioscience, 35, 1929–1939. https://doi.org/10.5713/ab.
22.0142
Park, J.‐H., Nguyen, D.‐H., & Kim, I.‐H. (2018). Effects of exogenous lysolecithin emulsifier supplementation on the growth performance, nutrient digestibility, and blood lipid profiles of broiler chickens. The
Journal of Poultry Science, 55, 190–194. https://doi.org/10.2141/ jpsa.0170100
Patterson, P. H., Acar, N., Ferguson, A. D., Trimble, L. D., Sciubba, H. B., &
Koutsos, E. A. (2021). The impact of dietary black soldier fly larvae oil and meal on laying hen performance and egg quality. Poultry
Science, 100, 101272. https://doi.org/10.1016/j.psj.2021.101272
Polin, D., & Hussein, T. H. (1982). The effect of bile acid on lipid and nitrogen retention, carcass composition, and dietary metabolizable energy in very young chicks. Poultry Science, 61, 1697–1707. https://doi.org/10.3382/ps.0611697
Polin, D., Wing, T. L., Ki, P., & Pell, K. E. (1980). The effect of bile acids and lipase on absorption of tallow in young chicks. Poultry Science, 59,
2738–2743. https://doi.org/10.3382/ps.0592738
Pond, W. G., Church, D. B., Pond, K. R., & Schoknecht, P. A. (2004). Basic animal nutrition and feeding. John Wiley & Sons.
Prabakar, G., Pavulraj, S., Shanmuganathan, S., Kirubakaran, A., &
Mohana, N. (2016). Early nutrition and its importance in poultry: A review. Indian Journal of Animal Nutrition, 33, 245. https://doi.org/
10.5958/2231-6744.2016.00044.X
Rao, J. N., & Wang, J. Y. (2010). Regulation of gastrointestinal mucosal growth, Characteristics of gut mucosal growth. Morgan & Claypool
Life Sciences. https://www.ncbi.nlm.nih.gov/books/NBK54099/? report=classic
Ravindran, V. (2013a). Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research, 22, 628–636. https:// doi.org/10.3382/japr.2013‐00739
Ravindran, V. (2013b). Poultry feed availability and nutrition in developing countries. Poultry Development Review, 2, 60–63. https://www.fao. org/3/i3531e/i3531e00.htm
Ravindran, V., & Abdollahi, M. R. (2021). Nutrition and digestive physiology of the broiler chick: State of the art and outlook.
Animals: An Open Access Journal from MDPI, 11, 2795. https://doi. org/10.3390/ani11102795
Ravindran, V., Tancharoenrat, P., Zaefarian, F., & Ravindran, G. (2016).
Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Animal Feed Science and Technology, 213, 1–21. https://doi.org/10.1016/j.anifeedsci.2016.01.012
Renner, R. (1965). Site of fat absorption in the chick. Poultry Science, 44,
861–864. https://doi.org/10.3382/ps.0440861
Roy, A., Haldar, S., Mondal, S., & Ghosh, T. K. (2010). Effects of supplemental exogenous emulsifier on performance, nutrient metabolism, and serum lipid profile in broiler chickens. Veterinary Medicine International, 2010,
1–9. https://doi.org/10.4061/2010/262604
Rustan, A., & Drevon, C. (2005). Fatty acids: Structures and properties. https://doi.org/10.1038/npg.els.0003894
Sacranie, A., Svihus, B., Denstadli, V., Moen, B., Iji, P. A., & Choct, M. (2012). The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Science, 91, 693–700. https://doi.org/10.3382/ ps.2011-01790
Saleh, A. A., Amber, K. A., Mousa, M. M., Nada, A. L., Awad, W.,
Dawood, M. A. O., Abd El‐Moneim, A. E.‐M. E., Ebeid, T. A., & Abdel‐
Daim, M. M. (2020). A mixture of exogenous emulsifiers increased the acceptance of broilers to low energy diets: Growth performance, blood chemistry, and fatty acids traits. Animals: An Open Access
Journal from MDPI, 10, 437. https://doi.org/10.3390/ani10030437
Schiavone, A., Dabbou, S., De Marco, M., Cullere, M., Biasato, I.,
Biasibetti, E., Capucchio, M. T., Bergagna, S., Dezzutto, D.,
Meneguz, M., Gai, F., Dalle Zotte, A., & Gasco, L. (2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12, 2032–2039. https://doi.org/10.
1017/S1751731117003743
Serpunja, S., & Kim, I. H. (2019). The effect of sodium stearoyl‐2‐lactylate (80%) and tween 20 (20%) supplementation in low‐energy density diets on growth performance, nutrient digestibility, meat quality, relative organ weight, serum lipid profiles, and excreta microbiota in broilers. Poultry Science, 98, 269–275. https://doi.org/10.3382/ps/ pey342
Shen, Y., Zhang, S., Zhao, X., & Shi, S. (2021). Evaluation of a lecithin supplementation on growth performance, meat quality, lipid metabolism, and cecum microbiota of broilers. Animals: An Open Access Journal from MDPI, 11, 2537. https://doi.org/10.3390/ani11092537
Shiau, Y. F., Fernandez, P., Jackson, M. J., & McMonagle, S. (1985).
Mechanisms maintaining a low‐pH microclimate in the intestine.
American Journal of Physiology‐Gastrointestinal and Liver Physiology,
248, G608–G617. https://doi.org/10.1152/ajpgi.1985.248.6.G608
Siyal, F. A., Babazadeh, D., Wang, C., Arain, M. A., Saeed, M., Ayasan, T.,
Zhang, L., & Wang, T. (2017). Emulsifiers in the poultry industry.
World's Poultry Science Journal, 73, 611–620. https://doi.org/10.
1017/S0043933917000502
Smallwood, R. A., Lester, R., Piasecki, G. J., Klein, P. D., Greco, R., &
Jackson, B. T. (1972). Fetal bile salt metabolism. Journal of Clinical
Investigation, 51, 1388–1397. https://doi.org/10.1172/JCI106934
Smink, W. (2012). Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs. (PhD Thesis). Wageningen University and
Research. https://edepot.wur.nl/222198
Solbi, A., Rezaeipour, V., Abdullahpour, R., & Gharahveysi, S. (2021).
Efficacy of lysophospholipids on growth performance, carcase, intestinal morphology, microbial population and nutrient digestibility in broiler chickens fed different dietary oil sources. Italian
Journal of Animal Science, 20, 1612–1619. https://doi.org/10.
1080/1828051X.2021.1973599
Swiatkiewicz, S., Arczewska‐Wlosek, A., & Jozefiak, D. (2015). The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livestock Science, 180,
237–246. https://doi.org/10.1016/j.livsci.2015.07.017
Tanaka, K., Ohtani, S., & Shigeno, K. (1983). Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. Poultry Science, 62,
452–458. https://doi.org/10.3382/ps.0620452
Tancharoenrat, P. (2012). Factors influencing fat digestion in poultry. (PhD
Thesis). Massey University Palmerston North, New Zealand. http:// hdl.handle.net/10179/4330
Tancharoenrat, P., Ravindran, V., Zaefarian, F., & Ravindran, G. (2014).
Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poultry Science, 93, 371–379. https://doi.org/10.
3382/ps.2013-03344
Tancharoenrat, P., Ravindran, V., Zaefarian, F., & Ravindran, G. (2013).
Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Animal Feed Science and Technology, 186(3–4), 186–192. doi:10.1016/j.anifeedsci.2013.10.013
Tancharoenrat, P., Zaefarian, F., & Ravindran, V. (2022). Composition of chicken gallbladder bile. British Poultry Science, 63, 548–551. https:// doi.org/10.1080/00071668.2022.2044451
Tenório, K. I., Eyng, C., do Amaral Duarte, C. R., Vianna Nunes, R.,
Broch, J., Rohloff Júnior, N., Köhler, T. L., & Hagdon Cirilo, E. (2022).
Effect of lipid source and emulsifier on productive and physiological parameters of broilers. Animal Bioscience, 35, 54–63. https://doi. org/10.5713/ab.20.0621
Uni, Z., Ganot, S., & Sklan, D. (1998). Posthatch development of mucosal function in the broiler small intestine. Poultry Science, 77, 75–82. https://doi.org/10.1093/ps/77.1.75
Uni, Z., Noy, Y., & Sklan, D. (1995). Posthatch changes in morphology and function of the small intestines in heavy‐ and light‐strain chicks. Poultry
Science, 74, 1622–1629. https://doi.org/10.3382/ps.0741622
Upadhaya, S. D., Lee, J. S., Jung, K. J., & Kim, I. H. (2018). Influence of emulsifier blends having different hydrophilic‐lipophilic balance value on growth performance, nutrient digestibility, serum lipid profiles, and meat quality of broilers. Poultry Science, 97, 255–261. https://doi.org/10.3382/ps/pex303
Upadhaya, S. D., Park, J. W., Park, J. H., & Kim, I. H. (2017). Efficacy of 1,3‐ diacylglycerol as a fat emulsifier in low‐density diet for broilers.
Poultry Science, 96, 1672–1678. https://doi.org/10.3382/ps/pew425
Upadhaya, S. D., Yun, K. S., Zhao, P. Y., Lee, I. S., & Kim, I. H. (2019).
Emulsifier as a feed additive in poultry and pigs—A review. Animal
Nutrition and Feed Technology, 19, 323–336. https://doi.org/10.
5958/0974-181X.2019.00030.1
Valaja, J., & Siljander‐Rasi, H. (2001). Dietary fat supplementation affects apparent ileal digestibility of amino acids and digesta passage rate of rapeseed meal‐based diet. Digestive Physiology of Pigs. Proceedings of the 8th Symposium, Swedish University of Agricultural Sciences,
Uppsala, Sweden, 20‐22 June 2000 (pp. 175–177). doi:10.1079/
9780851995175.0175
Wang, J., Choi, H., & Kim, W. K. (2020). Effects of dietary energy level and
1,3‐diacylglycerol on growth performance and carcass yield in broilers. Journal of Applied Poultry Research, 29, 665–672. https:// doi.org/10.1016/j.japr.2020.04.004
Wang, J. P., Zhang, Z. F., Yan, L., & Kim, I. H. (2016). Effects of dietary supplementation of emulsifier and carbohydrase on the growth performance, serum cholesterol and breast meat fatty acids profile of broiler chickens. Animal Science Journal, 87, 250–256. https://doi. org/10.1111/asj.12412
Wang, Y., Li, Y., Willems, E., Willemsen, H., Franssens, L., Koppenol, A.,
Guo, X., Tona, K., Decuypere, E., Buyse, J., & Everaert, N. (2014).
Spread of hatch and delayed feed access affect post hatch performance of female broiler chicks up to day 5. Animal, 8,
610–617. https://doi.org/10.1017/s175173111400007x
Wealleans, A. L., Jansen, M., & di Benedetto, M. (2020). The addition of lysolecithin to broiler diets improves growth performance across fat levels and sources: A meta‐analysis of 33 trials. British Poultry Science,
61, 51–56. https://doi.org/10.1080/00071668.2019.1671955
Wickramasuriya, S. S., Cho, H. M., Macelline, S. P., Kim, E., Shin, T. K.,
Yi, Y. J., Park, S. H., Lee, K. B., & Heo, J. M. (2020). Effect of calcium stearoyl‐2 lactylate and lipase supplementation on growth performance, gut health, and nutrient digestibility of broiler chickens. Asian‐
Australasian Journal of Animal Sciences, 33, 981–991. https://doi. org/10.5713/ajas.19.0595
Wickramasuriya, S. S., Macelline, S. P., Cho, H. M., Hong, J. S., Park, S. H.,
& Heo, J. M. (2020). Physiological effects of a tallow‐incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7, 583998. https://doi.org/
10.3389/fvets.2020.583998
Wong, E. A., & Uni, Z. (2021). Centennial review: The chicken yolk sac is a multifunctional organ. Poultry Science, 100, 100821. https://doi.org/
10.1016/j.psj.2020.11.004
Xu, E., Chen, C., Fu, J., Zhu, L., Shu, J., Jin, M., Wang, Y., & Zong, X. (2021).
Dietary fatty acids in gut health: Absorption, metabolism and function. Animal Nutrition, 7(4), 1337–1344. https://doi.org/10.
1016/j.aninu.2021.09.010
Yassin, H., Velthuis, A. G. J., Boerjan, M., & van Riel, J. (2009). Field study on broilers' first‐week mortality. Poultry Science, 88, 798–804. https://doi.org/10.3382/ps.2008-00292
Yun, C. C., Sun, H., Wang, D., Rusovici, R., Castleberry, A., Hall, R. A., &
Shim, H. (2005). LPA2receptor mediates mitogenic signals in human colon cancer cells. American Journal of Physiology‐Cell
Physiology, 289, C2–C11. https://doi.org/10.1152/ajpcell.
00610.2004
Yvernogeau, L., Nagy, N., Dunon, D., Robin, C., & Jaffredo, T. (2022).
Chapter 3 ‐ Development of the avian hematopoietic and immune systems. In B. Kaspers, K. A. Schat, T. W. Göbel, & L. Vervelde (Eds.),
Avian immunology (3rd ed., pp. 45–69). Academic Press. https://doi. org/10.1016/B978-0-12-818708-1.00031-2
Zaman, Q. U., Mushtaq, T., Nawaz, H., Mirza, M. A., Mahmood, S.,
Ahmad, T., Babar, M. E., & Mushtaq, M. M. H. (2008). Effect of varying dietary energy and protein on broiler performance in hot climate. Animal Feed Science and Technology, 146, 302–312. https:// doi.org/10.1016/j.anifeedsci.2008.01.006
Zampiga, M., Meluzzi, A., & Sirri, F. (2016). Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Italian
Journal of Animal Science, 15, 521–528. https://doi.org/10.1080/
1828051X.2016.1192965
Zhang, B., Haitao, L., Zhao, D., Guo, Y., & Barri, A. (2011). Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Animal Feed Science and
Technology, 163(2–4), 177–184. doi:10.1016/j.anifeedsci.2010.
10.004
Zhao, P. Y., & Kim, I. H. (2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 96, 1341–1347. https://doi.org/10.3382/ps/pew469
Zhao, Z., Jiang, C., & Zhang, X. (2011). Effects of immunostimulants targeting Ran GTPase on phagocytosis against virus infection in shrimp. Fish & Shellfish Immunology, 31, 1013–1018. https://doi.org/
10.1016/j.fsi.2011.08.022
Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., &
Robinson, F. E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 93, 2970–2982. https://doi.org/10.3382/ps.2014-0429