Author details:
Abstract: Background: Decontamination of poultry surfaces through appropriate hygiene and sanitation measures can partially mitigate bacterial problems, as this process does not result in the complete elimination of bacteria. Thus, the remaining bacteria can persist and contaminate eggshells. Therefore, regardless of the rigor of the sanitary standards applied on farms, it is suggested that hatching eggs be subjected to the sanitization process. Here, we investigated the effectiveness of essential oil-based antibacterial agents in sanitizing eggs. Results: The results indicated that essential oils from Cinnamomum cassia (L.) J. Presl. (CCEO), Syzygium aromaticum (L.) Merr. & L.M. Perry (SAEO) and Cymbopogon nardus (L.) Rendle (CNEO), at specific concentrations, have antibacterial effects in vitro, reducing the load of mesophilic bacteria and enterobacteria in the eggshell by at least 3 and 2 log10 CFU/mL, respectively. Conclusion: The adoption of CCEO, SAEO and CNEO to reduce the bacterial load on eggshells could be a favorable change to the conventional protocol of egg sanitization with formaldehyde, especially on farms where sanitary standards are insufficient.
Keywords: egg sanitization; essential oils; green antibacterials; hatching eggs; poultry; sanitizers
1. Verma, S.; Wadhwa, N.K.; Bajaj, D.; Sharma, R.; Rajni, E.; Priyadarshani, A. A Microbiological Analysis of Egg Shell Bacteria. Vantage J. Themat. Anal. 2023, 4, 34–46. [CrossRef]
2. Kabir, S.M.K. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [CrossRef] [PubMed]
3. Kosecka-Strojek, M.; Trzeciak, J.; Homa, J.; Trzeciak, K.; Władyka, B.; Trela, M.; Mi˛edzobrodzki, J.; Lis, M.W. Effect of Staphylococcus aureus Infection on The Heat Stress Protein 70 (HSP70) Level in Chicken Embryo Tissues. Poult. Sci. 2021, 100, 101119. [CrossRef]
4. Almeida e Silva, T.; Gorup, L.F.; de Araújo, R.P.; Fonseca, G.G.; Martelli, S.M.; de Oliveira, K.M.P.; Faraoni, L.H.; de Arruda, E.G.R.; Gomes, R.A.B.; da Silva, C.H.M.; et al. Synergy of Biodegradable Polymer Coatings With Quaternary Ammonium Salts Mediating Barrier Function against Bacterial Contamination and Dehydration of Eggs. Food Bioprocess Technol. 2020, 13, 2065–2081. [CrossRef]
5. Melo, E.F.; Clímaco, W.L.S.; Triginelli, M.V.; Vaz, D.P.; De Souza, M.R.; Baião, N.C.; Pompeu, M.A.; Lara, L.J.C. An evaluation of alternative methods for sanitizing hatching eggs. Poult. Sci. 2019, 98, 2466–2473. [CrossRef] [PubMed]
6. Oliveira, G.D.S.; McManus, C.; Salgado, C.B.; Dos Santos, V.M. Effects of sanitizers on microbiological control of hatching eggshells and poultry health during embryogenesis and early stages after hatching in the last decade. Animals 2022, 12, 2826. [CrossRef]
7. Cadirci, S. Disinfection of Hatching Eggs by Formaldehyde Fumigation-a Review. Eur. Poult. Sci. 2009, 73, 116–123.
8. Hayretdag, S.; Kolankaya, D. Investigation of the Effects of Preincubation Formaldehyde Fumigation on the Tracheal Epithelium of Chicken Embryos and Chicks. Turk. J. Vet. Anim. Sci. 2008, 32, 263–267.
9. Zeweil, H.S.; Rizk, R.E.; Bekhet, G.M.; Ahmed, M.R. Comparing the Effectiveness of Egg Disinfectants against Bacteria and Mitotic Indices of Developing Chick Embryos. J. Basic Appl. Zool. 2015, 70, 1–15. [CrossRef]
10. Ezzat Abd El-Hack, M.; Alagawany, M.; Ragab Farag, M.; Tiwari, R.; Karthik, K.; Dhama, K.; Zorriehzahra, J.; Adel, M. Beneficial Impacts of Thymol Essential Oil on Health and Production of Animals, Fish and Poultry: A Review. J. Essent. Oil Res. 2016, 28, 365–382. [CrossRef]
11. Chen, Y.; Liu, L.; Wang, H.; Ma, J.; Peng, W.; Li, X.; Lai, Y.; Zhang, B.; Zhang, D. Environmentally Friendly Plant Essential Oil: Liquid Gold for Human Health. Adv. Agron. 2021, 170, 289–337.
12. Oliveira, G.D.S.; McManus, C.; de Araújo, M.V.; de Sousa, D.E.R.; de Macêdo, I.L.; Castro, M.B.D.; Santos, V.M.D. Sanitizing hatching eggs with essential oils: Avian and microbiological safety. Microorganisms 2023, 11, 1890. [CrossRef] [PubMed]
13. Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [CrossRef] [PubMed]
14. Vostinaru, O.; Heghes, S.C.; Filip, L. Safety Profile of Essential Oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020.
15. Bongiovanni, V.; Colombo, M.; Laura, C.; Andrea, T.; Daniela, C. Determining Odour-Active Compounds in a Commercial Sample of Cinnamomun cassia Essential Oil Using GC–MS and GC-O. J. Chromatogr. Sep. Tech. 2017, 8, 1–7. [CrossRef]
16. Uddin, M.A.; Shahinuzzaman, M.; Rana, M.S.; Yaakob, Z. Study of chemical composition and medicinal properties of volatile oil from clove buds (Eugenia caryophyllus). Int. J. Pharm. Sci. Res. 2017, 8, 895.
17. Saputra, N.A.; Wibisono, H.S.; Darmawan, S.; Pari, G. Chemical Composition of Cymbopogon Nardus Essential Oil and Its Broad-Spectrum Benefit. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 415, p. 012017.
18. Moreira Silva, A.R.; Lopes Mendes, L.D.S.; Silva de Souza, E.F.; Luz Pereira, M.; Silva Alves, M.; Pará Alves, E.V.; Lima Torres, E.; Gaspar Novais, T.M. Avaliação da Atividade Antimicrobiana do Óleo Essencial de Cinnamomum cassia. Rev. Foco (Interdiscip. Stud. J.) 2023, 16, 1–18.
19. Penteado, A.L.; Eschionato, R.A.; de Souza, D.R.C.; Queiroz, S.D.N. Avaliação in vitro de atividade antimicrobiana de óleos essenciais contra Salmonella typhimurium e Staphylococcus aureus. Hig. Aliment. 2021, 35, e1060.
20. Freire, I.C.M.; Pérez, A.L.A.L.; Cardoso, A.M.R.; Mariz, B.A.L.A.; Almeida, L.F.D.; Cavalcanti, Y.W.; Padilha, W.W.N. Atividade antibacteriana de Óleos Essenciais sobre Streptococcus mutans e Staphylococcus aureus. Rev. Bras. Plant. Med. 2014, 16, 372–377. [CrossRef]
21. Itaparica, N.V.D.A. Avaliação da Atividade Antimicrobiana dos Óleos Essenciais de Eugenia caryophyllata e Croton rhamnifolioides pax e hoffm. In Proceedings of the VII CONNEPI-Congresso Norte Nordeste de Pesquisa e Inovação, Palmas, Brazil, 19–21 October 2012.
22. Oliveira, A.F.M.; da Silva, F.L.; Morais, F.M.; da Silva, R.T.; dos Santos, R.R.L.; da Silva, L.L.W.V.; Oliveira, J.M.; Morais, C.C.; Cesar, K.K.F.A. Atividade Antimicrobiana de Óleos Essenciais Frente a Bactérias Patogênicas de Importância Clínica. Res. Soc. Dev. 2022, 11, e448111335639. [CrossRef]
23. Andrade, M.A.; dasGraças Cardoso, M.; Batista, L.R.; Mallet, A.C.; Machado, S.M. Essential Oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: Composition, Antioxidant and Antibacterial Activities. Rev. Ciên. Agron. 2012, 43, 399–408. [CrossRef]
24. Santos, C.H.D.S.; Piccoli, R.H.; Tebaldi, V.M.R. Atividade Antimicrobiana de Óleos Essenciais e Compostos Isolados Frente aos Agentes Patogênicos de Origem Clínica e Alimentar. R. Inst. Adolfo Lutz 2017, 76, 1–8. [CrossRef]
25. Contrucci, B.A.; Silva, R.; Junior, R.A.; Kozusny-Andreani, D.I. Efeito de Óleos Essenciais Sobre Bactérias Gram-Negativas Isoladas de Alimentos. Ens. Ciên. Ciên. Biol. Agr. Saúde. 2019, 23, 180–184. [CrossRef]
26. Kolypetri, S.; Kostoglou, D.; Nikolaou, A.; Kourkoutas, Y.; Giaouris, E. Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. Hirtum) Essential Oil against Salmonella typhimurium and Listeria monocytogenes. Foods 2023, 12, 2893. [CrossRef] [PubMed]
27. Ferreira, R.R.; Souza, A.G.; Quispe, Y.M.; Rosa, D.S. Essential Oils Loaded-Chitosan Nanocapsules Incorporation in Biodegradable Starch Films: A Strategy to Improve Fruits Shelf Life. Int. J. Biol. Macromol. 2021, 188, 628–638. [CrossRef]
28. Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [CrossRef]
29. Kaˇcániová, M.; Garzoli, S.; Ben Hsouna, A.; Ban, Z.; Elizondo-Luevano, J.H.; Kluz, M.I.; Ben Saad, R.; Hašˇcík, P.; Cmikov ˇ á, N.; Waskiewicz-Robak, B.; et al. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods 2024, 13, 2512. [CrossRef] [PubMed]
30. Food and Drug Administration, Department of Health and Human Services. Subchapter B—Food for Human Consumption (Continued). Part 182—Substances Generally Recognized as Safe. Subpart A—General Provisions. Sec. 182.20 Essential Oils, Oleoresins (Solvent-Free), and Natural Extractives (Including Distillates). Available online: https://www.accessdata.fda.gov/ scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.20. (accessed on 24 October 2024).
31. Food and Drug Administration, Department of Health and Human Services. Subchapter B—Food for Human Consumption (Continued). PART 184—Direct Food Substances Affirmed as Generally Recognized as Safe. Subpart B—Listing of Specific Substances Affirmed as GRAS. Sec. 184.1257 Clove and Its Derivatives. Available online: https://www.accessdata.fda.gov/ scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1257 (accessed on 24 October 2024).
32. Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [CrossRef]
33. Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [CrossRef]
34. Al-Shemery, N.J.; Kamaluddin, Z.N. Effect of Using Different Concentrations of Hydrogen Peroxide and Formalin Compared to Formaldehyde Evaporation in Sterilization of Hatching Eggs of Broiler. Euphrates J. Agric. Sci. 2018, 10, 36–41.
35. Oliveira, G.D.S.; dos Santos, V.M.; Nascimento, S.T. Essential Oils as Sanitisers for Hatching Eggs. Worlds Poult. Sci. J. 2021, 77, 605–617. [CrossRef] 36. Puvaˇca, N.; Milenkovi´c, J.; Galonja Coghill, T.; Bursi´c, V.; Petrovi´c, A.; Tanaskovi´c, S.; Peli´c, M.; Ljubojevi´c Peli´c, D.; Miljkovi´c, T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics 2021, 10, 546. [CrossRef] [PubMed]
37. Aouadhi, C.; Jouini, A.; Maaroufi, K.; Maaroufi, A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics 2024, 13, 237. [CrossRef] [PubMed]
38. Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial Activity of Essential Oils of Cultivated Oregano (Origanum vulgare), Sage (Salvia officinalis), and Thyme (Thymus vulgaris) against Clinical Isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289–23295. [CrossRef]
39. Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simõs, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid. Based Complementary Altern. Med. 2015, 2015, 795435. [CrossRef]
40. Ribeiro, O.S.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and cytotoxic activities of ten commercially available essential Oils. Antibiotics 2020, 9, 717. [CrossRef] [PubMed]
41. Oliveira, G.D.S.; McManus, C.; Vale, I.R.R.; Dos Santos, V.M. Obtaining Microbiologically Safe Hatching Eggs from Hatcheries: Using Essential Oils for Integrated Sanitization Strategies in Hatching Eggs, Poultry Houses and Poultry. Pathogens 2024, 13, 260. [CrossRef] [PubMed]
42. Mustafa, A.A.; Mirza, R.A.; Aziz, H.I. Lavender Essential Oil in Sanitation on Fertile Egg. Passer J. Basic Appl. Sci. 2023, 5, 377–381. [CrossRef]
43. Bizzo, H.R.; Rezende, C.M. O mercado de óleos essenciais no Brasil e no mundo na última década. Quím. Nova. 2022, 45, 949–958.
44. Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [CrossRef]