Author details:
Although phytase has been researched, new enzymes have been produced, leading to different animal responses. In this scenario, the present study proposes to evaluate the inclusion of a bacterial phytase produced by Escherichia coli in broiler diets based on corn and soybean meal, with or without nutrient reductions, on the performance, nutrient digestibility, phosphorus bioavailability, and bone minerals of those animals and on the economic viability of this practice. A total of 896 male broiler chickens were distributed into 32 experimental units, each housing 28 broilers. The experiment was set up as a completely randomized design with four treatments (Positive Control (PC)- diet meeting the nutritional requirements of the broiler chickens; Negative Control (NC) with reductions of 100kcal/kg of ME, 0.14% avP and 0.11% t Ca; NC + phytase (500 FTU/kg); PC + phytase (500FTU/kg)) and 8 replicates. Phytase increased (p < 0.05) feed intake and body weight gain and improved feed conversion ratio in starter (1 to 21 days) and total (1 to 42 days) phases, respectively, compared with Negative Control diet without supplementation. The Negative Control + phytase diet also led to a feed intake similar to Positive Control in the starter and total phases. The inclusion of phytase without nutrient reductions improved (p < 0.05) feed conversion ratio in the starter phase, compared to Positive Control diet. There was an increase (p < 0.05) in the digestibility of dry matter, crude protein and phosphorus and in apparent digestible energy in the Negative Control + phytase diet compared to the Negative Control diet. Phytase supplementation increased (p < 0.05) the digestibility of crude protein, calcium and phosphorus, and apparent digestible energy compared to Positive Control diet. Ash, phosphorus, and calcium contents were higher in the Negative Control + phytase diet compared with those observed in the Negative Control diet without enzyme (p < 0.05). The Positive Control + phytase diet provided higher ash contents (p < 0.05), but calcium and phosphorus deposition was similar to those obtained with Positive Control diet. Phytase inclusion allows for a reduction in the diet cost per ton of produced feed. In conclusion, dietary supplementation with bacterial phytase produced from Escherichia coli for broiler chickens is recommended, as it provided increases in production performance, nutrient digestibility, and energy metabolizability and a reduction in the diet cost.
Key words: Bioavailability, Calcium, Exogenous enzyme, Phosphorus, Poultry production.
ADEDOKUN, S. A.; SANDS, J. S.; ADEOLA, O. Determining the equivalent phosphorus released by an Escherichia coli-derived phytase in broiler chicks. Canadian Journal of Animal Science, Ottawa, v. 84, n. 3, p. 437-444, 2004.
ADEOLA, O. Phosphorus equivalency value of an Escherichia coli phytase in the diets of White Pekin ducks. Poultry Science, Champaign, v. 89, n. 6, p. 1199- 1206, 2010.
ADEOLA, O.; COWIESON, A. J. Board-invited review: opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. Journal of Animal Science, Oxford, v. 89, n. 10, p. 3189-3218, 2011.
ADEOLA, O.; WALK, C. L. Linking ileal digestible phosphorus and bone mineralization in broiler chickens fed diets supplemented with phytase and highly soluble calcium. Poultry Science, Champaign, v. 92, n. 8, p. 2109-2117, 2013.
AHMAD, T.; RASOOL, S.; SARWAR, M.; HAQ, A.; HASAN, Z. Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chickens. Animal Feed Science and Technology, Amsterdã, v. 83, n. 2, p. 103-114, 2000.
APPLEGATE, T. J.; ANGEL, R.; CLASSEN, H. L. Effect of dietary calcium, 25-hydroxycholecalciferol, or bird strain on small intestinal phytase activity in broiler chickens. Poultry Science, Champaign, v. 82, n. 7, p. 1140-1148, 2003.
AUGSPURGER, N. I.; WEBEL, D. M.; LEI, X. G.; BAKER, D. H. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. Journal of Animal Science, Oxford, v. 81, n. 2, p. 474-483, 2003.
BAYLINK, D.; WERGEDAL, J.; STAUFFER, M. Formation, mineralization and resorption of bone in hypophosphatemic rats. The Journal of Clinical Investigation, Ann Arbor, v. 50, n. 12, p. 2519-2530, 1971.
BREMNER, I.; BEATTIE, J. H. Copper and zinc metabolism in health and disease: speciation and interactions. The Proceedings of the Nutrition Society, Cambridge, v. 54, n. 2, p. 489-99, 1995.
COBB GUIDELINES. Broiler management guide. COBB 500. [S.l.]: [s.n.], 2012. 73 p. Available at: . Accessed at: 23 apr. 2014.
COULIBALY, A.; KOUAKOU, B.; CHEN, J. Phytic acid in cereal grains: structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and Fertilization Technology, Deira, v. 1, n. 1, p. 1-22, 2011.
COWIESON, A. J.; RUCKEBUSCH, J. P.; SORBARA, J. O.; WILSON, J. W.; GUGGENBUHL, P.; ROSS, F. F. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Animal Feed Science and Technology, Amsterdã, v. 225, n. 3, p. 182-194, 2017.
COWIESON, A. J.; WILCOCK, P.; BEDFORD, M. R. Super-dosing effects of phytase in poultry and other monogastrics. World’s Poultry Science Journal, Cambridge, v. 67, n. 2, p. 225-236, 2011.
COZZOLINO, S. M. F. Biodisponibilidade de nutrientes. 2. ed. São Paulo: Cozzolino, SMF, 2007. 992 p.
DE KORT, E.; MINOR, M.; SNOEREN, T.; VAN HOOIJDONK, T.; VAN DER LINDEN, E. Calciumbinding capacity of organic and inorganic ortho and polyphosphates. Dairy Science Technology, Paris, v. 89, n. 3-4, p. 283-299, 2009.
DILGER, R. N.; ONYANGO, E. M.; SANDS, J. S.; ADEOLA, O. Evaluation of microbial phytase in broiler diets. Poultry Science, Champaign, v. 83, n. 6, p. 962- 970, 2004.
GRAÑA, A.; TAVERNARI, F. C.; LELIS, G. R.; ALBINO, L. F. T.; ROSTAGNO, H. S.; GOMES, P. C. Evaluation of nutrient excretion and retention in broilers submitted to different nutritional strategies. Revista Brasileira de Ciência Avícola, Campinas, v. 15, n. 2, p. 161-168, 2013.
HAHN-DIDDE, D.; PURDUM, S. E. The effects of an enzyme complex in moderate and low nutrient-dense diets with dried distillers grains with solubles in layhing hens. Journal of Applied Poultry Research, Oxford, v. 23, n. 1, p. 23-33, 2014.
JIANG, X.; LUO, F.; QU, M.; BONTEMPO, V.; WU, S.; ZHANG, H.; YUE, H.; QI, G. Effect of non-phytate phosphorus levels and phytase sources on the growth performance, serum biochemical and tibial parameters of broiler chickens. Italian Journal of Animal Science, Viterbo, v. 12, n. 3, p. 375-380, 2013.
KARIMI, A.; BEDFORD, M. R.; SADEGHI, G. H.; GHOBADI, Z. Influence of dietary non-phytate phosphorus levels and phytase supplementation on the performance and bone characteristics of broilers. Revista Brasileira de Ciência Avícola, Campinas, v. 13, n. 1, p. 43-51, 2011.
LEE, S. A.; NAGALAKSHIMI, D.; RAJU, M. V. L. N.; RAO, S. V. R.; BEDFORD, M. R. Effect of phytase superdosing myo-inositol and available phosphorus concentrations on performance and bone mineralization in broilers. Animal Nutrition, Beijing, v. 3, n. 3, p. 247- 251, 2017.
LEESON, S.; CASTON, L.; SUMMERS, J. D. Broiler response to diet energy. Poultry Science, Champaign, v. 75, n. 4, p. 529-535, 1996.
LELIS, G. R.; ALBINO, L. F. T.; CALDERANO, A. A.; TAVERNARI, F. C.; ROSTAGNO, H. S.; CAMPOS, A. M. A.; ARAÚJO, W. A. G.; RIBEIRO JÚNIOR, V. Diet supplementation with phytase on performance of broiler chickens. Revista Brasileira de Zootecnia, Viçosa, MG, v. 41, n. 4, p. 929-933, 2012.
LIU, S. Y.; CADOGAN, D. J.; PÉRON, A.; TRUONG, H. H.; SELLE, P. H. Effects of phytase supplementation on growth performance, nutrient utilization and digestive dynamics of starch and protein in broiler chickens offered maize, sorghum and wheat based diets. Animal Feed Science and Technology, Amsterdã, v. 197, p. 164- 175, 2014.
MANANGI, M. K.; COON, C. N. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations. Poultry Science, Champaign, v. 87, n. 8, p. 1577-1586, 2008.
NELSON, D. L.; COX, M. M. Princípios de bioquímica de Lehninger. 6. ed. Porto Alegre: Nelson, DL, 2014. 1336 p.
O’CONNOR-DENNIE, T.; EMMERT, J. The effect of phytase source, wheat middlings, and citric acid on phosphorus utilization, growth performance, and carcass yield in broilers. Tropical Agriculture, Saint Augustine, v. 89, n. 4, p. 240-251, 2012.
ONYANGO, E. M.; BEDFORD, M. R.; ADEOLA, O. Efficacy of an evolved Escherichia coli phytase in diets of broiler chicks. Poultry Science, Champaign, v. 84, n. 2, p. 248-255, 2005.
PANDEY, A.; SZAKACS, G.; SOCCOL, C. R.; RODRIGUEZ-LEON, J. A.; SOCCOL, V. T. Production, purification and properties of microbial phytases. Bioresource Technology, Amsterdã, v. 77, n. 3, p. 203- 214, 2001.
PARMER, T. G.; CAREW, L. B.; ALSTER, F. A. Thyroid function, growth hormone, and organ growth in broilers deficient in phosphorus. Poultry Science, Champaign, v. 66, n. 12, p. 1995- 2004, 1987.
PILLAI, P. B.; O’CONNOR-DENNIE, T.; OWENS, C. M.; EMMERT, J. L. Efficacy of an Escherichia coli phytase in broilers fed adequate or reduced phosphorus diets and its effect on carcass characteristics. Poultry Science, Champaign, v. 85, n. 10, p. 1737-1745, 2006.
PLUMSTEAD, P. W.; LEYTEM, A. B.; MAGUIRE, R. O.; SPEARS, J. W.; KWANYUEN, P.; BRAKE, J. Interaction of calcium and phytate in broiler diets: effects on apparent pre cecal digestibility and retention of phosphorus. Poultry Science, Champaign, v. 87, n. 3, p. 449-458, 2008.
POWELL, S.; BIDNER, T. D.; SOUTHERN, L. L. Phytase supplementation improved growth performance and bone characteristics in broilers fed varying levels of dietary calcium. Poultry Science, Champaign, v. 90, n. 3, p. 604-608, 2011.
RAGGON, M.; AUMELAS, A.; CHEMARDIN, P.; GALVEZ, S.; MOULIN, G.; BOZE, H. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castelli CBS 2923. Applied Microbiology and Biotechnology, New York, v. 78, n. 1, p. 47-53, 2008.
RAVINDRAN, V.; CABAHUG, S.; RAVINDRAN, G.; BRYDEN, W. Influence of microbial phytase on apparent ileal amino acid digestibility of feeds tuffs for broilers. Poultry Science, Champaign, v. 78, n. 5, p. 699-706, 1999.
RAVINDRAN, V.; COWIESON, A. J.; SELLE, P. H. Influence of dietary electrolyte balance and microbial phytase on growth performance, nutrient utilization, and excreta quality of broiler chickens. Poultry Science, Champaign, v. 87, n. 4, p. 677-688, 2008.
RIBEIRO JUNIOR, V.; SALGUERO, S. C.; GOMES, G.; BARROS, V. R. S. M.; SILVA, D. L.; BARRETO, S. L. T.; ROSTAGNO, H. S.; HANNAS, M. I.; ALBINO, L. F. T. Efficacy and phosphorus equivalency values of two bacterial phytases (Escherichia coli and Citrobacter braakii) allow the partial reduction of dicalcium phosphate added to the diets of broiler chickens from 1 to 21 days of age. Animal Feed Science and Technology, Amsterdã, v. 221, Part A, p. 226-233, 2016.
ROSTAGNO, H. S.; ALBINO, L. F. T.; DONZELE, J. L.; GOMES, P. C.; OLIVEIRA, R. F. M.; LOPES, D. C.; FERREIRA, A. S.; BARRETO, S. L. T.; EUCLIDES, R. F. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 3. ed. Viçosa, MG: Rostagno, HS, 2011. 252 p.
ROUSSEAU, X.; LÉTOURNEAU-MONTMINY, M. P.; MÊME, N.; MAGNIN, M.; NYS, Y.; NARCY, A. Phosphorus utilization in finishing broiler chickens: effects of dietary calcium and microbial phytase. Poultry Science, Champaign, v. 91, n. 11, p. 2829-2837, 2012.
RUTHERFURD, S. M.; CHUNG, T. K.; MOREL, P. C. H.; MOUGHAN, P. J. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poultry Science, Champaign, v. 83, n. 1, p. 61-68, 2004.
RUTHERFURD, S. M.; CHUNG, T. K.; THOMAS, D. V.; ZOU, M. L.; MOUGHAN, P. J. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poultry Science, Champaign, v. 91, n. 5, p. 1118-1127, 2012.
SAKOMURA, N. K.; ROSTAGNO, H. S. Métodos de pesquisa em nutrição de monogástricos. 2. ed. Jaboticabal: Sakomura, NK, 2016. 262 p.
SANTOS, F. R.; HRUBY, M.; PIERSON, E. E. M.; REMUS, J. C.; SAKOMURA, N. K. Effect of phytase supplementation in diets on nutrient digestibility and performance in broiler chicks. Journal of Applied Poultry Research, Oxford, v. 17, n. 2, p. 191-201, 2008.
SANTOS, T. T.; SRINONGKOTE, S.; BEDFORD, M. R.; WALK, C. L. Effect of high phytase inclusion rates on performance of broilers fed diets not severely limited in available phosphorus. Asian-Australian Journal of Animal Sciences, Seoul, v. 26, n. 2, p. 227-232, 2013.
SEBASTIAN, S.; TOUCHBURN, S. P.; CHÁVEZ, E. R. Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World’s Poultry Science Journal, Cambridge, v. 54, n. 1, p. 27-47, 1998.
SEBASTIAN, S.; TOUCHBURN, S. P.; CHÁVEZ, E. R.; LAGUE, P. C. Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chicks. Poultry Science, Champaign, v. 75, n. 12, p. 1516-1523, 1996.
SELLE, P. H.; RAVINDRAN, V. Microbial phytase in poultry nutrition. Animal Feed Science and Technology, Amsterdã, v. 135, n. 1-2, p. 1-41, 2007.
SILVA, J. D.; QUEIROZ, A. C. Análise de alimentos: métodos químicos e biológicos. 2. ed. Viçosa, MG: Silva JD, 2009. 235 p.
SOHAIL, S. S.; ROLAND, D. A. Influence of supplemental phytase on performance of broilers from four to six weeks of age. Poultry Science, Champaign, v. 78, n. 4, p. 550-558, 1999.
STATISTICAL ANALYSIS SYSTEM INSTITUTE - SAS. SAS/STAT® 9. 0 User’s guide. Cary: SAS Institute Inc., 2002.
VIVEIROS, A.; BRENES, A.; ARIJA, I.; CENTENO, C. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poultry Science, Champaign, v. 81, n. 8, p. 1172-1183, 2002.
WALDROUP, P. W.; KERSEY, J. H.; SALEH, E. A.; FRITTS, C. A.; YAN, F.; STILBORN, H. L.; CRUM, R. C.; RABOY, V. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase. Poultry Science, Champaign, v. 79, n. 10, p. 1451-1459, 2000.
WALK, C. L.; ADDO-CHIDIE, E. K.; BEDFORD, M. R.; ADEOLA, O. Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens. Poultry Science, Champaign, v. 91, n. 9, p. 2255-2263, 2012a.
WALK, C. L.; BEDFORD, M. R.; MCELROY, A. P. In vitro evaluation of limestone, dicalcium phosphate, and phytase on calcium and phosphorus solubility of corn and soybean meal. Poultry Science, Champaign, v. 91, n. 3, p. 674-682, 2012b.
WALK, C. L.; SANTOS, T. T.; BEDFORD, M. R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poultry Science, Champaign, v. 93, n. 5, p. 1172-1177, 2014.
WATSON, B. C.; MATHEWS, J. O.; SOUTHERN, L. L.; SHELTON, J. L. The effects of phytase on growth performance and intestinal transit time of broilers fed nutritionally adequate diets and diets deficient in calcium and phosphorus. Poultry Science, Champaign, v. 85, n. 3, p. 493-497, 2006.