The development of interventions to reduce human foodborne pathogens in the gastrointestinal (GI) tract of chickens will be important for improving the microbial food safety of poultry. Saccharomyces-derived prebiotic refined functional carbohydrates (RFC), composed primarily of b-glucans, mannanoligosaccharides (MOS), and D-mannose have been demonstrated to reduce GI colonization of Salmonella and Campylobacter when administered to poultry. Although they are presumed to inhibit adhesion of pathogens to the GI epithelium, this functionality of RFC has not been well characterized. In this study, we investigated the effects of RFC and other prebiotics on the adhesion of Salmonella Typhimurium and Campylobacter jejuni to the LMH chicken epithelial cell line in vitro. The reduction of adherent pathogens was observed to be dose-dependent with C. jejuni being more sensitive than Salmonella to inhibition by RFC. Comparison of the primary constituent carbohydrates of RFC found D-mannose to inhibit both pathogens less effectively than b-glucan and MOS, suggesting that it contributes less to inhibition of pathogen adhesion than the other carbohydrates. Finally, the reduction of adherent pathogens by RFC was compared with that of fructooligosaccharides (FOS), galactooligosaccharides (GOS), and raffinose. All 4 prebiotics inhibited adhesion of both pathogens to chicken epithelial cells. Reduction of adherent Salmonella was greatest with FOS and lowest with GOS, whereas reduction of adherent C. jejuni was greater with RFC and raffinose than with FOS and GOS. These results will inform future research elucidating mechanisms important to adhesion inhibition of pathogens by RFC and other prebiotics.
Key words: prebiotics, bacterial adhesion, Salmonella, Campylobacter jejuni, epithelial cells.
Allaart, J. G., A. J. van Asten, and A. Gr€one. 2013. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp. Immunol. Microbiol. Infect. Dis. 36:449–464.
Askelson, T. E., and T. Duong. 2015. Perspectives on differences between human and livestock animal research in probiotics and prebiotics. Pages 447–458 in Probiotics and Prebiotics: Current
Research and Future Trends. K. Venema and A. P. do Carmo, eds.
Caister Academic Press, Norfolk, UK.
Baines, D., S. Erb, R. Lowe, K. Turkington, E. Sabau, G. Kuldau,
J. Juba, L. Masson, A. Mazza, and R. Roberts. 2011. A prebiotic,
Celmanax, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro. BMC Res.
Notes 4:110.
Baurhoo, B., P. R. Ferket, and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.
Poult. Sci. 88:2262–2272.
Bindels, L. B., N. M. Delzenne, P. D. Cani, and J. Walter. 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev.
Gastroenterol. Hepatol. 12:303.
Catley, B. J. 1988. Isolation and analysis of cell walls. Pages 163–183 in
Yeast: A Practical Approach. D. Campbell and J. H. Duffus, eds.
IRL Press, Washington, DC.
Contesini, F. J., E. A. de Lima, F. Mandelli, G. P. Borin, R. F. Alves, and Cesar Rafael F. Terrasan. 2019. Carbohydrate active enzymes applied in the production of functional oligosaccharides. Pages 30–
34 in Encyclopedia of Food Chemistry. L. Melton, F. Shahidi and
P. Varelis, eds. Academic Press, Oxford, UK.
Dallies, N., J. Francois, and V. Paquet. 1998. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14:1297–1306.
Day, C. J., J. Tiralongo, R. D. Hartnell, C.-A. Logue, J. C. Wilson,
M. von Itzstein, and V. Korolik. 2009. Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions. PLoS One 4:e4927.
Duong, T., and M. E. Konkel. 2009. Comparative studies of
Campylobacter jejuni genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic foodborne pathogen. Curr. Opin. Biotechnol. 20:158–165.
Elaine, S., M. G. Patricia, J. A. Frederick, V. T. Robert, and
M. H. Robert. 2011a. Foodborne illness acquired in the United
States—Unspecified Agents. Emerging Infect. Dis. 17:16.
Elaine, S., M. H. Robert, J. A. Frederick, V. T. Robert, W. MarcAlain, L. R. Sharon, L. J. Jeffery, and M. G. Patricia. 2011b.
Foodborne illness acquired in the United States—major pathogens.
Emerging Infect. Dis. 17:7.
Fernandez, F., M. Hinton, and B. V. Gils. 2002. Dietary mannanoligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol.
31:49–58.
Firon, N., S. Ashkenazi, D. Mirelman, I. Ofek, and
N. Sharon. 1987. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated
Escherichia coli to yeast and intestinal epithelial cells. Infect.
Immun. 55:472.
Flanagan, R. C., J. M. Neal-McKinney, A. S. Dhillon, W. G. Miller, and M. E. Konkel. 2009. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infect. Immun.
77:2399–2407.
Fleet, G. H. 1991. Cell walls. Pages 199–277 in The Yeasts. A. H. Rose and J. S. Harrison, eds. Academic Press, London.
Fomentini, M., D. Haese, J. L. Kill, R. P. Sobreiro, D. D. Puppo,
I. R. Haddade, A. L. Lima, and A. Saraiva. 2016. Prebiotic and antimicrobials on performance, carcass characteristics, and antibody production in broilers. Ci^encia Rural 46:1070–1075.
Froebel, L. K., S. Jalukar, T. A. Lavergne, C. D. Coufal, and
T. Duong. 2020. Administration of direct-fed Bacillus cultures and refined functional carbohydrates to broiler chickens improves growth performance and promotes positive shifts in gastrointestinal microbiota [e-pub ahead of print]. J. Appl. Poult. Res. https:// doi.org/10.1016/j.japr.2020.06.004, accessed October 26, 2020.
Froebel, L. K., S. Jalukar, T. A. Lavergne, J. T. Lee, and
T. Duong. 2019. Administration of dietary prebiotics improves growth performance and reduces pathogen colonization in broiler chickens. Poult. Sci. 98:6668–6676.
Gadagkar, S. R., and G. B. Call. 2015. Computational tools for fitting the Hill equation to dose–response curves. J. Pharmacol. Toxicol.
Methods 71:68–76.
Ganan, M., J. M. Silvan, A. V. Carrascosa, and A. J. MartínezRodríguez. 2012. Alternative strategies to use antibiotics or chemical products for controlling Campylobacter in the food chain.
Food Control 24:6–14.
Ganner, A., C. Stoiber, J. T. Uhlik, I. Dohnal, and
G. Schatzmayr. 2013. Quantitative evaluation of E. coli F4 and
Salmonella Typhimurium binding capacity of yeast derivatives.
AMB Express 3:62.
Garai-Ibabe, G., M. T. Dueñas, A. Irastorza, E. Sierra-Filardi,
M. L. Werning, P. Lopez, A. L. Corbí, and P. F. De Palencia. 2010.
Naturally occurring 2-substituted (1, 3)-b-D-glucan producing
Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresour.
Technol. 101:9254–9263.
Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer,
S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani,
K. Verbeke, and G. Reid. 2017. Expert consensus document: the
International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491.
Gomez, S., M. L. Angeles, M. C. Mojica, and S. Jalukar. 2012. Combination of an enzymatically hydrolyzed yeast and yeast culture with a direct-fed microbial in the feeds of broiler chickens. AsianAustralas. J. Anim. Sci. 25:665–673.
Granato, D., F. Perotti, I. Masserey, M. Rouvet, M. Golliard,
A. Servin, and D. Brassart. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl.
Environ. Microbiol. 65:1071–1077.
Heyndrickx, M., D. Vandekerchove, L. Herman, I. Rollier,
K. Grijspeerdt, and L. De Zutter. 2002. Routes for Salmonella contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol. Infect. 129:253–265.
Hooge, D. M. 2004. Meta-analysis of broiler chicken pen trials evaluating dietary mannnanoligosaccharide, 1993-2003. Int. J. Poult.
Sci. 3:163–174.
Huff, G. R., W. E. Huff, S. Jalukar, J. Oppy, N. C. Rath, and
B. Packialakshmi. 2013. The effects of yeast feed supplementation on Turkey performance and pathogen colonization in a transport stress/Escherichia coli challenge. Poult. Sci. 92:655–662.
Hunter, J. B., and J. A. Asenjo. 1988. A structured mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells.
Biotechnol. Bioeng. 31:929–943.
Kawaguchi, T., K. Nomura, Y. Hirayama, and T. Kitagawa. 1987.
Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Res. 47:4460–4464.
Keyburn, A. L., J. D. Boyce, P. Vaz, T. L. Bannam, M. E. Ford,
D. Parker, A. Di Rubbo, J. I. Rood, and R. J. Moore. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by
Clostridium perfringens. PLoS Pathog. 4:e26.
Klis, F. M. 1994. Review: cell wall assembly in yeast. Yeast 10:851–
869.
Konkel, M. E., J. E. Christensen, A. S. Dhillon, A. B. Lane, R. HareSanford, D. M. Schaberg, and C. L. Larson. 2007. Campylobacter jejuni strains compete for colonization in broiler chicks. Appl.
Environ. Microbiol. 73:2297–2305.
Lahellec, C., and P. Colin. 1985. Relationship between serotypes of
Salmonellae from hatcheries and rearing farms and those from processed poultry carcases. Br. Poult. Sci. 26:179–186.
Mattos-Graner, R. O., S. Jin, W. F. King, T. Chen, D. J. Smith, and
M. J. Duncan. 2001. Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect. Immun. 69:6931–
6941.
McMurrough, I., and A. H. Rose. 1967. Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem. J. 105:189–203.
Mead, G. C. 2002. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. Worlds Poult.
Sci. J. 58:169–178.
Morales-Lopez, R., and J. Brufau. 2013. Immune-modulatory effects of dietary Saccharomyces cerevisiae cell wall in broiler chickens inoculated with Escherichia coli lipopolysaccharide. Br. Poult. Sci.
54:247–251.
Moran, C. A. 2004. Functional components of the cell wall of
Saccharomyces cerevisiae: applications for yeast glucan and mannan. Pages 283–296 in Proc. Nutritional Biotechnology in the
Feed and Food Industries. Proceedings of Alltech’s 20th Annual
Symposium: Re-imagining the Feed Industry, Lexingon, KY.
Oyofo, B. A., J. R. DeLoach, D. E. Corrier, J. O. Norman, R. L. Ziprin, and H. H. Mollenhauer. 1989. Prevention of Salmonella Typhimurium colonization of broilers with D-mannose. Poult. Sci.
68:1357–1360.
Phaff, H. J. 1971. Structure and biosynthesis of the yeast cell envelope.
Pages 135–210 in The Yeasts, Vol. II Physiology and Biochemistry of Yeasts. A. H. Rose and J. S. Harrison, eds. Academic Press, New
York.
Quiñones, B., W. G. Miller, A. H. Bates, and R. E. Mandrell. 2009.
Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Appl. Environ. Microbiol. 75:281–285.
Rosenberg, E., A. Gottlieb, and M. Rosenberg. 1983. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect. Immun. 39:1024–1028.
Rouger, A., O. Tresse, and M. Zagorec. 2017. Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms
5:50.
Santos, E. G., F. G. P. Costa, J. H. V. Silva, T. D. D. Martins,
D. F. Figueiredo-Lima, M. Macari, C. J. B. Oliveira, and
P. E. N. Givisiez. 2013. Protective effect of mannan oligosaccharides against early colonization by Salmonella Enteritidis in chicks is improved by higher dietary threonine levels. J. Appl. Microbiol.
114:1158–1165.
Shah, D. H., X. Zhou, H.-Y. Kim, D. R. Call, and J. Guard. 2012.
Transposon mutagenesis of Salmonella Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infect. Immun. 80:4203–4215.
Shoaf, K., G. L. Mulvey, G. D. Armstrong, and R. W. Hutkins. 2006.
Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun.
74:6920–6928.
Slavin, J. 2013. Fiber and prebiotics: mechanisms and health benefits.
Nutrients 5:1417–1435.
Spivey, M. A., S. L. Dunn-Horrocks, and T. Duong. 2014. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry. Poult. Sci. 93:2910–2919.
Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonellachallenged broiler chicks. Poult. Sci. 79:205–211.
Walker, G. K., S. Jalukar, and J. Brake. 2017. Effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the presence of Salmonella spp. in the ceca of broiler breeder females.
Poult. Sci. 96:2684–2690.
Walker, G. K., S. Jalukar, and J. Brake. 2018. The effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the transmission of environmental Salmonella Senftenberg among broilers and proliferation in broiler housing. Poult. Sci. 97:1412–1419.
Xu, X., Y. Qiao, Q. Peng, L. Gao, and B. Shi. 2017. Inhibitory effects of YCW and MOS from Saccharomyces cerevisiae on Escherichia coli and Salmonella Pullorum adhesion to Caco-2 cells. Front. Biol.
12:370–375.
Yang, Y., P. A. Iji, A. Kocher, L. L. Mikkelsen, and M. Choct. 2008a.
Effects of dietary mannanoligosaccharide on growth performance, nutrient digestibility and gut development of broilers given different cereal-based diets. J. Anim. Physiol. Anim. Nutr. (Berl)
92:650–659.
Yang, Y., P. A. Iji, A. Kocher, E. Thomson, L. L. Mikkelsen, and
M. Choct. 2008b. Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora. Br. Poult. Sci. 49:186–194.