Author details:
Tetracyclines, sulfonamides and amphenicols are broad spectrum antimicrobial drugs that are widely used in poultry farming. However, a high proportion of these drugs can be excreted at high concentrations in droppings, even after the end of a therapy course. This work intended to assess and compare concentrations of florfenicol (FF), florfenicol amine (FFa), chlortetracycline (CTC), 4-epi-chlortetracycline (4-epi-CTC), and sulfachloropyridazine (SCP) in broiler chicken droppings. To this end, 70 chickens were housed under controlled environmental conditions, and assigned to experimental groups that were treated with therapeutic doses of either 10% FF, 20% CTC, or 10% SCP. Consequently, we implemented and designed an in-house validation for three analytical methodologies, which allowed us to quantify the concentrations of these three antimicrobial drugs using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Our results showed that FF and FFa concentrations were detected in chicken droppings up to day 10 after ceasing treatment, while CTC and 4-epi-CTC were detected up to day 25. As for SCP residues, these were detected up to day 21. Noticeably, CTC showed the longest excretion period, as well as the highest concentrations detected after the end of its administration using therapeutic doses.
Keywords: antimicrobial residues; chlortetracycline; florfenicol; sulfachloropyridazine; chicken droppings; LC-MS/MS.
1. Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective,
Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [CrossRef] [PubMed]
2. European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 30 European Countries in 2015:
Trends from 2010 to 2015: Seventh ESVAC Report; European Medicines Agency: London, UK, 2017;
ISBN 978-92-9155-058-6.
3. Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential
Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795.
[CrossRef] [PubMed]
4. World Organization for Animal Health. OIE Annual Report on the Use of Antimicrobial Agents in Animals—Better
Understanding of the Global Situation; OIE: Paris, France, 2016; pp. 1–67.
5. Zhao, Q.; Wang, Y.; Wang, S.; Wang, Z.; Du, X.; Jiang, H.; Xia, X.; Shen, Z.; Ding, S.; Wu, C.; et al. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots. Sci. Rep.
2016, 6, 1–7. [CrossRef] [PubMed]
6. Sumano López, H.S.; Gutiérrez Olvera, L. Farmacología Clínica en aves comerciales [Clinical Pharmacology in
Poultry], 4th ed.; Interamericana Mc-Graw-Hill: Mexico DF, Mexico, 2010.
7. Cuong, N.; Padungtod, P.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Usage in Animal Production:
A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics 2018, 7, 75.
[CrossRef] [PubMed]
8. Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.;
Laxminarayan, R. Global trends in antimicrobial use in food animals. PNAS 2015, 112, 5649–5654. [CrossRef]
[PubMed]
9. Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev.
2011, 24, 718–733. [CrossRef] [PubMed]
10. Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhang, R.-Q.; Lai, H.-J.; Chen, Z.-F.; Pan, C.-G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ.
2013, 444, 183–195. [CrossRef]
11. Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario.
Environ. Int. 2016, 94, 736–757. [CrossRef]
12. Mehdi, Y.; Létourneau-Montminy, M.-P.; Gaucher, M.-L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.;
Côté, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives.
Anim. Nutr. 2018, 4, 170–178. [CrossRef]
13. Hu, X.-G.; Yi, L.; Zhou, Q.-X.; Xu, L. Determination of Thirteen Antibiotics Residues in Manure by Solid
Phase Extraction and High Performance Liquid Chromatography. Chinese J. Anal. Chem. 2008, 36, 1162–1166.
[CrossRef]
14. Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern
China. Environ. Sci. Pollut. Res. 2015, 22, 4545–4554. [CrossRef] [PubMed]
15. Alavi, N.; Babaei, A.A.; Shirmardi, M.; Naimabadi, A.; Goudarzi, G. Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran. Environ. Sci.
Pollut. Res. 2015, 22, 17948–17954. [CrossRef] [PubMed]
16. Carballo, M.; Aguayo, S.; González, M.; Esperon, F.; de la Torre, A. Environmental Assessment of
Tetracycline’s Residues Detected in Pig Slurry and Poultry Manure. J. Environ. Prot. 2016, 07, 82–92.
[CrossRef]
17. Wolters, B.; Widyasari-Mehta, A.; Kreuzig, R.; Smalla, K. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl. Microbiol.
Biotechnol. 2016, 100, 9343–9353. [CrossRef] [PubMed]
18. Anadón, A.; Gamboa, F.; Martínez, M.A.; Castellano, V.; Martínez, M.; Ares, I.; Ramos, E.; Suarez, F.H.;
Martínez-Larrañaga, M.R. Plasma disposition and tissue depletion of chlortetracycline in the food producing animals, chickens for fattening. Food Chem. Toxicol. 2012, 50, 2714–2721. [CrossRef] [PubMed]
19. Orlando, E.A.; Costa Roque, A.G.; Losekann, M.E.; Colnaghi Simionato, A.V. UPLC–MS/MS determination of florfenicol and florfenicol amine antimicrobial residues in tilapia muscle. J. Chromatogr. B 2016, 1035, 8–15.
[CrossRef]
20. Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance, and Clinical Applications;
Anderson, R.J.; Groundwater, P.W.; Todd, A.; Worsley, A. (Eds.) John Wiley & Sons: Chichester, UK,
2012; ISBN 978-0-470-97244-1.
21. Santos Dalólio, F.; da Silva, J.N.; Carneiro de Oliveira, A.C.; Ferreira Tinôco, I.d.F.; Christiam Barbosa, R.;
Resende, M.d.O.; Teixeira Albino, L.F.; Teixeira Coelho, S. Poultry litter as biomass energy: A review and future perspectives. Renew. Sust. Ener. Rev. 2017, 76, 941–949. [CrossRef]
22. Van Epps, A.; Blaney, L. Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional
Agricultural Waste Management Practices. Curr. Pollut. Rep. 2016, 2, 135–155. [CrossRef]
23. Chen, Z.; Jiang, X. Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A review.
Agriculture 2014, 4, 1–29. [CrossRef]
24. Ljubojevi´c, D.; Puvaˇca, N.; Peli´c, M.; Todorovi´c, D.; Paji´c, M.; Milanov, D.; Velhner, M. Epidemiological significance of poultry litter for spreading the antibiotic-resistant strains of Escherichia coli. Worlds. Poult.
Sci. J. 2016, 72, 485–494. [CrossRef]
25. Yang, Q.; Zhang, H.; Guo, Y.; Tian, T. Influence of Chicken Manure Fertilization on Antibiotic-Resistant
Bacteria in Soil and the Endophytic Bacteria of Pakchoi. Int. J. Environ. Res. Public Health 2016, 13, 662.
[CrossRef]
26. Van Ryssen, J.B.J. Poultry Litter as a Feedstuff for Ruminants: A South African Scene. Available online: http://docplayer.net/20928569-Poultry-litter-as-a-feedstuff-for-ruminants-a-south-african-scene.html (accessed on 15 December 2018).
27. Wilkinson, K.G.; Tee, E.; Tomkins, R.B.; Hepworth, G.; Premier, R. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult. Sci. 2011, 90, 10–18. [CrossRef] [PubMed]
28. Marble, S.C.; Sibley, J.L.; Gilliam, C.H.; Torbert, H.A. Application of composted poultry litter as a fertilizer for landscape bedding plants. HortScience 2011, 46, 1367–1372.
29. Tewolde, H.; Sistani, K.R.; Adeli, A. Fall- and Spring-Applied Poultry Litter Effectiveness as Corn Fertilizer in the Mid-Southern United States. Agron. J. 2013, 105, 1743–1748. [CrossRef]
30. Bohara, H.; Dodla, S.; Wang, J.J.; Darapuneni, M.; Kongchum, M.; Fromme, D.D.; Harrell, D. Impacts of
N-stabilizers and Biochar on Nitrogen Losses, Nitrogen Phytoavailability, and Cotton Yield in Poultry
Litter-Fertilized Soils. Agron. J. 2018, 110, 2016–2025. [CrossRef]
31. Kwon, S.; Owens, G.; Ok, Y.; Lee, D.; Jeon, W.-T.; Kim, J.; Kim, K.-R. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manage. 2011, 31, 39–44. [CrossRef]
[PubMed]
32. Massé, D.I.; Saady, N.M.C.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 2014, 4, 146–163. [CrossRef]
33. Ruuskanen, M.; Muurinen, J.; Meierjohan, A.; Pärnänen, K.; Tamminen, M.; Lyra, C.; Kronberg, L.; Virta, M.
Fertilizing with Animal Manure Disseminates Antibiotic Resistance Genes to the Farm Environment.
J. Environ. Qual. 2016, 45, 488–493. [CrossRef]
34. Xie, W.-Y.; Shen, Q.; Zhao, F.J. Antibiotics and antibiotic resistance from animal manures to soil: a review:
Antibiotics and antibiotic resistance. Eur. J. Soil. Sci. 2018, 69, 181–195. [CrossRef]
35. Sanchuki, C.E.; Soccol, C.R.; de Carvalho, J.C.; Soccol, V.T.; do Nascimento, C.; Woiciechowski, A.L.
Evaluation of poultry litter traditional composting process. Braz. Arch. Biol. Technol. 2011, 54, 1053–1058.
[CrossRef]
36. Pan, M.; Chu, L.M. Leaching behavior of veterinary antibiotics in animal manure-applied soils. Sci. Total
Environ. 2017, 579, 466–473. [CrossRef] [PubMed]
37. Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review.
Microchem. J. 2018, 136, 25–39. [CrossRef]
38. Zhang, Y.; Hu, S.; Zhang, H.; Shen, G.; Yuan, Z.; Zhang, W. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci. Total Environ.
2017, 607–608, 1348–1356. [CrossRef] [PubMed]
39. Boxall, A.B.A. Fate of veterinary medicines applied to soils. In Pharmaceuticals in the Environment; Springer:
Freiburg, Germany, 2008; pp. 165–180.
40. Martins, A.; Guimarães, L.; Guilhermino, L. Chronic toxicity of the veterinary antibiotic florfenicol to
Daphnia magna assessed at two temperatures. Environ. Toxicol. Pharmacol. 2013, 36, 1022–1032. [CrossRef]
[PubMed]
41. Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. (Oxford, UK)
2010, 158, 2992–2998. [CrossRef] [PubMed]
42. Pan, M.; Chu, L. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599,
500–512. [CrossRef]
43. Minden, V.; Deloy, A.; Volkert, A.M.; Leonhardt, S.D.; Pufal, G. Antibiotics impact plant traits, even at small concentrations. AoB Plants 2017, 9. [CrossRef]
44. Liu, F.; Ying, G.-G.; Tao, R.; Zhao, J.-L.; Yang, J.-F.; Zhao, L.-F. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. (Oxford, UK) 2009, 157, 1636–1642. [CrossRef]
45. Pan, M.; Chu, L.M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops.
Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [CrossRef]
46. Park, S.; Choi, K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems.
Ecotoxicology 2008, 17, 526–538. [CrossRef]
47. Ji, K.; Kim, S.; Han, S.; Seo, J.; Lee, S.; Park, Y.; Choi, K.; Kho, Y.-L.; Kim, P.-G.; Park, J.; et al. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe? Ecotoxicology 2012, 21, 2031–2050. [CrossRef] [PubMed]
48. Kołodziejska, M.; Maszkowska, J.; Białk-Bieli ´nska, A.; Steudte, S.; Kumirska, J.; Stepnowski, P.; Stolte, S.
Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry.
Chemosphere 2013, 92, 1253–1259. [CrossRef] [PubMed]
49. CVMP. Guideline on Approach towards Harmonisation of Withdrawal Periods; European Medicines Agency,
Committee for Veterinary Medicinal Products: London, UK, 2016; pp. 1–37.
50. European Parliament and the Council of the European Union. Directive 2010/63/EU of 22 September 2010 of the European Parliament and of the Council on the protection of animals used for scientific purposes.
Off. J. Eur. Union 2018, 276, 33–79.
51. Hormazabal, V.; Steffenak, I.; Yndestad, M. Simultaneous determination of residues of florfenicol and the metabolite florfenicol amine in fish tissues by high-performance liquid chromatography. J. Chromatogr. 1993,
616, 161–165. [CrossRef]
52. Li, J.; Ding, S.; Zhang, S.; Li, C.; Li, X.; Liu, Z.; Liu, J.; Shen, J. Residue Depletion of Florfenicol and Its
Metabolite Florfenicol Amine in Swine Tissues after Intramuscular Administration. J. Agric. Food Chem. 2006,
54, 9614–9619. [CrossRef]
53. Zhang, S.; Liu, Z.; Guo, X.; Cheng, L.; Wang, Z.; Shen, J. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2008, 875, 399–404. [CrossRef]
54. Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [CrossRef]
55. Hindle, R. A Validated Atmospheric Pressure Chemical Ionization Method for Analyzing Sulfonamides in
Pork Muscle. 2003. Available online: http://www.youngin.com/application/0411-0045EN-E.pdf (accessed on 22 December 2018).
56. Shao, B.; Dong, D.; Wu, Y.; Hu, J.; Meng, J.; Tu, X.; Xu, S. Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 546, 174–181. [CrossRef]
57. Thompson, T.S.; Noot, D.K. Determination of sulfonamides in honey by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 551, 168–176. [CrossRef]
58. European Commission. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council
Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.
Off. J. Eur. Union 2002, L 221, 0008–0036.
59. Berendsen, B.; Lahr, J.; Nibbeling, C.; Jansen, L.; Bongers, I.; Wipfler, E.; Van de Schans, M. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 2018, 204, 267–276.
60. Anadón, A.; Martínez, M.A.; Martínez, M.; Ríos, A.; Caballero, V.; Ares, I.; Martínez-Larrañaga, M.R. Plasma and Tissue Depletion of Florfenicol and Florfenicol-amine in Chickens. J. Agric. Food Chem. 2008, 56,
11049–11056. [CrossRef]
61. Mestorino, N. Antimicrobianos en avicultura. Available online: https://www.researchgate.net/ profile/Nora_Mestorino/publication/305592763_ANTIMICROBIANOS_EN_AVICULTURA/links/
57949bbf08aeb0ffcced9cb5/ANTIMICROBIANOS-EN-AVICULTURA.pdf (accessed on 15 November 2018).
62. Cornejo, J.; Pokrant, E.; Riquelme, R.; Briceño, C.; Maddaleno, A.; Araya-Jordán, C.; San Martin, B.
Single-laboratory validation of an LC-MS/MS method for determining florfenicol (FF) and florfenicol amine (FFA) residues in chicken feathers and application to a residue-depletion study. Food Addit. Contam.
Part A 2016, 34, 469–476. [CrossRef]
63. Pokrant, E.; Riquelme, R.; Maddaleno, A.; San Martín, B.; Cornejo, J. Residue Depletion of Florfenicol and
Florfenicol Amine in Broiler Chicken Claws and a Comparison of Their Concentrations in Edible Tissues
Using LC–MS/MS. Molecules 2018, 23, 2211. [CrossRef] [PubMed]
64. Abu-Basha, E.A.H.; Gehring, R.; Al-Shunnaq, A.F.; Gharaibeh, S.M. Pharmacokinetics and Bioequivalence of
Florfenicol Oral Solution Formulations (Flonicol® and Veterin®10%) in Broiler Chickens. J. Bioequiv. Availab.
2012, 4, 1–5. [CrossRef]
65. Medina Pontigo, F.J. Evaluación De La Bioacumulación De Residuos De Sulfacloropiridazina En Plumas De Pollos
Broiler En Relación A Su Concentración En Tejidos Comestibles; University of Chile: Santiago, Chile, 2017.
66. Deck, D.H.; Winston, L.G. Sulfonamides, Trimethoprim and Quinolones. In Basic & Clinical Pharmacology;
Katzung, B.G., Masters, S.B., Trevor, A.J., Eds.; A Lange medical book; McGraw-Hill Medical: New York, NY,
USA, 2012; pp. 831–838. ISBN 978-0-07-176401-8.
67. Riviere, J.E.; Lees, P.; Elliott, J.; Clarke, C.; Anadón, A.; Baggot, D.; Brown, S.; Burka, J.; Craigmill, A.;
Delatour, P.; et al. USP Veterinary Pharmaceutical Information Monographs—Antibiotics. J. Vet.
Pharmacol. Ther. 2003, 26, 1–271. [CrossRef] [PubMed]
68. Lemos, M.L. Antimicrobianos que inhiben la síntesis de proteínas. In Farmacología y terapéutica veterinaria;
Botana, L.M., Landoni, M.F., Martín Jiménez, T., Eds.; McGraw-Hill/Interamericana de España: Madrid,
Spain, 2002; pp. 468–483. ISBN 84-486-0471-7.
69. Cornejo, J.; Pokrant, E.; Araya, D.; Briceño, C.; Hidalgo, H.; Maddaleno, A.; Araya-Jordán, C.; San Martin, B.
Residue depletion of oxytetracycline (OTC) and 4-epi-oxytetracycline (4-epi-OTC) in broiler chicken’s claws by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A 2017, 34,
494–500. [CrossRef] [PubMed]
70. Cornejo, J.; Pokrant, E.; Krogh, M.; Briceño, C.; Hidalgo, H.; Maddaleno, A.; Araya-Jordán, C.; Martín, B.S.
Determination of Oxytetracycline and 4-Epi-Oxytetracycline Residues in Feathers and Edible Tissues of
Broiler Chickens Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Food Prot.
2017, 80, 619–625. [CrossRef]
71. Cornejo, J.; Yevenes, K.; Avello, C.; Pokrant, E.; Maddaleno, A.; San Martin, B.; Lapierre, L. Determination of Chlortetracycline Residues, Antimicrobial Activity and Presence of Resistance Genes in Droppings of
Experimentally Treated Broiler Chickens. Molecules 2018, 23, 1264. [CrossRef]