Agostini, R. B., Postigo, A., Rius, S. P., Rech, G. E., Campos-Bermudez, V. A., and Vargas, W. A. (2019). Long-lasting primed state in maize plants: salicylic acid and steroid signaling pathways as key players in the early activation of immune responses in silks. Mol. Plant-Microb. Interact. 32, 95–106. doi: 10.1094/MPMI07-18-0208-R
Ali, S. S., Kumar, G. B. S., Khan, M., and Doohan, F. M. (2013). Brassinosteroid enhances resistance to Fusarium diseases of barley. Phytopathology 103, 1260– 1267. doi: 10.1094/PHYTO-05-13-0111-R
Alizadeh, A. M., Rohandel, G., Roudbarmohammadi, S., Roudbary, M., Sohanaki, H., Ghiasian, S. A., et al. (2012). Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pac. J. Cancer Prev. 13, 2625–2628. doi: 10.7314/apjcp.2012.13.6. 2625
Bacon, C. W., and Hinton, D. M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Bot.Rev. 74, 1195–1202. doi: 10.1007/ 978-1-4899-1379-1_16
Baek, K. H., and Choi, D. (2008). Roles of plant proteases in pathogen defense. Plant Pathol. J. 24, 367–374. doi: 10.5423/ppj.2008.24.4.367
Bashline, L., Lei, L., Li, S. D., and Gu, Y. (2014). Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7, 586–600. doi: 10.1093/mp/ssu018
Bernardi, J., Stagnati, L., Lucini, L., Rocchetti, G., Lanubile, A., Cortellini, C., et al. (2018). Phenolic profile and susceptibility to Fusariuminfection of pigmented maize cultivars. Front. Plant Sci. 9:13. doi: 10.3389/fpls.2018.01189
Blighe, K., Rana, S., and Lewis, M. (2021). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. Available online at: https: //github.com/kevinblighe/EnhancedVolcano (Accessed October 29, 2021).
Bolduan, C., Miedaner, T., Schipprack, W., Dhillon, B. S., and Melchinger, A. E. (2009). Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Sci. 49, 2019–2028. doi: 10.2135/cropsci2008.12.0701
Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10. 1093/bioinformatics/btu170
Brauer, E. K., Rocheleau, H., Balcerzak, M., Pan, Y. L., Fauteux, F., Liu, Z. Y., et al. (2019). Transcriptional and hormonal profiling of Fusarium graminearum infected wheat reveals an association between auxin and susceptibility. Physiol. Mol. Plant Pathol. 107, 33–39. doi: 10.1016/j.pmpp.2019.04.006
Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi: 10. 1038/nbt.3519
Butron, A., Reid, L. M., Santiago, R., Cao, A., and Malvar, R. A. (2015). Inheritance of maize resistance to gibberella and fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant Pathol. 64, 1053– 1060. doi: 10.1111/ppa.12351
Butron, A., Santiago, R., Cao, A., Samayoa, L. F., and Malvar, R. A. (2019). QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis. 103, 897–904. doi: 10.1094/PDIS-09- 18-1669-RE
Butron, A., Santiago, R., Mansilla, P., Pintos-Varela, C., Ordas, A., and Ana Malvar, R. (2006). Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. J. Agricult. Food Chem. 54, 6113–6117. doi: 10.1021/jf0611163
Campos-Bermudez, V. A., Fauguel, C. M., Tronconi, M. A., Casati, P., Presello, D. A., and Andreo, C. S. (2013). Transcriptional and metabolic changes associated to the Infection by F. verticillioides in maize inbreds with contrasting ear rot resistance. PLos One 8:10. doi: 10.1371/journal.pone.0061580
Cao, A., Butron, A., Ramos, A. J., Marin, S., Souto, C., and Santiago, R. (2014). Assessing white maize resistance to fumonisin contamination. Eur. J. Plant Pathol. 138, 283–292. doi: 10.1007/s10658-013-0328-y
Cao, A., Santiago, R., Ramos, A. J., Marin, S., Reid, L. M., and Butron, A. (2013). Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int. J. Food Microbiol. 164, 15–22. doi: 10.1016/j.ijfoodmicro.2013.03.012
Chen, J., Shrestha, R., Ding, J. Q., Zheng, H. J., Mu, C. H., Wu, J. Y., et al. (2016). Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in Tropical maize germplasm. G3-Genes Genomes Genet. 6, 3803–3815. doi: 10.1534/g3.116.034561
Christensen, S. A., Nemchenko, A., Park, Y. S., Borrego, E., Huang, P. C., Schmelz, E. A., et al. (2014). The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against fusarium verticillioides in maize. Mol. Plant-Microbe Interact. 27, 1263–1276. doi: 10. 1094/MPMI-06-13-0184-R
Ciasca, B., Lanubile, A., Marocco, A., Pascale, M., Logrieco, A. F., and Lattanzio, V. M. T. (2020). Application of an integrated and open source workflow for LC-HRMS plant metabolomics studies. Case-control study: metabolic changes of maize in response toFusarium verticillioides infection. Front. Plant Sci. 11:15. doi: 10.3389/fpls.2020.00664
Coan, M. M. D., Senhorinho, H. J. C., Pinto, R. J. B., Scapim, C. A., Tessmann, D. J., Williams, W. P., et al. (2018). Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a Tropical field maize and popcorn core collection. Crop Sci. 58, 564–578. doi: 10.2135/cropsci2017.05 .0322
Corbin, C., Drouet, S., Markulin, L., Auguin, D., Laine, E., Davin, L. B., et al. (2018). A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol. Biol. 97, 73–101. doi: 10.1007/s11103-018-0725-x
Debona, D., Cruz, M. F. A., and Rodrigues, F. A. (2017). Calcium-triggered accumulation of defense-related transcripts enhances wheat resistance to leaf blast. Tropic. Plant Pathol. 42, 309–314. doi: 10.1007/s40858-017- 0144-6
Dor, E., Joel, D. M., Kapulnik, Y., Koltai, H., and Hershenhorn, J. (2011). The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234, 419–427. doi: 10.1007/s00425-011-1452-6
Du, H. W., Zhu, J. X., Su, H., Huang, M., Wang, H. W., Ding, S. C., et al. (2017). Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in maize. Front. Plant Sci. 8:13. doi: 10.3389/fpls.2017.01022
Eller, M. S., Holland, J. B., and Payne, G. A. (2008). Breeding for improved resistance to fumonisin contamination in maize. Toxin Rev. 27, 371–389. doi: 10.1080/15569540802450326
ller, M. S., Payne, G. A., and Holland, J. B. (2010). Selection for reduced Fusarium ear rot and fumonisin content in advanced backcross maize lines and their topcross hybrids. Crop Sci. 50, 2249–2260. doi: 10.2135/cropsci2009.11.0683
Fernie, A. R., Carrari, F., and Sweetlove, L. J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7, 254–261. doi: 10.1016/j.pbi.2004.03.007
Ge, S. X., Jung, D. M., and Yao, R. A. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. doi: 10.1093/bioinformatics/btz931
Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. G., Horak, R. M., Vleggaar, R., et al. (1988). Fumonisins - Novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54, 1806–1811. doi: 10.1128/aem.54.7.1806-1811.1988
Gelineau-van Waes, J., Starr, L., Maddox, J., Aleman, F., Voss, K. A., Wilberding, J., et al. (2005). Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defect. Res. Clin. Mol. Teratol. 73, 487–497. doi: 10.1002/bdra.20148
Gesteiro, N., Cao, A., Santiago, R., Malvar, R. A., and Butrón, A. (2021). Genomics of maize resistance to kernel contamination with fumonisins using a multiparental advanced generation InterCross maize population (MAGIC). BMC Plant Biol. 21:596. doi: 10.1186/s12870-021-03380-0
Golan-Goldhirsh, A., and Gopas, J. (2014). Plant derived inhibitors of NF-κB. Phytochem. Rev. 13, 107–121. doi: 10.1007/s11101-013- 9293-5
Guo, Z. F., Zou, C., Liu, X. G., Wang, S. H., Li, W. X., Jeffers, D., et al. (2020). Complex genetic system involved in fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis. 104, 1725–1735. doi: 10.1094/PDIS-07-19-1552-RE
Hao, Z. M., Geng, M. M., Hao, Y. R., Zhang, Y., Zhang, L. J., Wen, S. M., et al. (2019). Screening for differential expression of genes for resistance to Sitodiplosis mosellana in bread wheat via BSR-seq analysis. Theor. Appl. Genet. 132, 3201–3221. doi: 10.1007/s00122-019-03419-9
Holland, J. B. (2006). Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 46, 642–656. doi: 10.2135/cropsci2005.0191
Holland, J. B., Nyquist, W. E., and Cervantes-Martínez, C. T. (2003). Estimated an interpreting heritability for plant breeding: an update. Plant Breed. Rev. 22, 9–112. doi: 10.1002/9780470650202.ch2
Hou, X. G., Guo, Q., Wei, W. G., Guo, L. L., Guo, D. L., and Zhang, L. (2018). Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules 23:19. doi: 10.3390/molecules23030689
Hung, H.-Y., and Holland, J. B. (2012). Diallel analysis of resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci. 52, 2173–2181. doi: 10.2135/cropsci2012.03.0154
IARC (2002). Fumonisin B1. Sometraditional herbalmedicines, somemycotoxins, naphthalene and styrene. Lyon: International Agency for Research of Cancer.
Ju, M., Zhou, Z. J., Mu, C., Zhang, X. C., Gao, J. Y., Liang, Y. K., et al. (2017). Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Sci. Rep. 7:46446. doi: 10.1038/srep46446
Kapulnik, Y., Resnick, N., Mayzlish-Gati, E., Kaplan, Y., Wininger, S., Hershenhorn, J., et al. (2011). Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J. Exp. Bot. 62, 2915–2924. doi: 10.1093/jxb/erq464
Kazan, K., and Lyons, R. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 26, 2285–2309. doi: 10.1105/tpc.114.125419
Koskinen, P., Toronen, P., Nokso-Koivisto, J., and Holm, L. (2015). PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics 31, 1544–1552. doi: 10.1093/ bioinformatics/btu851
Lanubile, A., Bernardi, J., Battilani, P., Logrieco, A., and Marocco, A. (2012a). Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiol. Mol. Plant Pathol. 77, 52–59. doi: 10.1186/1471-2164-15-710
Lanubile, A., Bernardi, J., Marocco, A., Logrieco, A., and Paciolla, C. (2012b). Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environ. Exp. Bot. 78, 39–46.
Lanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., and Bellin, D. (2014). Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genom. 15:710.
Lanubile, A., Maschietto, V., Borrelli, V. M., Stagnati, L., Logrieco, A. F., and Marocco, A. (2017). Molecular basis of resistance to Fusarium ear rot in maize. Front. Plant Sci. 8:1774. doi: 10.3389/fpls.2017.01774
Lanubile, A., Maschietto, V., De Leonardis, S., Battilani, P., Paciolla, C., and Marocco, A. (2015). Defense responses to mycotoxin-producing fungi Fusarium proliferatum, F. subglutinans, and Aspergillus flavus in kernels of susceptible and resistant maize genotypes. Mol. Plant-Microbe Interact. 28, 546–557. doi: 10.1094/MPMI-09-14-0269-R
Lanubile, A., Pasini, L., and Marocco, A. (2010). Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J. Plant Physiol. 167, 1398–1406. doi: 10.1016/j.jplph.2010.05.015
Lee, H. J., and Park, O. K. (2019). Lipases associated with plant defense against pathogens. Plant Sci. 279, 51–58. doi: 10.1016/j.plantsci.2018.07.003
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078– 2079. doi: 10.1093/bioinformatics/btp352
Li, P. H., Mane, S. P., Sioson, A. A., Robinet, C. V., Heath, L. S., Bohnert, H. J., et al. (2006). Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungielia halophila. Plant Cell Environ. 29, 854– 868. doi: 10.1111/j.1365-3040.2005.01465.x
Li, Y. W., Wang, X. J., Zeng, Y. L., and Liu, P. (2020). Metabolic profiling reveals local and systemic responses of kiwifruit to Pseudomonas syringae pv. actinidiae. Plant Direct 4:e00297. doi: 10.1002/pld3.297
Lin, M. M., Sun, S. H., Fang, J. B., Qi, X. J., Sun, L. M., Zhong, Y. P., et al. (2021). BSR-Seq analysis provides insights into the cold stress response of Actinidia arguta F1 populations. BMC Genom. 22:13. doi: 10.1186/s12864-021-07369-9
Lionetti, V. (2015). PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Front. Plant Sci. 6:331. doi: 10.3389/fpls.2015.00331
Liu, H., Dong, S. Y., Gu, F. W., Liu, W., Yang, G. L., Huang, M., et al. (2017). NBS LRR protein Pik-H4 interacts with OsBIHD1 to balance rice blast resistance and growth by coordinating ethylene-brassinosteroid pathway. Front. Plant Sci. 8:127. doi: 10.3389/fpls.2017.00127
Liu, P. L., Huang, Y., Shi, P. H., Yu, M., Xie, J. B., and Xie, L. L. (2018). Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Sci. Rep. 8:5861. doi: 10.1038/s41598-018-24266-6
Liu, S. Z., Yeh, C. T., Tang, H. M., Nettleton, D., and Schnable, P. S. (2012). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLos One 7:8. doi: 10.1371/journal.pone.0036406
Löffler, M., Kessel, B., Ouzunova, M., and Miedaner, T. (2011). Covariation between line and testcross performance for reduced mycotoxin concentrations in European maize after silk channel inoculation of two Fusarium species. Theor. Appl. Genet. 122, 925–934. doi: 10.1007/s00122-010-1499-y
Löffler, M., Miedaner, T., Kessel, B., and Ouzunova, M. (2010). Mycotoxin accumulation and corresponding ear rot rating in three maturity groups of European maize inoculated by two Fusarium species. Euphytica 174, 153–164. doi: 10.1007/s10681-009-0080-8
Lozovaya, V. V., Waranyuwat, A., and Widholm, J. M. (1998). beta-1,3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci. 38, 1255–1260. doi: 10.1111/jipb.12286
Marasas, W. F. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environ. Health Persp. 109:2. doi: 10.1289/ehp.01109s2239
Maschietto, V., Colombi, C., Pirona, R., Pea, G., Strozzi, F., Marocco, A., et al. (2017). QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol. 17:20. doi: 10.1186/ s12870-017-0970-1
Maschietto, V., Lanubile, A., De Leonardis, S., Marocco, A., and Paciolla, C. (2016). Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. J. Plant Physiol. 200, 53–61. doi: 10.1016/j.jplph.2016.06.006
Maschietto, V., Marocco, A., Malachova, A., and Lanubile, A. (2015). Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. J. Plant Physiol. 188, 9–18. doi: 10.1016/j.jplph.2015.09.003
Michelmore, R. W., Paran, I., and Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nat. Acad. Sci. USA 88, 9828–9832. doi: 10.1073/pnas.88.21.9828
Mideros, S. X., Warburton, M. L., Jamann, T. M., Windham, G. L., Williams, W. P., and Nelson, R. J. (2014). Quantitative trait loci influencing mycotoxin contamination of maize: analysis by linkage mapping, characterization of near-isogenic lines, and meta-analysis. Crop Sci. 54, 127–142. doi: 10.2135/ cropsci2013.04.0249
Missmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill, A. H., Rothman, K. J., et al. (2006). Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Persp. 114, 237–241. doi: 10. 1289/ehp.8221
Morales, L., Zila, C. T., Mejia, D. E. M., Arbelaez, M. M., Balint-Kurti, P. J., Holland, J. B., et al. (2019). Diverse components of resistance to fusarium verticillioides infection and fumonisin contamination in four maize recombinant inbred families. Toxins 11:17. doi: 10.3390/toxins11020086
Munkvold, G. P., and Desjardins, A. E. (1997). Fumonisins in maize - Can we reduce their occurrence? Plant Dis. 81, 556–565. doi: 10.1094/PDIS.1997.81.6. 556
Padua, J. M. V., Dias, K. O. D., Pastina, M. M., de Souza, J. C., Queiroz, V. A. V., da Costa, R. V., et al. (2016). A multi-environment trials diallel analysis provides insights on the inheritance of fumonisin contamination resistance in tropical maize. Euphytica 211, 277–285. doi: 10.1007/s10681-016-1722-2
Pérez-Brito, D., Jeffers, D., González-de-León, D., Khairallah, M., Cortés-Cruz, M., Velázquez-Cardelas, G., et al. (2001). QTL Mapping of Fusarium moniliforme ear rot resistance in highland maize. Mexico. Agrociencia 35, 181–196.
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb. Persp. Biol. 2:15. doi: 10.1101/cshperspect. a001446
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:9. doi: 10.1093/nar/29.9.e45
Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515. doi: 10.1023/b:bile.0000019559.84305.47
Picot, A., Barreau, C., Pinson-Gadais, L., Caron, D., Lannou, C., and RichardForget, F. (2010). Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit. Rev. Microbiol. 36, 221–231. doi: 10. 3109/10408411003720209
Pimentel, H., Bray, N. L., Puente, S., Melsted, P., and Pachter, L. (2017). Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690. doi: 10.1038/nmeth.4324
Presello, D. A., Pereyra, A. O., Iglesias, J., Fauguel, C. M., Sampietro, D. A., and Eyherabide, G. H. (2011). Responses to selection of S-5 inbreds for broad-based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize. Euphytica 178, 23–29. doi: 10.1007/s10681-010-0255-3
Qin, X. E., Zhang, W. L., Dong, X., Tian, S. K., Zhang, P. P., Zhao, Y. X., et al. (2020). Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq. Peerj 8:22. doi: 10.7717/peerj.10015
Reid, L. M., Hamilton, R. E., and Mather, D. E. (1996). Screening maize for resistance to Gibberella ear rot. Ottawa, ON: Agriculture and Agri-Food Canada.
Reid, L. M., and Zhu, X. (2005). Screening corn for resistance to common diseases in Canada. Ottawa, ON: Agriculture and Agri-Food Canada.
Rheeder, J. P., Marasas, W. F. O., and Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 68, 2101–2105. doi: 10.1128/aem.68.5.2101-2105.2002
Robertson, L. A., Kleinschmidt, C. E., White, D. G., Payne, G. A., Maragos, C. M., and Holland, J. B. (2006). Heritabilities and correlations of fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci. 46, 353–361.
Robertson-Hoyt, L. A., Jines, M. P., Balint-Kurti, P. J., Kleinschmidt, C. E., White, D. G., Payne, G. A., et al. (2006). QTL mapping for fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci. 46, 1734–1743. doi: 10.2135/cropsci2005.12-0450
Rodríguez Estrada, A. E., Jonkers, W., Kistler, H. C., and May, G. (2012). Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet. Biol. 49, 578–587. doi: 10.1016/j.fgb.2012.05.001
Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols. Totowa, NJ: Humana Press, 365–386.
Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., et al. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37:e45. doi: 10.1093/nar/gkp045
Samayoa, L. F., Butron, A., and Malvar, R. A. (2014). QTL mapping for maize resistance and yield under infestation with Sesamia nonagrioides. Mol. Breed. 34, 1331–1344. doi: 10.1007/s11032-014-0119-y
Samayoa, L. F., Cao, A., Santiago, R., Malvar, R. A., and Butron, A. (2019). Genomewide association analysis for fumonisin content in maize kernels. BMC Plant Biol. 19:166. doi: 10.1186/s12870-019-1759-1
Santiago, R., Cao, A., and Butron, A. (2015). Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins 7, 3267–3296. doi: 10.3390/toxins7083267
Santiago, R., Cao, A., Malvar, R. A., and Butron, A. (2020). Genomics of maize resistance to fusarium ear rot and fumonisin contamination. Toxins 12:431. doi: 10.3390/toxins12070431
Santiago, R., Cao, A., Malvar, R. A., Reid, L. M., and Butron, A. (2013). Assessment of corn resistance to fumonisin accumulation in a broad collection of inbred lines. Field Crops Res. 149, 193–202. doi: 10.1016/j.fcr.2013.04.011
SAS Institute Inc (2011). SAS 9.3 Guide to software updates. Cary, NC: SAS Institute Inc.
Shimada, T. L., Takano, Y., Shimada, T., Fujiwara, M., Fukao, Y., Mori, M., et al. (2014). Leaf oil body functions as a subcellular factory for the production of a phytoalexin in arabidopsis. Plant Physiol. 164, 105–118. doi: 10.1104/pp.113. 230185
Sun, G., Wang, S., Hu, X., Su, J., Huang, T., Yu, J., et al. (2007). Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit. Contam. 24, 181–185. doi: 10.1080/ 02652030601013471
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131
Tuomi, J. M., Voorbraak, F., Jones, D. L., and Ruijter, J. M. (2010). Bias in the C-q value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50, 313–322. doi: 10.1016/j. ymeth.2010.02.003
Utz, H. F. (2012). PlabMQTL - Software for meta-QTL analysis with composite interval mapping. Version 0.9. Institute of Plant Breeding, Seed Science, and Population Genetics. Stuttgart: University of Hohenheim.
Utz, H. F., Melchinger, A. E., and Schön, C. C. (2000). Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154, 1839–1849. doi: 10.1093/ genetics/154.4.1839
Vaid, N., Macovei, A., and Tuteja, N. (2013). Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol. Plant 6, 1405–1418. doi: 10.1093/mp/sst033
Venturini, G., Babazadeh, L., Casati, P., Pilu, R., Salomoni, D., and Toffolatti, S. L. (2016). Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. Int. J. Food Microbiol. 227, 56–62. doi: 10.1016/j.ijfoodmicro. 2016.03.022
Voss, K. A., Smith, G. W., and Haschek, W. M. (2007). Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137, 299–325. doi: 10.1016/j.anifeedsci.2007.06.007
Wang, Y. P., Zhou, Z. J., Gao, J. Y., Wu, Y. B., Xia, Z. L., Zhang, H. Y., et al. (2016). The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Front. Plant Sci. 7:1654. doi: 10.3389/ fpls.2016.01654
Wisser, R. J., Balint-Kurti, P. J., and Nelson, R. J. (2006). The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96, 120–129. doi: 10.1094/PHYTO-96-0120
Wu, Y. B., Zhou, Z. J., Dong, C. P., Chen, J. F., Ding, J. Q., Zhang, X. C., et al. (2020). Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics 21:11. doi: 10.1186/s12864-020-6733-7
Xi, B., Gu, H., Baniasadi, H., and Raftery, D. (2014). Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol. Biol. 1198, 333–353. doi: 10.1007/978-1-4939-1258-2_22
Yao, L. S., Li, Y. M., Ma, C. Y., Tong, L. X., Du, F. L., and Xu, M. L. (2020). Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance toFusariumear rot in maize. J. Integ. Plant Biol. 62, 1535–1551. doi: 10.1111/jipb.12911
Yuan, G. S., Zhang, Z. M., Xiang, K., Shen, Y. O., Du, J., Lin, H. J., et al. (2013). Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Mol. Biol. Rep. 31, 925–935. doi: 10.1007/s11105-013-0567-2
Yuan, G. S., Zhang, Z. M., Xiang, K., Zhao, M. J., Shen, Y. O., and Pan, G. T. (2012). Large-scale identification of differentially expressed genes in maize inbreds susceptible and resistant to Fusarium ear rot. Plant Omics 5, 471–475.
Zhou, S. Q., Zhang, Y. K., Kremling, K. A., Ding, Y. Z., Bennett, J. S., Bae, J. S., et al. (2019). Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. New Phytol. 221, 2096–2111. doi: 10.1111/nph. 15520
Zhou, Z. J., Cao, Y., Li, T., Wang, X. H., Chen, J. F., He, H., et al. (2020). MicroRNAs are involved in maize immunity against fusarium verticillioides ear rot. Genomics Proteom. Bioinform. 18, 241–255. doi: 10.1016/j.gpb.2019.11.006
Zila, C. T., Ogut, F., Romay, M. C., Gardner, C. A., Buckler, E. S., and Holland, J. B. (2014). Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biol. 14:372. doi: 10.1186/ s12870-014-0372-6