Explore

Advertise on Engormix

Bacillus species’ contributions to the management of mycotoxigenic Fusarium species in cereals

Published: June 24, 2025
By: Juan Manuel Palazzini / Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones, Científcas y Técnicas (CONICET), Universidad Nacional de Rio Cuarto (UNRC), Ruta Nacional 36 Km. 601, X5804BYA Río Cuarto, Córdoba, Argentina.
Cereals are an international commodity grown in almost all cultivable regions of the world. The three most important cereals that are destined for human and animal consumption are maize (Zea mays), wheat (Triticum spp.) and rice (Oryza sativa). These crops can be affected by biotic and abiotic factors in all phenological stages, affecting quality and final yield. The Fusarium graminearum species complex is the main causal agent of ear blights, root rots and crown rots, affecting yield, grain quality and safety, mainly due to the accumulation of certain mycotoxins from the trichothecenes group. Other Fusarium species such as F. proliferatum and F. verticillioides have the ability to produce fumonisins, which can cause severe mycotoxicosis in animals. Prevention of these phytopathogens is partially achieved via the use of a variety of management practices including the application of chemical fungicides, resistant varieties, crop rotation with non-host cultivars or tillage. The use of microorganisms for the control of phytopathogens is an emerging strategy that can be used as part of an integrated pest management. Bacillus species are important biocontrol agents, since they can adapt to extreme environmental conditions (temperature, salinity, water stress) and have the ability to produce secondary metabolites with a wide range of antifungal and antibacterial activity. In this review, the main characteristics of Bacillus species aiming to control phytopathogens through direct or indirect mechanisms are analyzed.
  
Abstract published in the European Journal of Pathology. https://doi.org/10.1007/s10658-023-02736-6.

Abaya, A., Serajazari, M., & Hsiang, T. (2021). Control of Fusarium head blight using the endophytic fungus, Sim plicillium lamellicola, and its effect on the growth of Triti cum aestivum. Biological Control, 160. Scopus. https:// doi.org/10.1016/j.biocontrol.2021.104684

Adeniji, A. A., Aremu, O. S., & Babalola, O. O. (2019). Select ing lipopeptide-producing, Fusarium-suppressing Bacil lus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. MicrobiologyOpen, 8(6). Scopus. https://doi.org/10.1002/mbo3.742

Alenezi, F. N., Slama, H. B., Bouket, A. C., Cherif-Silini, H., Silini, A., Luptakova, L., Nowakowska, J. A., Oszako, T., & Belbahri, L. (2021). Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. Forests, 12(12). https:// doi.org/10.3390/f12121714

Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., De Vleesschauwer, D., Haesaert, G., & Smagghe, G. (2015). Priming of wheat with the green leaf volatile Z-3-Hexenyl acetate enhances defense against Fusarium graminearum but boosts deox ynivalenol production. Plant Physiology, 167(4), 1671 1684. https://doi.org/10.1104/pp.15.00107

Andrić, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Com munities. Frontiers in Microbiology, 11. https://doi.org/ 10.3389/fmicb.2020.01350

Asaturova, A. M., Zhevnova, N. A., Tomashevich, N. S., Sidor ova, T. M., Homyak, A. I., Dubyaga, V. M., Nadykta, V. D., Zharikov, A. P., Kostyukevich, Y. I., & Tupertsev, B. S. (2022). Evaluation of Bacillus velezensis Biocon trol Potential against Fusarium Fungi on Winter Wheat. Agronomy, 12(8). https://doi.org/10.3390/agronomy12 081956

Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berend sen, R. L., & Pieterse, C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. Plant Pathol ogy Journal, 29(2), 136–143. https://doi.org/10.5423/PPJ. SI.07.2012.0111

Barbosa, J., Caetano, T., & Mendo, S. (2015). Class I and Class II Lanthipeptides Produced by Bacillus spp. Journal of Natural Products, 78(11), 2850–2866. https://doi.org/10. 1021/np500424y

Bencheikh, A., Hicham, M., Meriem, D. B., Asma, G., Khal ida, B., & Rouag, N. (2022). Efficiency of durum wheat seeds biopriming by rhizobacteria in the biocontrol of Fusarium culmorum and Fusarium chlamydosporum infecting durum wheat in Algeria. Archives of Phytopa thology and Plant Protection, 55(6), 653–675. https://doi. org/10.1080/03235408.2021.2025006

Byrne, M. B., Thapa, G., Doohan, F. M., & Burke, J. I. (2022). Lactic acid bacteria as potential biocontrol agents for Fusarium head blight disease of Spring Barley. Frontiers in Microbiology, 13. Scopus. https://doi.org/10.3389/ fmicb.2022.912632

Cantoro, R., Palazzini, J. M., Yerkovich, N., Miralles, D. J., & Chulze, S. N. (2021). Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes. BioControl, 66(2), 259–270. https://doi.org/10.1007/ s10526-020-10062-7

Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microbial Biotechnology, 8(2), 281 295. https://doi.org/10.1111/1751-7915.12238

Cendoya, E., Monge, M. del P., Chiacchiera, S. M., Farnochi, M. C., & Ramirez, M. L. (2018). Influence of water activ ity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. International Journal of Food Microbiology, 266, 158–166. https://doi.org/10.1016/j.ijfoodmicro.2017.12. 001

Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., & Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Functional Genome Research on Bacteria Relevant for Agriculture, Environment and Biotechnology, 140(1), 27–37. https:// doi.org/10.1016/j.jbiotec.2008.10.011

Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehen sive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLOS ONE, 13(6), e0198560. https://doi.org/10.1371/journal. pone.0198560

Chiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L., & Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina De Microbiología, 52(4), 339–347. https://doi. org/10.1016/j.ram.2020.06.002

Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefa ciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions®, 28(9), 984–995. https://doi.org/10.1094/ MPMI-03-15-0066-R

Collins, D. P., Jacobsen, B. J., & Maxwell, B. (2003). Spatial and temporal population dynamics of a phyllosphere colo nizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biological Control, 26(3), 224 232. https://doi.org/10.1016/S1049-9644(02)00146-9

Dunlap, C. A. (2019). Taxonomy of registered Bacillus spp. Strains used as plant pathogen antagonists. Biological Control, 134, 82–86. https://doi.org/10.1016/j.biocontrol. 2019.04.011

Dunlap, C. A., & Bowman, M. J. (2014). The use of genom ics and chemistry to screen for secondary metabolites in Bacillus spp. biocontrol organisms (C. A. Dunlap, Trans.). Biopesticides: State of the Art and Future Opportunities, 95–112. PubAg. https://doi.org/10.1021/bk-2014-1172. ch008

Dunlap, C. A., Bowman, M. J., & Schisler, D. A. (2013). Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antago nist of Fusarium head blight. Biological Control, 64(2), 166–175. https://doi.org/10.1016/j.biocontrol.2012.11.002

Dunlap, C. A., Kim, S.-J., Kwon, S.-W., & Rooney, A. P. (2015). Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. Plantarum is a later heterotypic synonym of Bacillus methylotrophicus. In International Journal of Systematic and Evolutionary Microbiology, (Vol. 65, Issue Pt_7, pp. 2104–2109). Microbiology Society.

Dutilloy, E., Oni, F. E., Esmaeel, Q., Clément, C., & Barka, E. A. (2022). Plant beneficial bacteria as bioprotectants against Wheat and Barley diseases. Journal of Fungi, 8(6). https://doi.org/10.3390/jof8060632

Edwards, S. G., & Godley, N. P. (2010). Reduction of Fusar ium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole. Food Additives & Contaminants: Part A, 27(5), 629–635. https://doi.org/ 10.1080/19440040903515942

Emam, A. M., & Dunlap, C. A. (2020). Genomic and pheno typic characterization of Bacillus velezensis AMB-y1; A potential probiotic to control pathogens in aquaculture.

Antonie Van Leeuwenhoek, 113(12), 2041–2052. https:// doi.org/10.1007/s10482-020-01476-5

Erazo, J. G., Palacios, S. A., Pastor, N., Giordano, F. D., Rov era, M., Reynoso, M. M., Venisse, J. S., & Torres, A. M. (2021). Biocontrol mechanisms of Trichoderma harzi anum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biological Control, 164. Sco pus. https://doi.org/10.1016/j.biocontrol.2021.104774

European Commission (2006). COMMISSION RECOMMEN DATION of 17 August 2006 on the Presence of Deox ynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (2006/576/EC).  Official Journal of the European Union, (vol. 49, pp. 7–9). Available at. https://eur-lex.europa.eu/ LexUr iServ/ LexUr iServ. do? uri= OJ:L: 2006: 229: 0007: 0009:EN:PDF

Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium tox ins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5). https://doi.org/10.3390/molecules21050627

Food and Agriculture Organization of the United Nations. FAO (2023). https://www.fao.org/worldfoodsituation/csdb/es/

Food and Drug Administration (FDA) (2010). Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consump tion and Grains and Grain By-Products Used for Animal Feed. US FDA Silver Spring, MD, USA. Available at. https:// www. fda. gov/ regul atory- infor mation/ search- fda- guida nce- docum ents/ guida nce- indus try- and- fda- advis ory- levels-deoxynivalenol-don-finished-wheat-products-human

Gabriele, N.-W., Daniela, O., Anne, R., Jens, B., Bettina, K., Tamara, H., & Erhard, B. (2012). Genetic control of osmoadaptive glycine betaine synthesis in Bacillus sub tilis through the choline-sensing and glycine betaine responsive GbsR repressor. Journal of Bacteriology, 194(10), 2703–2714. https://doi.org/10.1128/JB.06642-11

Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Iden tification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Con trol, 105, 27–39. https://doi.org/10.1016/j.biocontrol. 2016.11.007

Gao, C., Gong, Z., Ji, X., Dang, M., He, Q., Sun, H., & Guo, W. (2022). Estimation of Fusarium head blight severity based on transfer learning. Agronomy, 12(8). https://doi. org/10.3390/agronomy12081876

Gimeno, A., Kägi, A., Drakopoulos, D., Bänziger, I., Lehmann, E., Forrer, H.-R., Keller, B., & Vogelgsang, S. (2020). From laboratory to the field: Biological control of Fusar ium graminearum on infected maize crop residues. Jour nal of Applied Microbiology, 129(3), 680–694. https://doi. org/10.1111/jam.14634

Gómez Expósito, R., de Bruijn, I., Postma, J., & Raaijmakers, J. M. (2017). Current Insights into the Role of Rhizos phere Bacteria in Disease Suppressive Soils. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017. 02529

Gomez Pallarés, M., Edel León, A., & Rosell, C. M. (2007). De tales harinas, tales panes: Granos, harinas y produc tos de panificación en Iberoamerica (Ed: Alberto Edel León; Cristina M. Rosell). Hugo Baez.

Gonçalves, A., Gkrillas, A., Dorne, J. L., Dall’Asta, C., Palumbo, R., Lima, N., Battilani, P., Venâncio, A., & Giorni, P. (2019). Pre- and Postharvest Strategies to Mini mize Mycotoxin Contamination in the Rice Food Chain. Comprehensive Reviews in Food Science and Food Safety, 18(2), 441–454. https://doi.org/10.1111/1541-4337.12420

Gond, S. K., Bergen, M. S., Torres, M. S., & White, J. F., Jr. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research, 172, 79–87. https://doi. org/10.1016/j.micres.2014.11.004

Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugo lini, L., Torres, R., & Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 64, 219–225. https://doi.org/ 10.1016/j.fm.2017.01.006

Hadj Brahim, A., Ben Ali, M., Daoud, L., Jlidi, M., Akremi, I., Hmani, H., Feto, N. A., & Ben Ali, M. (2022). Bioprim ing of Durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight and salinity. Microorganisms, 10(5). https://doi.org/10.3390/ microorganisms10050970

Harirchi, S., Sar, T., Ramezani, M., Aliyu, H., Etemadifar, Z., Nojoumi, S. A., Yazdian, F., Awasthi, M. K., & Taherza deh, M. J. (2022). Bacillales: From taxonomy to biotech nological and industrial perspectives. Microorganisms, 10(12). https://doi.org/10.3390/microorganisms10122355

He, W.-J., Yuan, Q.-S., Zhang, Y.-B., Guo, M.-W., Gong, A.-D., Zhang, J.-B., Wu, A.-B., Huang, T., Qu, B., Li, H.-P., & Liao, Y.-C. (2016). Aerobic De-epoxydation of trichothecene mycotoxins by a soil bacterial consor tium isolated using in situ soil enrichment. Toxins, 8(10). https://doi.org/10.3390/toxins8100277

Hori, K., & Matsumoto, S. (2010). Bacterial adhesion: From mechanism to control. Invited Review Issue 2010, 48(3), 424–434. https://doi.org/10.1016/j.bej.2009.11.014

Hu, C., Chen, P., Zhou, X., Li, Y., Ma, K., Li, S., Liu, H., & Li, L. (2022). Arms race between the host and pathogen asso ciated with Fusarium head blight of wheat. Cells, 11(15). Scopus. https://doi.org/10.3390/cells11152275

Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Production, Pro cessing and Nutrition, 1(1), 6. https://doi.org/10.1186/ s43014-019-0007-2

Kim, Y., Kang, I. J., Shin, D. B., Roh, J. H., Heu, S., & Shim, H. K. (2018). Timing of Fusarium head blight infection in rice by heading stage. Mycobiology, 46(3), 283–286. https://doi.org/10.1080/12298093.2018.1496637

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00845

Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F., & Lee, Y.-W. (2009). Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Applied and Environmental Microbiology, 75(10), 3289–3295. https:// doi.org/10.1128/AEM.02287-08

Lee, T., Lee, S.-H., Lee, S.-H., Shin, J. Y., Yun, J.-C., Lee, Y.-W., & Ryu, J.-G. (2011). Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. Journal of Food Protection, 74(7), 1169–1174. https:// doi.org/10.4315/0362-028X.JFP-10-564

Legein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muy shondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11. https://doi. org/10.3389/fmicb.2020.01619

Leplat, J., Friberg, H., Abid, M., & Steinberg, C. (2013). Survival of Fusarium graminearum, the causal agent of Fusarium head blight A review. Agronomy for Sustain able Development, 33(1), 97–111. https://doi.org/10. 1007/s13593-012-0098-5

Liang, N., Charron, J.-B., & Jabaji, S. (2023). Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis E68 against Fusarium gramine arum DAOMC 180378, the causal agent of Fusarium head blight. PLOS ONE, 18(1), e0277983. https://doi. org/10.1371/journal.pone.0277983

Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant-Microbe Interactions®, 25(3), 431–439. https:// doi.org/10.1094/MPMI-09-11-0232

Maksimov, I. V., Singh, B. P., Cherepanova, E. A., Burkh anova, G. F., & Khairullin, R. M. (2020). Prospects and applications of lipopeptide-producing bacteria for plant protection (review). Applied Biochemistry and Micro biology, 56(1), 15–28. https://doi.org/10.1134/S0003 683820010135

McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of Wheat and Barley: Fusarium head blight. Plant Disease, 96(12), 1712 1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

Minchev, Z., Kostenko, O., Soler, R., & Pozo, M. J. (2021). Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756368

Mourelos, C. A., Malbrán, I., Balatti, P. A., Ghiringhelli, P. D., & Lori, G. A. (2014). Gramineous and non-grami neous weed species as alternative hosts of Fusarium graminearum, causal agent of Fusarium head blight of wheat, in Argentina. Crop Protection, 65, 100–104. https://doi.org/10.1016/j.cropro.2014.07.013

Mulani, R., Mehta, K., Saraf, M., & Goswami, D. (2021). Decoding the mojo of plant-growth-promoting micro biomes. Physiological and Molecular Plant Pathol ogy, 115, 101687. https://doi.org/10.1016/j.pmpp.2021. 101687

Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134, 23–31. https://doi.org/10.1016/j.biocontrol.2019.03. 017

Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 33(3), 167–182. https://doi.org/10.1007/s12550-017-0277-y

Palazzini, J. M., Ramirez, M. L., Alberione, E. J., Torres, A. M., & Chulze, S. N. (2009). Osmotic stress adaptation, compatible solutes accumulation and biocontrol efficacy of two potential biocontrol agents on Fusarium head blight in wheat. Biological Control, 51(3), 370–376. https://doi.org/10.1016/j.biocontrol.2009.07.008

Palazzini, J. M., Groenenboom-de Haas, B. H., Torres, A. M., Köhl, J., & Chulze, S. N. (2013). Biocontrol and popu lation dynamics of Fusarium spp. On wheat stubble in Argentina. Plant Pathology, 62(4), 859–866. https://doi. org/10.1111/j.1365-3059.2012.02686.x

Pan, H.-Q., Li, Q.-L., & Hu, J.-C. (2017). The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology, 247, 25–28. https://doi.org/10.1016/j.jbiotec.2017.02.022

Patel, R., Mehta, K., Prajapati, J., Shukla, A., Parmar, P., Gos wami, D., & Saraf, M. (2022). An anecdote of mechan ics for Fusarium biocontrol by plant growth promoting microbes. Biological Control, 174, 105012. https://doi. org/10.1016/j.biocontrol.2022.105012

Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84(9), 663–679. https://doi.org/10.1007/ s00204-010-0579-8

Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

Quiza, L., St-Arnaud, M., & Yergeau, E. (2015). Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science, 6. https://doi.org/ 10.3389/fpls.2015.00507

Rabbee, M. F., Ali, Md. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). 4061046

Rana, K. L., Kour, D., Kaur, T., Devi, R., Yadav, A. N., Yadav, N., Dhaliwal, H. S., & Saxena, A. K. (2020). Endophytic microbes: Biodiversity, plant growth-promoting mecha nisms and potential applications for agricultural sustain ability. Antonie Van Leeuwenhoek, 113(8), 1075–1107. https://doi.org/10.1007/s10482-020-01429-y

Reyna, M., Pia Macor, E., Carolina Vilchez, A., & Laura Vil lasuso, A. (2023). Response in barley roots during inter action with Bacillus subtilis and Fusarium graminearum. Biological Control, 179. Scopus. https://doi.org/10.1016/j. biocontrol.2022.105128

Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment, 31(3), 446–459. https://doi. org/10.1080/13102818.2017.1286950

Spolti, P., Jorge, B. C. de, & Del Ponte, E. M. (2012). Sensi tivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungi cides. Tropical Plant Pathology, 37.

Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J., & O’Donnell, K. (2007). Global molecular surveillance reveals novel Fusarium head blight species and tri chothecene toxin diversity. Fungal Genetics and Biol ogy : FG & B, 44(11), 1191–1204. https://doi.org/10. 1016/j.fgb.2007.03.001

Subba, R., & Mathur, P. (2022). Functional attributes of micro bial and plant based biofungicides for the defense priming of crop plants. Theoretical and Experimental Plant Physi ology, 34(3), 301–333. Scopus. https://doi.org/10.1007/ s40626-022-00249-x

Tang, H. W., Phapugrangkul, P., Fauzi, H. M., & Tan, J. S. (2021). Lactic acid bacteria bacteriocin, an antimicrobial peptide effective against multidrug resistance: A compre hensive review. International Journal of Peptide Research and Therapeutics, 28(1), 14. https://doi.org/10.1007/ s10989-021-10317-6

Tian, Y., Zhang, D., Cai, P., Lin, H., Ying, H., Hu, Q.-N., & Wu, A. (2022). Elimination of Fusarium mycotoxin deox ynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends in Food Sci ence and Technology, 124, 96–107. Scopus. https://doi. org/10.1016/j.tifs.2022.04.002

Torres, A. M., Palacios, S. A., Yerkovich, N., Palazzini, J. M., Battilani, P., Leslie, J. F., Logrieco, A. F., & Chulze, S. N. (2019). Fusarium head blight and mycotoxins in wheat: Prevention and control strategies across the food chain. World Mycotoxin Journal, 12(4), 333–355. https://doi.org/ 10.3920/WMJ2019.2438

U.S. Environmental Protection Agency (2023). https://www. epa.gov/newsreleases/search/year/2023

Wachowska, U., Kucharska, K., Pluskota, W., Czaplicki, S., & Stuper-Szablewska, K. (2020). Bacteria associated with winter wheat degrade fusarium mycotoxins and triazole fungicide residues. Agronomy, 10(11). Scopus. https://doi. org/10.3390/agronomy10111673

Wang, C., Cao, Y., Wang, Y., Sun, L., & Song, H. (2019). Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microbial Cell Factories, 18(1), 90. https://doi.org/10.1186/s12934-019-1139-4

Wang, S., Sun, L., Zhang, W., Chi, F., Hao, X., Bian, J., & Li, Y. (2020). Bacillus velezensis BM21, a potential and effi cient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal of Bio logical Pest Control, 30(1), 9. https://doi.org/10.1186/ s41938-020-0209-6

Wegulo, S. N., Bockus, W. W., Nopsa, J. H., De Wolf, E. D., Eskridge, K. M., Peiris, K. H. S., & Dowell, F. E. (2011). Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Disease, 95(5), 554–560. https:// doi.org/10.1094/PDIS-07-10-0495

Wei, F., Hu, X., & Xu, X. (2016). Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Scientific Reports, 6(1), 22611. https://doi.org/10.1038/srep22611

Wood, J. M., Bremer, E., Csonka, L. N., Kraemer, R., Poolman, B., van der Heide, T., & Smith, L. T. (2001). Osmosens ing and osmoregulatory compatible solute accumulation by bacteria. Comparative Biochemistry and Physiology Part a: Molecular & Integrative Physiology, 130(3), 437 460. https://doi.org/10.1016/S1095-6433(01)00442-1

Xu, W., Zhang, L., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Liang, J., Sun, R., Wu, C., & Yang, L. (2020a). Iso lation, Identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential bio control agent against Fusarium graminearum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020. 598285

Xu, W., Zhang, L., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Liang, J., Sun, R., Wu, C., & Yang, L. (2020b). Iso lation, Identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential bio control agent against Fusarium graminearum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020. 598285

Xue, A. G., Chen, Y., Voldeng, H. D., Fedak, G., Savard, M. E., Längle, T., Zhang, J., & Harman, G. E. (2014). Con centration and cultivar effects on efficacy of CLO-1 bio fungicide in controlling Fusarium head blight of wheat. Biological Control, 73, 2–7. https://doi.org/10.1016/j. biocontrol.2014.02.010

Yerkovich, N., Cantoro, R., Palazzini, J. M., Torres, A., & Chulze, S. N. (2020). Fusarium head blight in Argentina: Pathogen aggressiveness, triazole tolerance and biocon trol-cultivar combined strategy to reduce disease and deoxynivalenol in wheat. Crop Protection, 137, 105300. https://doi.org/10.1016/j.cropro.2020.105300

Zeriouh, H., de Vicente, A., Pérez-García, A., & Romero, D. (2014). Surfactin triggers biofilm formation of Vol:. (1234567890) Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology, 16(7), 2196–2211. https://doi.org/10.1111/1462-2920. 12271

Zhao, J., Zhou, Z., Bai, X., Zhang, D., Zhang, L., Wang, J., Wu, B., Zhu, J., & Yang, Z. (2022). A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022. 943232

Zhou, D., Wang, X., Chen, G., Sun, S., Yang, Y., Zhu, Z., & Duan, C. (2018). The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chong qing, China. Toxins, 10(2). https://doi.org/10.3390/toxin s10020090

Zihalirwa Kulimushi, P., Argüelles Arias, A., Franzil, L., Steels, S., & Ongena, M. (2017). Stimulation of Fengycin type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Frontiers in Microbiology, 8. https://doi.org/10. 3389/fmicb.2017.00850

Related topics:
Recommend
Comment
Share
Home
Recommend
Comment
Share
Profile picture
Would you like to discuss another topic? Create a new post to engage with experts in the community.
Featured users in Mycotoxins
Don Giesting
Don Giesting
Cargill
Biz Dev Mgr/Cargill
United States
Bart Dunsford
Bart Dunsford
dsm-Firmenich
United States
Enrique Angulo Cedeño
Enrique Angulo Cedeño
MSD - Merck Animal Health
United States
Maria Arreaza
Maria Arreaza
Alltech
Strategic Initiatives,Client Relations, Business Development
United States
gary reznik
gary reznik
Devenish Nutrition
Director, New Product Discovery and Development
United States