Author details:
Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.
1. Kumar SN, Sreekala SR, Chandrasekaran D, Nambisan B, Anto RJ. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode. PLOS one. 2014; 9: e106041. https://doi.org/10.1371/journal.pone.0106041 PMID: 25157831
2. Jamali M, Ebrahimi M-A, Karimipour M, Shams-Ghahfarokhi M, Dinparast-Djadid N, et al. An insight into the distribution, genetic diversity, and mycotoxin production of Aspergillus section Flavi in soils of pistachio orchards. Folia microbiologica. 2012; 57: 27–36. https://doi.org/10.1007/s12223-011-0090-5 PMID: 22167340
3. Hedayati M, Pasqualotto A, Warn P, Bowyer P, Denning D. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007; 153: 1677–1692. https://doi.org/10.1099/mic.0.2007/ 007641-0 PMID: 17526826
4. Tian J, Zeng X, Zeng H, Feng Z, Miao X, et al. Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. The Scientific World Journal. 2013; 2013. https://doi.org/10. 1155/2013/230795 PMID: 24453813
5. Quiles JM, Torrijos R, Luciano FB, Mañes J, Meca G. Aflatoxins and A. flavus reduction in loaf bread through the use of natural ingredients. Molecules. 2018; 23: 1638. https://doi.org/10.3390/ molecules23071638 PMID: 29973577
6. Massomo SM. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. Scientific African. 2020; 10: e00606. https://doi.org/10.1016/j.sciaf.2020.e00606
7. Klich MA. Aspergillus flavus: the major producer of aflatoxin. Molecular plant pathology. 2007; 8: 713– 722. https://doi.org/10.1111/j.1364-3703.2007.00436.x PMID: 20507532
8. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A, Kazeroon-Shiri A, Ranjbar-Bahadori S, et al. A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia. 2006; 161: 183–192. https://doi.org/10.1007/s11046-005-0242-8 PMID: 16482391
9. Kamran M, Ahmad S, Ahmad I, Hussain I, Meng X, Zhang X, et al. Paclobutrazol application favors yield improvement of maize under semiarid regions by delaying leaf senescence and regulating photosynthetic capacity and antioxidant system during grain-filling Stage. Agronomy. 2020; 10(2): 187. https://doi.org/10.3390/agronomy10020187
10. Seyi-Amole DO, Onilude AA. Microbiological Control: A New Age of Maize Production. 2021.
11. Erenstein O, Chamberlin J, Sonder K. Estimating the global number and distribution of maize and wheat farms. Glob Food Sec. 2021; 30: 100558. https://doi.org/10.1016/j.gfs.2021.100558
12. Akwaji P, Umana E, Okon E. Phytochemical and Antifungal Activity of Leaf Extracts of Corchorus olitorius and Gongronema latifolium on Fungi Associated with Post-Harvest Deterioration of Maize (Zea mays) Seeds in Oban Community, Nigeria. World Sci News. 2016; 53(3): 157–77.
13. Suleiman R, Rosentrater K, Bern C. Effects of deterioration parameters on storage of maize: A review. J Nat Sci Res. 2013; 3(9): 147–65. https://doi.org/10.13031/aim.20131593351
14. Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, et al. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci. 2017; 18(2): 377. https://doi.org/ 10.3390/ijms18020377 PMID: 28208645
15. Waterhouse AL, Laurie VF. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am J Enol Vitic. 2006; 57(3): 306–13.
16. Cantwell M, Elliott C. Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. Journal of Clinical Nutrition & Dietetics. 2017; 3(4): 27–30. https://doi.org/10.4172/2472-1921. 100061
17. Anand S, Sati N. Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. Int J Pharm Sci Res. 2013; 4(7): 2496. https://doi.org/10.13040/IJPSR.0975-8232.4(7).2496–01
18. Dolatabadi JEN, Kashanian S. A review on DNA interaction with synthetic phenolic food additives. Food Res Int. 2010; 43(5): 1223–30. https://doi.org/10.1016/j.foodres.2010.03.026
19. Oliveira PM, Zannini E, Arendt EK. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiol. 2014; 37: 78–95. https://doi. org/10.1016/j.fm.2013.06.003 PMID: 24230476
20. Arena MP, Capozzi V, Russo P, Drider D, Spano G, Fiocco D. Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl Microbiol Biotechnol. 2018; 102(23): 9949–58. https://doi.org/10.1007/s00253-018-9403-9 PMID: 30280241
21. Muhialdin BJ, Algboory HL, Kadum H, Mohammed NK, Saari N, Hassan Z, et al. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control. 2020; 109: 106898. https://doi.org/10.1016/j.foodcont.2019.106898
22. Salman M, Bukhari SA, Shahid M, Sahar T, Naheed S. Strain improvement of newly isolated Lactobacillus acidophilus MS1 for enhanced bacteriocin production. Turkish J Biochem. 2018; 43(3): 323–32. https://doi.org/10.1515/tjb-2017-0075
23. Ranjith FH, Adhikari B, Muhialdin BJ, Yusof NL, Mohammed NK, et al. Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control. 2022; 135: 108789. https://doi.org/10.1016/j.foodcont.2021.108789
24. Lavermicocca P, Reguant C, Bautista-Gallego J. Lactic Acid Bacteria Within the Food Industry: What Is New on Their Technological and Functional Role. Frontiers in Microbiology. 2021; 12. https://doi.org/10. 3389/fmicb.2021.711013 PMID: 34305879
25. Yang E, Chang H. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol. 2010; 139(1–2): 56–63. https://doi.org/10.1016/j.ijfoodmicro. 2010.02.012 PMID: 20226553
26. Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Compr Rev Food Sci Food Saf. 2019; 18(5): 1403–36. https://doi.org/10.1111/1541-4337.12481 PMID: 33336904
27. Crowley S, Mahony J, van Sinderen D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol. 2013; 33(2): 93–109. https://doi.org/10.1016/j.tifs.2013. 07.004
28. Wang A, Yi X, Yu H, Dong B, Qiao S. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing–finishing pigs. J Appl Microbiol. 2009; 107(4): 1140–8. https://doi.org/10.1111/j.1365-2672.2009.04294.x PMID: 19486423
29. Bukhari SA, Salman M, Numan M, Javed MR, Zubair M, Mustafa G. Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. MolBiol Rep 2020; 47(3): 1871–81. https://doi.org/10.1007/s11033-020-05281-1 PMID: 32006197
30. Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci. 2011; 76(6): M305–M11. https://doi.org/10. 1111/j.1750-3841.2011.02257.x PMID: 21729073
31. Salman M, Tariq A, Ijaz A, Naheed S, Hashem A, Abd_Allah EF, et al. In Vitro Antimicrobial and Antioxidant Activities of Lactobacillus coryniformis BCH-4 Bioactive Compounds and Determination of their Bioprotective Effects on Nutritional Components of Maize (Zea mays L.). Molecules. 2020; 25(20): 4685. https://doi.org/10.3390/molecules25204685
32. Bulgasem BY, Lani MN, Hassan Z, Yusoff WMW, Fnaish SG. Antifungal activity of lactic acid bacteria strains isolated from natural honey against pathogenic Candida species. Mycobiology. 2016; 44(4): 302–9. https://doi.org/10.5941/MYCO.2016.44.4.302 PMID: 28154488
33. El Oirdi S, Lakhlifi T, Bahar AA, Yatim M, Rachid Z, Belhaj A. Isolation and identification of Lactobacillus plantarum 4F, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food. Journal of Food Processing and Preservation. 2021: e15517. https://doi.org/10.1111/jfpp.15517
34. Nazareth TdM, Luz C, Torrijos R, Quiles JM, Luciano FB, Mañes J, et al. Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins. 2020; 12(1): 21. https://doi.org/10.3390/toxins12010021
35. Hemmalakshmi S, Priyanga S, Devaki K. Fourier Transform Infra-Red Spectroscopy Analysis of Erythrina variegata L. J Pharm Sci Res. 2017; 9(11): 2062–7.
36. Truong D-H, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. 2019; 2019. https://doi.org/10.1155/2019/8178294
37. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc. 2007; 2(4): 875–7. https://doi.org/10.1038/nprot. 2007.102 PMID: 17446889
38. Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep. 2018; 8(1): 1–11. https://doi.org/10.1038/s41598-018-20235-1
39. Kedare SB, Singh R. Genesis and development of DPPH method of antioxidant assay. J Food Sci. 2011; 48(4): 412–22. https://doi.org/10.1007/s13197-011-0251-1 PMID: 23572765
40. Khanafari A, Soudi H, Miraboulfathi M. Biocontrol of Aspergillus flavus and aflatoxin B1 production in corn. J Environ Health Sci Eng. 2007; 4(3): 163–8.
41. Pawar SS, Dasgupta D. Quantification of phenolic content from stem-bark and root of Hugonia mystax Linn. using RP-HPLC. J King Saud Univ Sci. 2018; 30(3): 293–300. https://doi.org/10.1016/j.jksus. 2016.09.002
42. Kim SH, Lahlali R, Karunakaran C, Vujanovic V. Specific Mycoparasite-Fusarium Graminearum Molecular Signatures in Germinating Seeds Disabled Fusarium Head Blight Pathogen’s Infection. Int J Mol Sci. 2021; 22(5): 2461. https://doi.org/10.3390/ijms22052461 PMID: 33671098
43. Mecozzi M, Pietroletti M, Conti ME. The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples. Mar Chem. 2008; 112(1–2): 38–52. https://doi.org/10.1016/j.marchem.2008.05.007
44. Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, et al. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017; 247: 48–54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027 PMID: 27240933
45. Junnarkar M, Pawar S, Gaikwad S, Mandal A, Jass J, Nawani N. Probiotic potential of lactic acid bacteria from fresh vegetables: Application in food preservation. Indian J Exp Biol. 2019.
46. Samaneh S-K, Mohammad RK, Giti E, Mohammad M-A. Anti-Aspergillus flavus activity of Lactobacillus plantarum and Pediococcus acidilactici isolated from breast milk. Int j med health res. 2016; 5(12): 265–73.
47. Taheur FB, Mansour C, Kouidhi B, Chaieb K. Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon. 2019; 166: 15–23. https://doi.org/10.1016/j.toxicon.2019.05.004 PMID: 31095961
48. Nayyeri N, Dovom MRE, Najafi MBH, Bahreini M. A Preliminary study on antifungal activity of lactic acid bacteria isolated from different production stages of Lighvan cheese on Penicillium expansum and Rhodotorula mucilaginosa. Journal of Food Measurement and Characterization. 2017; 11(4): 1734–44. https://doi.org/10.1007/s11694-017-9554-x
49. Wang H, Shi J, Zhang H, Qi W. A survey of some antifungal properties of lactic acid bacteria isolates from koumiss in China. Int. J. Dairy Technol. 2011; 64: 585–590. https://doi.org/10.1111/j.1471-0307. 2011.00716.x
50. Kwak M-K, Liu R, Kwon J-O, Kim M-K, Kim AH, Kang S-O. Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus. J Microbiol 2013; 51(6): 836–43. https://doi.org/10.1007/ s12275-013-3521-y PMID: 24385362
51. Park J, Kwon M, Lee J, Park S, Seo J, Roh S. Anti-Cancer Effects of Lactobacillus plantarum L-14 CellFree Extract on Human Malignant Melanoma A375 Cells. Molecules. 2020; 25(17): 3895. https://doi. org/10.3390/molecules25173895 PMID: 32859054
52. Zala´n Z, Huda´ček J, Sˇtětina J, Chumchalova´ J, Hala´sz A. Production of organic acids by Lactobacillus strains in three different media. Eur. Food Res. Technol. 2010; 230: 395–404. https://doi.org/10.1007/ s00217-009-1179-9
53. Kwak M-K, Liu R, Kim M-K, Moon D, Kim AH, Song S-H, et al. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. J Microbiol. 2014; 52(1): 64–70. https://doi.org/10.1007/ s12275-014-3520-7 PMID: 24390839
54. Salman M, Tariq A, Mustafa G, Javed MR, Naheed S, Qamar SA. Cyclo(L-Leucyl-L-Prolyl) from Lactobacillus coryniformis BCH-4 inhibits the proliferation of Aspergillus flavus: an in vitro to in silico approach. Arch Microbiol 2022; 204: 267. https://doi.org/10.1007/s00203-022-02884-z PMID: 35438350
55. Sjo¨gren Jr, Magnusson J, Broberg A, Schnu¨rer J, Kenne L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol.2003; 69(12): 7554–7. https://doi.org/10.1128/ AEM.69.12.7554-7557.2003 PMID: 14660414
56. Siedler S, Balti R, Neves AR. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol. 2019; 56: 138–46. https://doi.org/10.1016/j.copbio.2018.11.015 PMID: 30504082
57. Sawant S, Gawai D. Effect of fungal infections on nutritional value of papaya fruits. Curr Bot. 2011; 2 (1).
58. Umana EJ, Ishoro AP, Okey EN, Akpan JB. Mycoflora associated with cocoa (Theobroma cacao) pods obtained in the field and their effects on seed nutritional contents. J Agric Crop Res. 2014; 2: 236–41.
59. Pessione E, Cirrincione S. Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Front microbiol 2016; 7: 876. https://doi.org/10.3389/fmicb.2016.00876 PMID: 27375596
60. Swain MR, Ray RC. Nutritional values and bioactive compounds in lactic acid fermented vegetables and fruits. Lactic Acid Fermentation of Fruits and Vegetables; Paramithiotis S, Ed. 2016; 1: 37–52.
61. Ding W, Wang L, Zhang J, Ke W, Zhou J, et al. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J. Funct. Foods. 2017; 35: 481–488. https://doi.org/10.1016/j.jff.2017.06.008
62. Couto JA, Campos FM, Figueiredo AR, Hogg TA. Ability of lactic acid bacteria to produce volatile phenols. Am J Enol Vitic. 2006; 57(2): 166–71.
63. Gebru YA, Sbhatu DB. Effects of Fungi-Mediated Solid-State Fermentation on Phenolic Contents and Antioxidant Activity of Brown and White Teff (Eragrostis tef (Zucc.) Trotter) Grains. J Food Qual. 2020; 2020. https://doi.org/10.1155/2020/8819555
64. Chang I, Kim J-D. Inhibition of aflatoxin production of Aspergillus flavus by Lactobacillus casei. Mycobiology. 2007; 35(2): 76–81. https://doi.org/10.4489/MYCO.2007.35.2.076 PMID: 24015075
65. Kachouri F, Ksontini H, Hamdi M. Removal of aflatoxin B1 and inhibition of Aspergillus flavus growth by the use of Lactobacillus plantarum on olives. J. Food Prot. 2014; 77: 1760–1767. https://doi.org/10. 4315/0362-028X.JFP-13-360 PMID: 25285494
66. Sung WS, Lee DG. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem. 2010; 82(1): 219–26. https://doi.org/10.1351/PAC-CON09-01-08
67. Morales J, Mendoza L, Cotoras M. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J Appl Microbiol. 2017; 123(4): 969– 76. https://doi.org/10.1111/jam.13540 PMID: 28714193