Poultry immunity, health, and production are several factors that challenge the future growth of the poultry industry. Consumer confidence, product quality and safety, types of products, and the emergence and re-emergence of diseases will continue to be major challenges to the current situation and the strategic future of the industry. Foodborne and zoonotic diseases are strictly linked with poultry. Eradication, elimination, and/or control of foodborne and zoonotic pathogens present a major challenge to the poultry industry. In addition, the public health hazards from consuming foods with high antibiotic residues will remain a critical issue. The theory of poultry production described in this review will not be limited to considering disease control. Rather, it will also incorporate the interconnection of the animals’ health, welfare, and immunity. It is essential to know that chickens are not susceptible to intranasal infection by the SARS-CoV-2 (COVID-19) virus. Nevertheless, the COVID-19 pandemic will affect poultry consumption, transport, and the economics of poultry farming. It will also take into consideration economic, ethical, social dimensions, and the sustenance of the accomplishment of high environmental security. Stockholders, veterinarians, farmers, and all the partners of the chain of poultry production need to be more involved in the current situation and the strategic future of the industry to fulfill human demands and ensure sustainable agriculture. Thus, the present review explores these important tasks.
Keywords: poultry disease, food safety, consumer protection, Disease control, biosecurity, COVID-19, SARS-CoV-2.
1. Cavani C, Petracci M, Trocino A, Xiccato G. Advances in research on poultry and rabbit meat quality. Ital J Anim Sci. (2009) 8:741–
50. doi: 10.4081/ijas.2009.s2.741
2. Hafez HM. Governmental regulations and concepts behind eradication and control of some important poultry diseases. World Poult Sci J. (2005)
61:569–82. doi: 10.1079/WPS200571
3. FAO Statistics 2020. Available online at: http://fenix.fao.org/faostat/internal/ en/#home, (accessed May 28, 2020).
4. US Department of Agriculture. USDA Foreign Agricultural Service. (2020)
Available online at: https://www.statista.com/statistics/237597/leading-10- countries-worldwide-in-poultry-meat-production-in-2007/
5. Hafez HM. Poultry health-looking ahead to 2034. World Poult. (2010) 25:16–
7.
6. Directive 2003/99/EC of the European Parliament and of the Council of
17 November 2003 on the monitoring of zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive
92/117/EEC(OJ L 325, 12.12.2003, p. 1–31. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:02003L0099-20130701&from=EN
7. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. (2015)
13:3991. doi: 10.2903/j.efsa.2015.3991
8. Hafez HM, Schroth S, Stadler A, Schulze D. Detection of salmonella, campylobacter and verotoxin producing E. coli in turkey flocks during rearing and processing. Archiv Geflügelk. (2001)
65:130–6.
9. Anderson S, Christensen BB, Fazil A, Hartnett E, Lammerding A, Nauta
M, et al. A Draft Risk Assessment of Campylobacter spp. in Broiler Chickens.
Joint FAO/WHO Activities on Risk Assessment of Microbiological Hazards in Foods (2003).
10. Schlundt J, Toyofuku, H, Jansen J, Herbst SA. Emerging foodborne zoonoses. Rev Sci Tech Off Int Epiz. (2004) 23:513–
33. doi: 10.20506/rst.23.2.1506
11. EC. Regulation No. 178/2002 of The European Parliament and of the
Council of 28 January 2002 which laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety (EC). Off J Eur
Commun. (2002) L31:1–24.
12. Mulder R. Current EU Regulations for the Production and Processing of (Safe) Poultry Meat. (2011). Available online at: https://en.engormix.com/
MA-poultry-industry/health/articles/current-regulations-produc-tionprocessing-t1774/165-p0.htm (Accessed May 12, 2019).
13. Attia YA, Al-Harthi MA, El-Shafey AS, Rehab YA, Kim WK. (2017)
Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Ann Anim Sci. 17:1–
15. doi: 10.1515/aoas-2017-0012
14. Hafez HM. Enteric diseases of poultry with special attention to Clostridium perfringens. Pak Vet J. (2011) 31:175–84.
15. García-Rey C. The role of the pharmaceutical industry. Why are new antibiotics not being marketed? Enferm Infecc Microbiol Clín. (2010) 4:45–9. doi: 10.1016/S0213-005X(10)70043-4
16. Arias CA, Contreras, GA, Murray BE. Management of multidrugresistant enterococcal infections. Clin Microb Infect. (2010) 16:555–
62. doi: 10.1111/j.1469-0691.2010.03214.x
17. Sting R, Richter A, Popp C, Hafez HM. Occurrence of vancomycin-resistant enterococci in turkey flocks. Poult Sci. (2013)
92:346–51. doi: 10.3382/ps.2012-02652
18. Maasjost J, Mühldorfer K, Cortez de Jäckel S, Hafez HM. Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis. (2015) 59:143–
8. doi: 10.1637/10928-090314-RegR
19. Moawad A, Hotzel H, Awad O, Roesler U, Hafez HM, Tomaso H, et al. Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: first report of linezolid resistance.
Microorganisms. (2019) 7:476. doi: 10.3390/microorganisms7100476
20. De Neeling AJ, Van Den Broeh M, Spalburg EC, Van Santen-Verheuvel
MG, Dam-Deisz W, Boshuizen HC, et al. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microb. (2007) 122:366–
72 doi: 10.1016/j.vetmic.2007.01.027
21. Persoons D, Van Hoorebeke S, Hermans K, Butaye P, De Kruif A, HaesebRouck F, et al. Methicillin-resistant Staphylococcus aureus in poultry. Emerg
Infec Dis. (2009) 15:853–6. doi: 10.3201/eid1503.080696
22. Hasman H, Moodley A, Guardabassi L, Stegger M, Skov RL,
Aarestrup FM. Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet Microb. (2010)
141:326–31. doi: 10.1016/j.vetmic.2009.09.025
23. Richter A, Sting R, Popp C, Rau J, Tenhagen BA, Guerra B, et al. Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiol Infect. (2012) 140:2223–
32. doi: 10.1017/S095026881200009X
24. El-Adawy H, Hotzel H, Düpre S, Tomaso H, Neubauer H, Hafez HM.
Determination of antimicrobial sensitivities of Campylobacter jejuni isolated from commercial turkey farms in Germany. Avian Dis. (2012) 56:685–
92. doi: 10.1637/10135-031912-Reg.1
25. El-Adawy H, Ahmed MFE, Hotzel H, Tomaso H, Tenhagen BA,
Hartung J, et al. Antimicrobial susceptibilities of Campylobacter jejuni and
Campylobacter coli recovered from organic turkey farms in Germany. Poult
Sci. (2015) 94:2831–7. doi: 10.3382/ps/pev259
26. Nguyen TN, Hotzel H, Njeru J, Mwituria J, El-Adawy H, Tomaso
H, et al. Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathog. (2016)
8:39. doi: 10.1186/s13099-016-0121-5
27. Moawad AA, Hotzel H, Neubauer H, Ehricht R, Monecke S, Tomaso
H, et al. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extendedspectrum β-lactamase-producing Escherichia coli. Gut Pathog. (2018)
10:39. doi: 10.1186/s13099-018-0266-5
28. Muha. ARA, Md. Rahman M, Amin R, Mst. IRB, Fries R, Husna A, et al.
Susceptibility and multidrug resistance patterns of Escherichia coli isolated from cloacal swabs of live broiler chickens in Bangladesh. Pathogens. (2019)
8:118. doi: 10.3390/pathogens8030118
29. Hafez HM, El-Adawy H. Some current factors and problems that influence turkey production and health. EC Vet Sci. (2019) 4:140–7.
30. Mastellone V, Bovera F, Musco N, Panettieri N, Piccolo G, Scandurra A, et al.
Mirrors improve rabbit natural behavior in a free-range breeding system.
Animals. (2019) 9:533–43. doi: 10.3390/ani9080533
31. Carenzi C, Verga M. Animal welfare: review of the scientific concept and definition. Ital J Anim Sci. (2009) 8:21–30. doi: 10.4081/ijas.2009.s1.21
32. Havenstein GB, Ferket PR, Grimes JR, Qureshi MA, Nestor KE. Changes in the performance of Turkeys 1966–2003. Poult Sci. (2007) 86:232–40. doi: 10.1093/ps/86.2.232
33. Farquharson C, Jefferies D. Chondrocytes and longitudinal bone growth: the development of tibial dyschondroplasia. Poult Sci. (2000) 79:994–
1004. doi: 10.1093/ps/79.7.994
34. Mayne RK. A review of the aetiology and possible causative factors of foot pad dermatitis in growing turkeys and broilers. World Poult Sci J. (2003)
61:256–67. doi: 10.1079/WPS200458
35. EC. A New Animal Health Strategy for the European Union (2007-2013)
Where “Prevention is Better than Cure”. (2007). Available online at: https://ec. europa.eu/food/animal/diseases/strategy/index (Accessed March 20, 2018).
36. Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich
C, et al. (2020). SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. The Lancet Microbe. doi: 10.1016/S2666-5247(20)30089-6
37. Jackwood MW. What We Know About Avian Coronavirus Infectious
Bronchitis Virus (IBV) in Poultry - and How That Knowledge Relates to the
Virus Causing COVID-19 in Humans. (2020). Available online at: https:// aaap.memberclicks.net/assets/Positions/AAAP%20COV19%20Jackwood
%20Position%20Paper.pdf (Accessed April 20, 2020).
38. Alsultan MA, Alhammadi MA, Hemida MG. Infectious bronchitis virus from chickens in Al-Hasa, Saudi Arabia 2015-2016. Vet World. (2019)
12:424–33. doi: 10.14202/vetworld.2019.424-433
39. Islam MS, Sobur MA, Akter M, Nazir KHMNH, Toniolo A, Rahman
MT. Coronavirus disease 2019 (COVID-19) pandemic, lessons to be learned! J Adv Vet Anim Res (2020) 7(2):260-80. doi: 10.5455/javar.20
20.g418
40. Rahman MT, Sobur MA, Islam MS, Toniolo A, Nazmul Hussain Nazir KHM.
Is the COVID-19 pandemic masking dengue epidemic in Bangladesh? J Adv
Vet Anim Res. (2020) 7:218–9. doi: 10.5455/javar.2020.g412
41. Luo J. When will COVID-19 End? (2020). Available online at: https://ddi.sutd. edu.sg (Accessed April 27, 2020).
42. Swayne DE, Suarez DL, Spackman E, Tumpey TM, Beck JR, Erdman D, et al.
Domestic poultry and SARS coronavirus, Southern China. Emerg Infect Dis. (2004) 10:914–6. doi: 10.3201/eid1005.030827
43. Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. (2007)
38:281–97. doi: 10.1051/vetres:2006055
44. Saif YM, Toro H. Diagnosis of Major Poultry Diseases. Zaragoza: Publisher
Grupo Asís Biomedia (2018).
45. Cavanagh D, Gelb J Jr. Infectious bronchitis. In: Fadly AM, Glisson JR,
McDougald LR, Nolan LK, Swayne DE, editors. Diseases of Poultry. 12th ed.
Ames, IA: Blackwell (2008). p. 117–35.
46. Abd El Rahman S, Hoffmann M, Lueschow D, Eladl A, Hafez HM.
Isolation and characterization of new variant strains of infectious bronchitis virus in Northern Egypt. Adv Anim Vet Sci. (2015) 3:362–
71. doi: 10.14737/journal.aavs/2015/3.7.362.371
47. Sigrist B, Tobler K, Schybli M, Konrad L, Stöckli R, Cattoli G, et al. Detection of Avian coronavirus infectious bronchitis virus type
QX infection in Switzerland. J Vet Diagn Invest. (2012) 24:1180–
3. doi: 10.1177/1040638712463692
48. Jackwood MW, de Wit S. Infectious bronchitis. In: Swayne DE, Boulianne
M, Logue CM, McDougald L, Nair V, Suarez DL, editors. Diseases of Poultry.
14th ed. Wiley-Blackwell, Inc. (2020). p. 167–88.
49. Naguiba MM, El-Kady MF, Lüschow D, Hassan KE, Arafa AS, ElZanaty A, et al. New real time and conventional RT-PCRs for updated moleculardiagnosis of infectious bronchitis virus infection (IBV) in chickens in Egypt associated with frequent co-infections with avian influenza and Newcastle Disease viruses. J Virol Methods. (2017) 245:19–
27. doi: 10.1016/j.jviromet.2017.02.018
50. Marangon S, Busani L. The use of vaccination in poultry production. Rev Sci
Tech Off. int. Epiz. (2006) 26:265–74. doi: 10.1016/j.asj.2006.04.001
51. Montse T, Bender J. COVID-19: A Biosecurity Threat Like Nothing
Seen Before. (2020). https://en.engormix.com/pig-industry/articles/covidbiosecurity-threat-like-t45092.htm (assayed April 20, 2020).
52. Hafez HM, Hess M. Modern techniques in diagnosis of poultry diseases.
Archiv für Geflügelkunde. (1999) 63:237–45.
53. Hafez HM, Hauck, R. Main Diseases in Poultry Farming-Bacterial Infection.
Publisher Grupo Asís Biomedia (2016). p. 1–113.
54. Hafez HM. European perspectives on the control and eradication of some poultry diseases. In: Tserveni-Goussi A, Yannakopoulos A, Fortomaris P,
Arsenos G, Sossidou E, editors. Advances and Challenges in Poultry Science.
Thessaloniki: University Studio Press (2008). p. 62–72.
55. Dar MA, Mumtaz PT, Bhat SA, Nabi M, Taban Q, Shah RA, et al. Genetics of Disease Resistance in Chicken, Application of Genetics and Genomics in
Poultry Science. Xiaojun Liu: IntechOpen. Available online at: https://www. intechopen.com/books/application-of-genetics-and-genomics-in-poultryscience/genetics-of-disease-resistance-in-chicken
56. Mohamed MH, Abdelaziz AM, Kumar S, Al-Habib MA, Megahed
MM. Effect of phylogenetic diversity of velogenic Newcastle disease virus challenge on virus shedding post homologous and heterologous DNA vaccination in chickens. Avian Pathol. (2016)
45:228–34. doi: 10.1080/03079457.2016.1144870
57. Attia YA, Abdalah AA, Zeweil HS, Bovera F, Tag El-Din AA, Araft MA. Effect of inorganic or organic copper additions on reproductive performance, lipid metabolism and morphology of organs of dual-purpose breeding hens.
Archiv Geflügelk. (2011) 75:169–78.
58. Attia YA, Hamed RS, Bovera F, Al-Harthi MA, Abd El-Hamid E, Esposito
L, et al. Milk thistle seeds and rosemary leaves as rabbit growth promoters.
Anim Sci Pap Rep. (2019) 37:277–95.
59. Attia YA, Al-Harthi MA, Hassan SS. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Rev Mex Cienc Pecu. (2017)
8:11–21. doi: 10.22319/rmcp.v8i1.4309
60. Attia YA, Bovera F, Abd Elhamid AE, Nagdi SA, Mandour MA, Hassan
SS. Bee pollen and propolis as dietary supplements for rabbit: effect on reproductive performance of does and on immunological response of does and their offspring. J Anim Physiol Anim Nut (Berl). (2019) 103:959–
68. doi: 10.1111/jpn.13069
61. Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients. (2020)
12:1466. doi: 10.3390/nu12051466
62. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. (2020) 92:479–90. doi: 10.1002/jmv.25707
63. Attia YA, Al-Harthi MA, Abo El-Maaty HM. The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, antioxidant, and morphometric responses of broiler chicks.
Front Vet Sci. (2020) 7:181. doi: 10.3389/fvets.2020.00181
64. Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga
AF, Taha AE, et al. Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals. (2019)
9:573. doi: 10.3390/ani9080573
65. Klasing KC. Nutrition and the immune system. Br Poult Sci. (2007) 48:525–
37. doi: 10.1080/00071660701671336
66. Caccialanza R, Laviano A, Lobascio F, Montagna E, Bruno R, Ludovisi
S, et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): rationale and feasibility of a shared pragmatic protocol. Nutrition. (2020)
74:110835. doi: 10.1016/j.nut.2020.110835
67. Barazzoni R, Bischoff SC, Krznaric Z, Pirlich M, Singer P. ESPEN expert statements and practical guidance for the nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. (2020) 39:1631–
8. doi: 10.1016/j.clnu.2020.03.022
68. Attia YA, Bovera F, Al-Harthi MA, Wang J, Kim Woo K. Multiple amino acid supplementations to low dietary protein diets: effect on performance, carcass yield, meat quality and nitrogen excretion of finishing broilers under hot climate conditions. Animals. (2020) 10:973. doi: 10.3390/ani10060973
69. Chrystal PV, Moss AF, Khoddami A, Naranjo VD, Selle PH, Liu SY.
Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult Sci. (2020) 99:505–
16. doi: 10.3382/ps/pez573
70. Sigolo S, Zohrabi Z, Gallo A, Seidavi A, Prandini A. Effect of a low crude protein diet supplemented with different levels of threonine on growth performance, carcass traits, blood parameters, and immune responses of growing broilers. Poult Sci. (2017) 96:2751–60. doi: 10.3382/ps/pex086
71. Hofmann P, Siegert W, Kenéz Á, Naranjo VD, Rodehutscord M. Very low crude protein and varying glycine concentrations in the diet affect growth performance, characteristics of nitrogen excretion, and the blood metabolome of broiler chickens. J Nutr. (2019) 149:1122–
32. doi: 10.1093/jn/nxz022
72. Hilliar M, Hargreave G, Girish CK, Barekatain R, Wu SB,
Swick RA. Using crystalline amino acids to supplement broiler chicken requirements in reduced protein diets. Poult Sci. (2020)
99:1551–63. doi: 10.1016/j.psj.2019.12.005
73. Kamely M, He W, Wakaruk J, Whelan R, Naranjo V, Barreda D. Impact of reduced dietary crude protein in the starter phase on immune development and response of broilers throughout the growth period. Front Vet Sci. (2020) 6:510. doi: 10.3389/fvets.2020.00436
74. Attia YA, Hassan RA, Tag El-Din AE, Abou-Shehema BM.
Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J Anim Phys Anim Nutr. (2011)
95:744–55. doi: 10.1111/j.1439-0396.2010.01104.x
75. Attia YA, Bovera F, Abd-El-Hamid EA, Tag EL-Din AE, Al-Harthi M
A, Nizza A, et al. Effect of dietary protein concentrations, amino acids and conjugated linoleic acid supplementations on productive performance and lipid metabolism of broiler chicks. Ital J Anim Sci. (2017) 16:563–
72. doi: 10.1080/1828051X.2017.1301228
76. Swiatkiewicz S, Arczewska-Wlosek A, Jozefiak D. The relationship between dietary fat sources and immune response in poultry and pigs: an updated review. Livestock Sci. (2015) 180:237–46. doi: 10.1016/j.livsci.2015.07.017
77. Bederska-Łojewska D, Orczewska-Dudek S, Pieszka M. Metabolism of arachidonic acid, its concentration in animal products and influence on inflammatory processes in the human body: a review. Ann Anim Sci. (2013)
13:177–94. doi: 10.2478/aoas-2013-0001
78. Al-Khalifa HS, Givens D, Rymer C, Yaqoob P. Effect of n-3 fatty acids on immune function in broiler chickens. Poult Sci. (2012) 91:74–
88. doi: 10.3382/ps.2011-01693
79. Ebeid T, Eid Y, Saleh A, Abd El-Hamid H. Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal. (2008)
2:84–91. doi: 10.1017/S1751731107000882
80. Jameel YJ, Sahib AM, Husain MA. Effect of dietary omega-3 fatty acid on antibody production against Newcastle disease in broilers. Int J Sci Nat. (2015) 6:23–7.
81. Konieczka P, Czauderna M, Smulikowska S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed-effect of feeding duration dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim Feed Sci Technol. (2017) 223:42–
52. doi: 10.1016/j.anifeedsci.2016.10.023
82. Adams BYC, Vahl HA, Veldman A. Interaction between nutrition and
Eimeria acervulina infection in broiler chickens: diet compositions that improve fat digestion during Eimeria acervulina infection. Br J Nutr. (1996)
75:875–80. doi: 10.1079/BJN19960193
83. Attia YA, Bakhashwain AA, Bertu NK. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. Europ Poult Sci. (2018)
82:15. doi: 10.1399/eps.2018.238
84. Attia YA, Hamed RS, Bovera F, Abd El-Hamid AE, Al-Harthi MA, Shahba
HA. Semen quality, antioxidant status and reproductive performance of rabbits bucks fed milk thistle seeds and rosemary leaves. Anim Reprod Sci. (2017) 184:178–86. doi: 10.1016/j.anireprosci.2017.07.014
85. Attia YA, Bakhashwain AA, Bertu Nehal K. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital
J Anim Sci. (2017) 16:275–82. doi: 10.1080/1828051X.2016.1245594
86. Attia YA, Al-Harthi MA. Nigella seed oil as an alternative to antibiotic growth promoters for broiler Chickens. Europ Poult Sci. (2015) 79, 1–13. doi: 10.1399/eps.2015.80
87. Attia YA, Abd Al-Hamid AE, Allakany HF, Al-Harthi MA, Mohamed
NA. Necessity of continuing of supplementation of non-nutritive feed additive during day 21-42 of age following three weeks of feeding aflatoxin to broiler chickens. J Appl Anim Res. (2016)
44:87–98. doi: 10.1080/09712119.2015.1013964
88. Attia YA, Allakany HF, Abd Al-Hamid AE, Al-Saffar AA, Hassan RA,
Mohamed NA. Capability of different non-nutritive feed additives on improving productive and physiological traits of broiler chicks fed diets with or without aflatoxin during the first 3 weeks of life. J Anim Phys Anim Nut. (2013) 97:754–72. doi: 10.1111/j.1439-0396.2012.01317.x
89. Attia YA, Ellakany HF, Abd El-Hamid AE, Bovera F, Ghazaly SA.
Control of Salmonella enteritidis infection in male layer chickens by acetic acid and/or prebiotics, probiotics and antibiotics. Arch Geflügelk. (2012)
76:239–45.
90. Attia YA, Abd El Hamid AE, Ismaiel AM, El-Naggar A. The detoxication of nitrate by two antioxidants or a probiotic and the effects on blood and seminal plasma profiles and reproductive function of NZW rabbit bucks.
Animal. (2013) 7:591–601. doi: 10.1017/S1751731112002054
91. Kitazawa H, Villena J, Alvarez S. Probiotics: Immunobiotics and Immunogenics. Boca Raton, FL: CRC Press (2013).
92. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O’Connell Motherway
M, Hill C, et al. Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol. (2018) 49:217–
23. doi: 10.1016/j.copbio.2017.10.007
93. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M,
Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. (2017) 6:1–15. doi: 10.1002/mnfr.201600240
94. Kiarie EG, Leung H, Akbari Moghaddam Kakhki R, Patterson R, Barta JR.
Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of coccidiosis on intestinal health and function in broiler chickens.
Front Vet Sci. (2019) 6:473. doi: 10.3389/fvets.2019.00473
95. Barberi C, Campana S, De Pasquale C, Rabbani Khorasgani M, Ferlazzo G,
Bonaccorsi I. T cell polarizing properties of probiotic bacteria. Immunol Lett. (2015) 168:337–42. doi: 10.1016/j.imlet.2015.11.005
96. Garcia-Castillo V, Komatsu R, Clua P, Indo Y, Takagi M, Salva S, et al. Evaluation of the immunomodulatory activities of the probiotic strain Lactobacillus fermentum UCO-979C. Front Immunol. (2019)
10:1376. doi: 10.3389/fimmu.2019.01376
97. Underwood EJ, Suttle NF. The Mineral Nutrition of Livestock. Cambridge,
MA: CABI. (2001).
98. Sajadifar S, Miranzedah H, Moazeni M. Effect of zinc on humoral and cell-mediated immunity of broilers vaccinated against coccidiosis. Iran J
Parasitol. (2013) 8:474–80.
99. Attia YA, Abd El-Hamid AE, Ellakany HF, Bovera F, Al-Harthi MA,
Ghazaly SA. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid. Ital J Anim Sci. (2013) 12:e37. doi: 10.4081/ijas.2013.e37
100. Attia YA, Al-Harthi MA, Abo El-Maaty H. Calcium and cholecalciferol levels on late phase-laying hens’ diets: effects on productive and egg quality traits, blood biochemistry and immune responses. Front Vet Sci. (2020) 7:389. doi: 10.3389/fvets.2020.00389
101. Daghir NJ. Poultry Production in Hot Climates. 2nd ed. Cambridge, MA:
CABI (2008).
102. Attia YA, Abdalah AA, Zeweil HS, Bovera F, Tag El-Din AA, Araft MA.
Effect of inorganic or organic selenium supplementation on productive performance, egg quality and some physiological traits of dual purpose breeding hens. Czech J Anim Sci. (2010) 55:505–19. doi: 10.17221/1702-CJAS
103. Svetlana M, Lazarevi, M, Jokic Z, Jovanovic I, Pesut O, et al. The influence of organic and inorganic Fe supplementation on red blood picture, immune response and quantity of iron in organs of broiler chickens. Acta Veterinaria (Beograd). (2008) 58:179–89. doi: 10.2298/AVB0803179M
104. Farag MR, Alagawany M, Abd El-Hack Me, Arif M, Ayasan T,
Dhama K, et al. Role of chromium in poultry nutrition and health: beneficial applications and toxic effects. Int J Pharmacol. (2017) 13:907–
15. doi: 10.3923/ijp.2017.907.915
105. Hidayat C, Sumiati, Jayanegara A, Wina E. Effect of zinc on the immune response and production performance of broilers: a meta-analysis. AsianAustralas J Anim Sci. (2020) 33:465–79. doi: 10.5713/ajas.19.0146
106. National Research Council (NRC). Nutrient Requirements of Poultry. 9th ed.
Washington, DC: National Academy Press (1994).
107. Yausheva E, Miroshnikov S, Sizova E. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. Environ Sci Pollut Res. (2018) 25:18109e20. doi: 10.1007/s11356-018-1991-5
108. Korish MM, Attia YA. (2020) Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. (2020)
10:727. doi: 10.3390/ani10040727
109. Gopi M, Pearlin B, Kumar RD, Shanmathy M, Prabakar G. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Inter J
Pharm. (2017) 13:724–31. doi: 10.3923/ijp.2017.724.731
110. Sizova E, Miroshnikov S, Lebedev S, Usha, B, Shabun S. Use of nanoscale metals in poultry diet as a mineral feed additive. Front. Vet. Sci. (2019) 7:389. doi: 10.1016/j.aninu.2019.11.007
111. Shi R, Liu D, Sun J, Jia Y, Zhang P. Effect of replacing dietary FeSO4 with equal Fe-levelled iron glycine chelate on broiler chickens. Czech J Anim. Sci. (2015) 60:233–9 doi: 10.17221/8173-CJAS
112. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert
MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.
PLoS Pathog. (2010) 6:e1001176. doi: 10.1371/journal.ppat.1001176
113. Kaushik N, Subramani C, Anang S, Muthumohan R, Shalimar, Nayak
B, et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. (2017) 91:e00754–
17. doi: 10.1128/JVI.00754-17
114. Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, et al. Zinc chelation specifically inhibits early stages of dengue virus replication by activation of
NF-κB and induction of antiviral response in epithelial cells. Front Immunol. (2019) 10:2347. doi: 10.3389/fimmu.2019.02347
115. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune response. Br J Nutr. (2007) 98(Suppl
1):S29–35. doi: 10.1017/S0007114507832971
116. Attia YA, Abd El-Hamid AE, Zeweil HS, Qota EM, Bovera F, Monastra
M, et al. Effect of dietary amounts of organic and inorganic Zinc on productive and physiological traits of white peckin ducks. Animal. (2013)
7:695–700. doi: 10.1017/S1751731113000050
117. Scott HM. Heavy metals as alternatives to antibiotics: panacea or Pandora’s box? In: Paper presented at the International Symposium on Alternatives to
Antibiotics. Paris (2012).
118. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol. (2017)
4:1297658. doi: 10.1155/2017/1297658
119. Thiry C, Rutten’s A, De Temmerman L, Schneider YJ, Pussemier L. Current knowledge in species-related bioavailability of Se in food. Food Chem. (2012)
130:767–84. doi: 10.1016/j.foodchem.2011.07.102
120. Invernizzi G, Agazzi A, Ferroni M, Rebucci R, Fanelli A, Baldi A, et al.
Effects of 289 inclusion of Se-enriched yeast in the diet of laying hens on performance, eggshell quality, and Se tissue deposition. Ital J Anim Sci. (2013) 12:e1. doi.org/10.4081/ijas.2013.e1 doi: 10.4081/ijas.2013.e1
121. Habibian M, Ghazi S, Moeini MM, Abdolmohammadi A. Effects of dietary
Se and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int J
Biometeorol. (2014) 58:741–52. doi: 10.1007/s00484-013-0654-y
122. Sahin N, Orhan C, Tuzcu M, Sahin K, Kucuk O. The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poult Sci. (2008) 87:276–83. doi: 10.3382/ps.2007-00207
123. Attia YA, Hassan RA, Qota MA. Recovery from adverse effects of heat stress on slow-growing chicks in the tropics 1: effect of ascorbic acid and different levels of betaine. Trop Anim Health Prod. (2009) 41:807–
18. doi: 10.1007/s11250-008-9256-9
124. Attia YA, Abd El-Hamid EA, Abedalla AA, Berika MA, Al-Harthi MA,
Kucuk O, et al. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus. (2016)
5:1619. doi: 10.1186/s40064-016-3304-0
125. Attia YA, Abd El-Hamid EA, Abedalla AA, Berika MA, El-Gandy MF,
Sahin K, et al. Effect of betaine, vitamin C, and vitamin E on egg quality, hatchability, and markers of liver and renal functions in dualpurpose breeding hens exposed to chronic heat stress. Eur Poult Sci. (2018)
82. doi: 10.1399/eps.2018.226
126. Attia YA, El-Naggar Asmaa Sh, Abou-Shehema BM, Abdella AA.
Effect of supplementation with trimethylglycine (betaine) and/or vitamins on semen quality, fertility, antioxidant status, DNA repair and welfare of roosters exposed to chronic heat stress. Animals. (2019)
9:547. doi: 10.3390/ani9080547
127. Khan RU, Rahman ZU, Javed I, Muhammad F. Effect of vitamins, probiotics and protein on semen traits in post-molt male broiler breeders. Anim Reprod
Sci. (2012) 135:85–90. doi: 10.1016/j.anireprosci.2012.09.005
128. Khan RU, Naz S, Nikousefat Z, Selvaggi M, Laudadio V, Tufarelli V. Effect of ascorbic acid on heat-stressed Poultry. World Poult Sci J. (2012) 68:477–
89. doi: 10.1017/S004393391200058X
129. Traber MG, Atkinson J. Vitamin E antioxidant and nothing more. Free Radic
Biol Med. (2007) 43:4–15. doi: 10.1016/j.freeradbiomed.2007.03.024
130. Niu ZY, Liu FZ, Yan, QL, Li WC. Effects of different levels of vitamin E on growth performance and immune responses of broilers chickens under heat stress. Poult Sci. (2009) 88:2101–7. doi: 10.3382/ps.2009-00220
131. Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, et al. Vitamin
D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol
Rep. (2017) 15:e13371. doi: 10.14814/phy2.13371
132. Rodriguez-Lecompte JC, Yitbarek A, Cuperus T, Echeverry H, van Dijk A.
The immunomodulatory effect of vitamin D in chickens is dose-dependent and influenced by calcium and phosphorus levels. Poult Sci. (2016) 95:2547–
56. doi: 10.3382/ps/pew186
133. Manolagas SC, Provvedini DM, Tsoukas CD. Interactions of 1, 25-dihydroxy
VD3 and the immune system. Mol Cell Endocrinol. (1985) 43:113–
22. doi: 10.1016/0303-7207(85)90074-7
134. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano
JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. (2020) 12:988. doi: 10.3390/nu12040988
135. Verma VK, Yadav SK, Haldar C. Influence of environmental factors on avian immunity: an overview. J Immun Res. (2017) 4:1028–33.
136. Ciriaco E, Pinera PP, Diaz-Esnal B, Laura R. Age- related changes in avian primary lumphoid organs (thymus and bursa of Fabricius). Microsc Res Tech. (2003) 62:482–7 doi: 10.1002/jemt.10416
137. Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. (2003) 4:835–
42. doi: 10.1038/ni969
138. Van den Berg T, Lambrecht B, Marche S, Steensels, M, Van Borm, et al.
Influenza vaccines and vaccination strategies in birds. Comp Immunol
Microb Infectious Dis. (2008) 31:121–65. doi: 10.1016/j.cimid.2007.07.004
139. Yellon SM, Teasley LA, Fagoaga OR. Role of photoperiod and pineal gland in T cell dependent humoral immune reactivity in the Siberian hamsters. J Pineal Res. (1999) 27:243–8. doi: 10.1111/j.1600-079X.1999.tb
00622.x
140. Guchhait P, Haldar C. Time and reproductive phase dependent effects of exogenous melatonin on the pineal gland and ovary of a nocturnal bird, the Indian spotted owlet, Athene brama. Folia Biol (Krakow). (2000)
48:91–6.
141. Attia YA, Al-Khalifa H, Ibrahim MS, Abd Al-Hamid AE, Al-Harthi MA, ElNaggar A. Blood hematological and biochemical constituents, antioxidant enzymes, immunity and lymphoid organs of broiler chicks supplemented with propolis, bee pollen and mannan oligosaccharides continuously or intermittently. Poult Sci. (2017) 96:4182–92. doi: 10.3382/ps/pex173
142. Attia YA, Hassan SS. Broiler tolerance to heat stress at various dietary protein/energy levels. Europ Poult Sci. (2017) 81. doi: 10.1399/eps.2017.171