Fatty acids (FA) are normally considered a source of energy; however, some FA are essential nutrients with different biological functions such as ligands to membrane and nuclear receptors, and upon binding they modify cell function and transcript expression. The bioactive effects of the FA depend on the FA type and family (i.e., n-6 vs n-3). The FA effects on developmental programming have been studied in cattle and sheep with some similarities in the outcomes between species. Feeding n-3 FA during late gestation improves offspring production performance (i.e., milk yield in dairy cows and growth in beef cattle and sheep) compared with the offspring of dams supplemented with mono- and unsaturated FA or with offspring of dams with no FA supplementation. Also, there is a sexual dimorphism in the outcomes of n-3 FA supplementation, where the increase in growth due to n-3 FA seems to be more evident in males; but it might decrease growth in females. There are multiple assumptions as to how this physiological process occurs. Based on published literature, the developmental effect does not appear to be due to changes in hypothalamic regulations of dry matter intake and energy expenditure or liver and adipose tissue functions. The changes in offspring growth can be attributed to changes in gastrointestinal tract physiology, changes in immune response, or both, probably due to epigenetic changes in those tissues. Feeding n-3 FA in late gestation to the pregnant dam increases expression of amino acid transporters (mRNA and protein) in the offspring’s duodenum, associated with changes in DNA methylation. Regarding immune function, the increase in offspring performance has been associated with decreased haptoglobin after weaning in calves or increases in lipid mediators, such as resolvin-D1 at birth. Omega-3 supplementation during late gestation affects offspring growth; changes in the offspring's gut and immune system biology can explain the sexual dysmorphism observed in changed body weight; however, we are unaware which of these basic mechanisms is responsible for the observed changes in biology.
Auboeuf, D., J. Rieusset, L. Fajas, P. Vallier, V. Frering, J. P. Riou, B. Staels, J. Auwerx, M. Laville, and H. Vidal. 1997. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319–1327. https://doi.org/10 .2337/diab.46.8.1319.
Ballweg, S., E. Sezgin, M. Doktorova, R. Covino, J. Reinhard, D. Wunnicke, I. Hänelt, I. Levental, G. Hummer, and R. Ernst. 2020. Regulation of lipid saturation without sensing membrane fluidity. Nat. Commun. 11:756. https://doi.org/10.1038/s41467-020-14528-1.
Barak, Y., D. Liao, W. He, E. S. Ong, M. C. Nelson, J. M. Olefsky, R. Boland, and R. M. Evans. 2002. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA 99:303–308. https://doi.org/10.1073/pnas.012610299.
Bharate, S. B., K. V. Nemmani, and R. A. Vishwakarma. 2009. Progress in the discovery and development of small-molecule modulators of G-proteincoupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes. Expert Opin. Ther. Pat. 19:237–264. https://doi.org/10.1517/ 13543770802665717.
Bogacka, I., A. Kurzynska, M. Bogacki, and K. Chojnowska. 2015. Peroxisome proliferator-activated receptors in the regulation of female reproductive functions. Folia Histochem. Cytobiol. 53:189–200. https://doi.org/10 .5603/fhc.a2015.0023.
Brandão, A. P., R. F. Cooke, K. M. Schubach, B. Rett, O. A. Souza, C. L. Schachtschneider, G. A. Perry, S. A. Arispe, D. B. Jump, K. G. Pohler, D. W. Bohnert, and R. S. Marques. 2020. Supplementing Ca salts of soybean oil to late-gestating beef cows: impacts on performance and physiological responses of the offspring. J. Anim. Sci. 98:247. https://doi.org/10.1093/ jas/skaa247.
Buczynski, M. W., D. S. Dumlao, and E. A. Dennis. 2009. Thematic Review Series: proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 50:1015–1038. https://doi.org/10.1194/jlr.R900004-JLR200.
Carranza-Martin, A. C., D. N. Coleman, L. G. Garcia, C. C. Furnus, and A. E. Relling. 2018. Prepartum fatty acid supplementation in sheep. III. Effect of eicosapentaenoic acid and docosahexaenoic acid during finishing on performance, hypothalamus gene expression, and muscle fatty acids composition in lambs. J. Anim. Sci. 96:5300–5310. https://doi.org/10.1093/jas/ sky360.
Cintra, D. E., E. R. Ropelle, J. C. Moraes, J. R. Pauli, J. Morari, C. T. de Souza, R. Grimaldi, M. Stahl, J. B. Carvalheira, M. J. Saad, and L. A. Velloso. 2012. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One 7:e30571. https://doi.org/10.1371/journal.pone .0030571.
De Silva, A., and S. R. Bloom. 2012. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6:10–20. https://doi.org/10.5009/gnl.2012.6.1.10.
Decara, J., P. Rivera, A. J. López-Gambero, A. Serrano, F. J. Pavón, E. Baixeras, F. Rodríguez de Fonseca, and J. Suárez. 2020. Peroxisome proliferatoractivated receptors: Experimental targeting for the treatment of inflammatory bowel diseases. Front. Pharmacol. 11:493292. https://doi.org/10.3389/ fphar.2020.00730.
Durkin, L. A., C. E. Childs, and P. C. Calder. 2021. Omega-3 polyunsaturated fatty acids and the intestinal epithelium-a review. Foods 10:199. https://doi .org/10.3390/foods10010199.
Flodgren, E., B. Olde, S. Meidute-Abaraviciene, M. S. Winzell, B. Ahrén, and A. Salehi. 2007. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys. Res. Commun. 354:240–245. https://doi.org/10.1016/j.bbrc.2006.12.193.
Grundmann, M., E. Bender, J. Schamberger, and F. Eitner. 2021. Pharmacology of free fatty acid receptors and their allosteric modulators. Int. J. Mol. Sci. 22:1763. https://doi.org/10.3390/ijms22041763.
Hagve, T. A. 1988. Effects of unsaturated fatty acids on cell membrane functions. Scand. J. Clin. Lab. Invest. 48:381–388. https://doi.org/10.1080/ 00365518809085746.
Hilgendorf, K. I., C. T. Johnson, A. Mezger, S. L. Rice, A. M. Norris, J. Demeter, W. J. Greenleaf, J. F. Reiter, D. Kopinke, and P. K. Jackson. 2019. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 179:1289–1305. https://doi.org/10.1016/j.cell.2019.11.005.
Ichimura, A., S. Hasegawa, M. Kasubuchi, and I. Kimura. 2014. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front. Pharmacol. 5:118349. https://doi.org/10.3389/fphar.2014.00236.
Innis, S. M. 2011. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern. Child Nutr. 7(s2):112–123. https://doi .org/10.1111/j.1740-8709.2011.00318.x.
Juge-Aubry, C., A. Pernin, T. Favez, A. G. Burger, W. Wahli, C. A. Meier, and B. Desvergne. 1997. DNA binding properties of peroxisome proliferatoractivated receptor subtypes on various natural peroxisome proliferator response elements. J. Biol. Chem. 272:25252–25259. https://doi.org/10 .1074/jbc.272.40.25252.
Lager, S., V. I. Ramirez, F. Gaccioli, T. Jansson, and T. L. Powell. 2014. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta. Placenta 35:523–525. https://doi.org/10.1016/j.placenta .2014.04.017.
Levy, B. D., C. B. Clish, B. Schmidt, K. Gronert, and C. N. Serhan. 2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2:612–619. https://doi.org/10.1038/89759.
Marcheselli, V. L., S. Hong, W. J. Lukiw, X. H. Tian, K. Gronert, A. Musto, M. Hardy, J. M. Gimenez, N. Chiang, C. N. Serhan, and N. G. Bazan. 2003. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817. https://doi.org/10.1074/jbc.M305841200.
Marques, R. S., R. F. Cooke, M. C. Rodrigues, A. P. Brandão, K. M. Schubach, K. D. Lippolis, P. Moriel, G. A. Perry, A. Lock, and D. W. Bohnert. 2017. Effects of supplementing calcium salts of polyunsaturated fatty acids to late-gestating beef cows on performance and physiological responses of the offspring. J. Anim. Sci. 95:5347–5357. https://doi.org/10.2527/jas2017 .1606.
Maulucci, G., O. Cohen, B. Daniel, A. Sansone, P. I. Petropoulou, S. Filou, A. Spyridonidis, G. Pani, M. De Spirito, C. Chatgilialoglu, C. Ferreri, K. E. Kypreos, and S. Sasson. 2016. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic. Res. 50(sup1):S40–S50. https://doi.org/10.1080/10715762.2016.1231403.
Miles, E. A., E. Allen, and P. C. Calder. 2002. In vitro effects of eicosanoids derived from different 20-carbon fatty acids on production of monocytederived cytokines in human whole blood cultures. Cytokine 20:215–223. https://doi.org/10.1006/cyto.2002.2007.
Norris, P. C., and E. A. Dennis. 2014. A lipidomic perspective on inflammatory macrophage eicosanoid signaling. Adv. Biol. Regul. 54:99–110. https://doi .org/10.1016/j.jbior.2013.09.009.
Oh, D. Y., and E. Walenta. 2014. Omega-3 fatty acids and FFAR4. Front. Endocrinol. 5:115. https://doi.org/10.1111/cen.12243.
Oviedo-Ojeda, M. F., J. A. Roque-Jiménez, M. Whalin, H. A. Lee-Rangel, and A. E. Relling. 2021. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J. Anim. Sci. 99:skab064. https://doi.org/10.1093/jas/skab064.
Page, K. C., R. E. Malik, J. A. Ripple, and E. K. Anday. 2009. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1049–R1057. https://doi.org/10.1152/ ajpregu.90585.2008.
Palmquist, D. L. 2009. Omega-3 fatty acids in metabolism, health, and nutrition and for modified animal product foods. Prof. Anim. Sci. 25:207–249. https: //doi.org/10.15232/S1080-7446(15)30713-0.
Roque-Jimenez, J. A., M. F. Oviedo-Ojeda, M. Whalin, H. A. Lee-Rangel, and A. E. Relling. 2020. Eicosapentaenoic and docosahexaenoic acid supplementation during early gestation modified relative abundance on placenta and fetal liver tissue mRNA and concentration pattern of fatty acids in fetal liver and fetal central nervous system of sheep. PLoS One 15:e0235217. https://doi.org/10.1371/journal.pone.0235217.
Roque-Jiménez, J. A., M. Rosa-Velázquez, J. M. Pinos-Rodríguez, J. G. Vicente-Martínez, G. Mendoza-Cervantes, A. Flores-Primo, H. A. Lee-Rangel, and A. E. Relling. 2021. Role of long chain fatty acids in developmental programming in ruminants. Animals (Basel) 11:762. https://doi.org/10 .3390/ani11030762.
Rosa-Velazquez, M., F. Batistel, and A. E. Relling. 2019. Effect of polyunsaturated fatty acid and methionine supplementation during late gestation on offspring duodenal amino acid and peptides transporters in sheep. J. Anim. Sci. 98(Supplement_3):215–216. https://doi.org/10.1093/jas/skaa054.374.
Rosa-Velazquez, M., J. R. Jaborek, J. M. Pinos-Rodriguez, and A. E. Relling. 2021. Maternal supply of fatty acids during late gestation on offspring’s growth, metabolism, and carcass characteristics in sheep. Animals (Basel) 11:719. https://doi.org/10.3390/ani11030719.
Rosa-Velazquez, M., J. M. Pinos-Rodriguez, A. J. Parker, and A. E. Relling. 2022a. Maternal supply of a source of omega-3 fatty acids and methionine during late gestation on the offspring’s growth, metabolism, carcass characteristic, and liver’s mRNA expression in sheep. J. Anim. Sci. 100:skac032. https://doi.org/10.1093/jas/skac032.
Rosa-Velazquez, M., J. M. Pinos-Rodriguez, and A. E. Relling. 2020. Effect of polyunsaturated fatty acid and methionine supplementation during late gestation on offspring growth, glucose tolerance test, and carcass characteristic in sheep. J. Anim. Sci. 98(Supplement_3):112–113. https://doi.org/ 10.1093/jas/skaa054.190.
Rosa-Velazquez, M., Y. Wang, A. Sanders, S. Pyle, L. G. Garcia, B. M. Bohrer, and A. E. Relling. 2022b. Effects of maternal dietary fatty acids during mid-gestation on growth, glucose metabolism, carcass characteristics, and meat quality of lamb progeny that were fed differing levels of dry matter intake. Meat Sci. 194:108991. https://doi.org/10.1016/j.meatsci.2022 .108991.
Santos, J. E. P., T. R. Bilby, W. W. Thatcher, C. R. Staples, and F. T. Silvestre. 2008. Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod. Domest. Anim. 43(s2):23–30. https://doi.org/10.1111/j .1439-0531.2008.01139.x.
See, V. H., E. Mas, S. L. Prescott, L. J. Beilin, S. Burrows, A. E. Barden, R. C. Huang, and T. A. Mori. 2017. Effects of prenatal n-3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial. Br. J. Nutr. 118:971–980. https://doi .org/10.1017/S0007114517002914.
Serhan, C. N., C. B. Clish, J. Brannon, S. P. Colgan, N. Chiang, and K. Gronert. 2000. Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2–nonsteroidal anti-inflammatory drugs and transcellular processing. J. Exp. Med. 192:1197–1204. https://doi.org/10.1084/jem.192.8.1197.
Shao, T., F. Ireland, J. McCann, and D. W. Shike. 2020. Effects of late gestation Calcium salts of fatty acids supplementation to beef cows on offspring pre-weaning growth performance and gene expression. J. Anim. Sci. 98(Supplement_3):136–136. https://doi.org/10.1093/jas/skaa054.236.
Tilley, S. L., T. M. Coffman, and B. H. Koller. 2001. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. 108:15–23. https://doi.org/10.1172/JCI200113416 .
Vachier, I., P. Chanez, C. Bonnans, P. Godard, J. Bousquet, and C. Chavis. 2002. Endogenous anti-inflammatory mediators from arachidonate in human neutrophils. Biochem. Biophys. Res. Commun. 290:219–224. https:// doi.org/10.1006/bbrc.2001.6155.
Vallée Marcotte, B., H. Cormier, I. Rudkowska, S. Lemieux, P. Couture, and M. C. Vohl. 2017. Polymorphisms in FFAR4 (GPR120) gene modulate insulin levels and sensitivity after fish oil supplementation. J. Pers. Med. 7:15. https://doi.org/10.3390/jpm7040015.
Yehuda, S., S. Rabinovitz, R. L. Carasso, and D. I. Mostofsky. 2002. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853. https://doi.org/10.1016/S0197-4580(02)00074 -X.
Zhu, Y., C. Qi, Y. Jia, J. S. Nye, M. S. Rao, and J. K. Reddy. 2000. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J. Biol. Chem. 275:14779–14782. https://doi.org/10.1074/jbc.C000121200.