1 Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; 2 Promitec S.A., Bucaramanga, Santander 680001, Colombia; gerencia@promitec.com.co (Á.J.U.); 3 Departamento de Medicina y Zootecnia de Aves, FMVZ, Universidad Nacional Autonoma de Mexico, Mexico City 4510, Mexico.
1. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals
2013, 6, 1451–1474. [CrossRef] [PubMed]
2. Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186.
[CrossRef] [PubMed]
3. Krishan, G.; Narang, A. Use of essential oils in poultry nutrition: A new approach. J. Adv. Vet. Anim. Res. 2014, 1, 156–162.
[CrossRef]
4. Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [CrossRef] [PubMed]
5. Saadat Shad, H.; Mazhari, M.; Esmaeilipour, O.; Khosravinia, H. Effects of thymol and carvacrol on productive performance, antioxidant enzyme activity and certain blood metabolites in heat stressed broilers. IJAS 2016, 6, 195–202.
6. Popa, M.; Mărut,escu, L.; Oprea, E.; Bleotu, C.; Kamerzan, C.; Chifiriuc, M.C.; Pircalabioru, G.G. In vitro evaluation of the antimicrobial and immunomodulatory activity of culinary herb essential oils as potential perioceutics. Antibiotics 2020, 9, 428.
[CrossRef]
7. Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [CrossRef]
8. Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis.
J. Appl. Poult. Res. 2020, 29, 515–534. [CrossRef]
9. Hofacre, C.L.; Smith, J.A.; Mathis, G.F. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult. Sci. 2018, 97, 1929–1933. [CrossRef]
10. Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [CrossRef]
11. Van der Sluis, W. Clostridial enteritis—A syndrome emerging worldwide. World Poult. Sci. J. 2000, 16, 56–57.
12. Van der Sluis, W. Clostridial enteritis is an often underestimated problem. World Poult. Sci. J. 2000, 16, 42–43.
13. Shahbandeh, M. Number of Chickens Worldwide from 1990 to 2018. Statista 2020. Available online: https://www.statista.com/ statistics/263962/number-of-chickens-worldwide-since-1990 (accessed on 24 July 2020).
14. Hofacre, C.L. Necrotic enteritis, currently a billion dollar disease: Is There Anything New on the Horizon. In Proceedings of the
Alltech’s 17th Annual Symposium Science and Technology in the Feed Indurstry, Nottingham, UK, 1 January 2001; Lyons, T.P.,
Jacques, K.A., Eds.; Nottingham University Press: Nottingham, UK, 2001; pp. 79–86.
15. Paiva, D.; McElroy, A. Necrotic enteritis: Applications for the poultry industry. J. Appl. Poult. Res. 2014, 23, 557–566. [CrossRef]
16. Eid, N.; Dahshan, A.; El-Nahass, A.-S.; Shalaby, B.; Ali, A. Anticlostridial activity of the thyme and clove essential oils against experimentally induced necrotic enteritis in commercial broiler chickens. Vet. Sci. Res. Rev. 2018, 4, 25–34.
17. Jerzsele, A.; Szeker, K.; Csizinszky, R.; Gere, E.; Jakab, C.; Mallo, J.J.; Galfi, P. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 2012, 91, 837–843. [CrossRef]
18. Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Hernandez-Velasco, X.; Merino-Guzman, R.; Adhikari, B.; Lopez-Arellano, R.;
Kwon, Y.M.; Hargis, B.M.; Tellez-Isaias, G. Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions, and ileal microbiota in broiler chickens using a laboratory challenge model. Front. Vet. Sci.
2019, 6, 108. [CrossRef]
19. Engberg, R.M.; Grevsen, K.; Ivarsen, E.; Fretté, X.; Christensen, L.P.; Højberg, O.; Jense, B.B.; Canibe, N. The effect of Artemisia annua on broiler performance, on intestinal microbiota and on the course of a Clostridium perfringens infection applying a necrotic enteritis disease model. Avian Pathol. 2012, 41, 369–376. [CrossRef]
20. Lacey, J.A.; Stanley, D.; Keyburn, A.L.; Ford, M.; Chen, H.; Johanesen, P.; Lyras, D.; Moore, R.J. Clostridium perfringens-mediated necrotic enteritis is not influenced by the pre-existing microbiota but is promoted by large changes in the post-challenge microbiota.
Vet. Microbiol. 2018, 227, 119–126. [CrossRef] [PubMed]
21. Dar, M.A.; Urwat, U.; Ahmad, S.M.; Ahmad, R.; Kashoo, Z.A.; Dar, T.A.; Bhat, S.A.; Mumtaz, P.T.; Shabir, N.; Shah, R.A.; et al.
Gene expression and antibody response in chicken against Salmonella Typhimurium challenge. Poult. Sci. 2019, 98, 2008–2013.
[CrossRef] [PubMed]
22. Yang, H.; Yang, Y.; Dong, Y.; Ito, K.; Zhang, B. Highly nutritious diet resists Salmonella Typhimurium infections by improving intestinal microbiota and morphology in broiler chickens. Poult. Sci. 2020, 99, 7055–7065. [CrossRef]
23. Mora, Z.; Macías-Rodríguez, M.E.; Arratia-Quijada, J.; Gonzalez-Torres, Y.S.; Nuño, K.; Villarruel-López, A. Clostridium perfringens as foodborne pathogen in broiler production: Pathophysiology and potential strategies for controlling necrotic enteritis. Animals
2020, 10, 1718. [CrossRef] [PubMed]
24. Hernandez-Patlan, D.; Solís-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.; Hernandez-Velasco, X.; Merino-Guzman, R.; MéndezAlbores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of the dietary supplementation of a formulation containing ascorbic acid and a solid dispersion of curcumin with boric acid against Salmonella Enteritidis and necrotic enteritis in broiler chickens. Animals 2019, 9, 184. [CrossRef] [PubMed]
25. Shivaramaiah, S.; Wolfenden, R.; Barta, J.; Morgan, M.; Wolfenden, A.; Hargis, B.; Téllez, G. The role of an early Salmonella
Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Dis. 2011, 55, 319–323.
[CrossRef]
26. Latorre, J.D.; Adhikari, B.; Park, S.H.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Kwon,
Y.M.; Ricke, S.C.; et al. Evaluation of the epithelial barrier function and ileal microbiome in an established necrotic enteritis challenge model in broiler chickens. Front. Vet. Sci. 2018, 5, 199. [CrossRef]
27. Fernandes, L.P.; Candido, R.C.; Oliveira, W.P. Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends.
Food Bioprod. Process. 2012, 90, 425–432. [CrossRef]
28. Fernandes, L.; Oliveira, W.; Sztatisz, J.; Novák, C. Thermal properties and release of Lippia sidoides essential oil from gum arabic/maltodextrin microparticles. J. Therm. Anal. Calorim. 2008, 94, 461–467. [CrossRef]
29. National Research Council. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994; p. 176.
30. Cobb-Vantress Inc. Cobb 500 Broiler Performance and Nutrition Supplement. 2018. Available online: https://www.cobb-vantress. com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf (accessed on 5 September
2020).
31. Baxter, M.F.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, Y.D.; Graham, L.E.; Wolfenden, A.D.; HernandezVelasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [CrossRef]
32. Merino-Guzmán, R.; Latorre, J.D.; Delgado, R.; Hernandez-Velasco, X.; Wolfenden, A.D.; Teague, K.D.; Graham, L.E.; Mahaffey,
B.D.; Baxter, M.F.A.; Hargis, B.M.; et al. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 2017, 7, 116–120. [CrossRef]
33. Hofacre, C.L.; Froyman, R.; George, B.; Goodwin, M.A.; Brown, J. Use of aviguard, virginiamycin, or bacitracin MD against
Clostridium perfringens-associated necrotizing enteritis. J. Appl. Poult. Res. 1998, 7, 412–418. [CrossRef]
34. Latorre, J.D.; Hernandez-Velasco, X.; Kuttappan, V.A.; Wolfenden, R.E.; Vicente, J.L.; Wolfenden, A.D.; Bielke, L.R.; PradoRebolledo, O.F.; Emorales, E.; Hargis, B.M.; et al. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front. Vet. Sci. 2015, 2, 25. [CrossRef]
35. Annett, C.; Viste, J.; Chirino-Trejo, M.; Classen, H.; Middleton, D.; Simko, E. Necrotic enteritis: Effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathol. 2002, 31, 598–601. [CrossRef] [PubMed]
36. SAS Institute Inc. SAS/STAT User’s Guide; SAS Publishing: Cary, NC, USA, 2002; p. 112.
37. Villagrán-de la Mora, Z.; Vázquez-Paulino, O.; Avalos, H.; Ascencio, F.; Nuño, K.; Villarruel-López, A. Effect of a synbiotic mix on lymphoid organs of broilers infected with Salmonella Typhimurium and Clostridium perfringens. Animals 2020, 5, 886. [CrossRef]
[PubMed]
38. Villagrán-de la Mora, Z.; Nuño, K.; Vázquez-Paulino, O.; Avalos, H.; Castro-Rosas, J.; Gómez-Aldapa, C.; Angulo, C.; Ascencio,
F.; Villarruel-López, A. Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals 2019, 9, 777. [CrossRef] [PubMed]
39. Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006.
[CrossRef]
40. Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [CrossRef] [PubMed]
41. Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals.
Antibiotics 2016, 5, 30. [CrossRef] [PubMed]
42. Trifan, A.; Luca, S.V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A.C. Recent advances in tackling microbial multi-drug resistance with essential oils: Combinatorial and nano-based strategies. Crit. Rev. Microbiol. 2020, 46, 338–357. [CrossRef]
[PubMed]
43. Yin, D.; Du, E.; Yuan, J.; Gao, J.; Wang, Y.; Aggrey, S.E.; Guo, Y. Supplemental thymol and carvacrol increases ileum Lactobacillus population and reduces effect of necrotic enteritis caused by Clostridium perfringes in chickens. Sci. Rep. 2017, 7, 1–11. [CrossRef]
44. Patra, A.K. Interactions of plant bioactives with nutrient transport system in gut of livestock. Indian J. Anim. Health 2018, 57,
125–136. [CrossRef]
45. Pham, V.H.; Kan, L.; Huang, J.; Geng, Y.; Zhen, W.; Guo, Y.; Abbas, W.; Wamg, Z. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J. Anim. Sci. Biotechnol. 2020, 11, 1–18.
[CrossRef] [PubMed]
46. Remmal, A.; Mzabi, A.; Tanghort, M.; Chefchaou, H.; Moussa, H.; Chami, F.; Remmal, A. A comparative study of the anticlostridial activity of selected essential oils, their major components, and a natural product with antibiotics. Int. J. Poult. Sci. 2019, 18,
187–194. [CrossRef]
47. Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Frag. J. 2008, 23, 213–226. [CrossRef]
48. Bedini, S.; Cosci, F.; Tani, C.; Pierattini, E.C.; Venturi, F.; Lucchi, A.; Loriatti, C.; Ascrizzi, R.; Flamini, G.; Ferroni, G.; et al. Essential oils as post-harvest crop protectants against the fruit fly Drosophila suzukii: Bioactivity and organoleptic profile. Insects 2020,
11, 508. [CrossRef] [PubMed]
49. Kuttappan, V.A.; Vicuña, E.A.; Latorre, J.D.; Wolfenden, A.D.; Téllez, G.; Hargis, B.M.; Bielke, L.R. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front. Vet. Sci. 2015, 2, 66. [CrossRef] [PubMed]
50. Vicuña, E.; Kuttappan, V.; Tellez, G.; Hernandez-Velasco, X.; Seeber-Galarza, R.; Latorre, J.D.; Faulkner, O.B.; Wolfenden, A.D.;
Hargis, B.M.; Bielke, L.R. Dose titration of FITC-D for optimal measurement of enteric inflammation in broiler chicks. Poult. Sci.
2015, 94, 1353–1359. [CrossRef] [PubMed]
51. Zou, Y.; Xiang, Q.; Wang, J.; Peng, J.; Wei, H. Oregano essential oil improves intestinal morphology and expression of tight junction proteins associated with modulation of selected intestinal bacteria and immune status in a pig model. BioMed Res. Int.
2016, 2016, 1–11. [CrossRef]
52. Wei, H.K.; Chen, G.; Wang, R.-J.; Peng, J. Oregano essential oil decreased susceptibility to oxidative stress-induced dysfunction of intestinal epithelial barrier in rats. J. Funct. Foods 2015, 18, 1191–1199. [CrossRef]
53. Patra, A.K. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev. Med. Chem. 2020, 20,
566–577. [CrossRef] [PubMed]
54. DiRaimondo, T.R.; Klöck, C.; Khosla, C. Interferon-γ activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: Implications for celiac sprue therapy. J. Pharmacol. Exp. Ther. 2012, 341, 104–114. [CrossRef]
55. Al-Sadi, R.; Boivin, M.; Ma, T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765.
[CrossRef] [PubMed]
56. Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.; Hernandez-Velasco, X.; Merino-Guzman, R.; MéndezAlbores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against Salmonella Enteritidis infection and intestinal permeability in broiler chickens: A pilot study. Front. Microbiol.
2018, 9, 1289. [CrossRef]
57. Adhikari, B.; Hernandez-Patlan, D.; Solis-Cruz, B.; Kwon, Y.M.; Arreguin, M.; Latorre, J.D.; Hernandez-Velasco, X.; Hargis, B.M.;
Tellez-Isaias, G. Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (NorumTM) in broiler chickens infected with Salmonella Enteritidis. Front. Vet. Sci. 2019, 6, 282. [CrossRef] [PubMed]
58. Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [CrossRef] [PubMed]
59. Baxter, M.F.; Latorre, J.D.; Dridi, S.; Merino-Guzman, R.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez, G. Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front. Vet. Sci. 2019, 6, 144. [CrossRef] [PubMed]
60. Mehmood, F.; Aurangzeb, M.; Manzoor, F.; Fazal, S. A Comparative study of in vitro total antioxidant capacity, in vivo antidiabetic and antimicrobial activity of essential oils from leaves and seeds of Zanthoxylum armatum DC. Asian J. Chem. 2013, 25, 10221.
[CrossRef]
61. Mueller, K.; Blum, N.M.; Kluge, H.; Mueller, A.S. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic-and antioxidant enzymes in broiler chickens. Br. J. Nutr. 2012, 108, 588–602. [CrossRef]
62. Alavi, L.; Barzegar, M.; Jabbari, A.; Naghdi, B.N. The effect of heat treatment on chemical composition and antioxidant property of Lippia citriodora essential oil. J. Med. Plants 2011, 10, 65–75.
63. Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [CrossRef] [PubMed]
64. Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [CrossRef] [PubMed]
65. Da Silva, A.P.; Silva, N.F.; Andrade, E.H.A.; Gratieri, T.; Setzer, W.N.; Maia, J.G.S.; da Silva, J.K.R. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS ONE
2017, 12, e0175598. [CrossRef] [PubMed]
66. Stashenko, E.; Ruiz, C.; Muñoz, A.; Castañeda, M.; Martínez, J. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat. Prod. Commun. 2008, 3, 563–566. [CrossRef]
67. Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [CrossRef] [PubMed]
68. Raman, V.; Aryal, U.K.; Hedrick, V.; Ferreira, R.M.; Lorenzo, J.L.; Stashenko, E.E.; Levy, M.; Camarillo, I.G. Proteomic analysis reveals that an extract of the plant Lippia origanoides suppresses mitochondrial metabolism in triple-negative breast cancer cells.
J. Proteome. Res. 2018, 17, 3370–3383. [CrossRef] [PubMed]