Distillers dried grains with solubles (DDGS) have increasingly been used in poultry diets as a consequence of rising grain costs. Some, but not all, sources of DDGS have a variable compositional value, and a high inclusion of this by-product could be considered a risk factor for presentation of enteric diseases. Presently, 2 experiments were conducted using a starter corn-soybean diet (zero to 7 d) and a corn- DDGS-soybean grower diet (8 to 28 d) with or without inclusion of a Bacillus-direct-fed microbial (DFM). In both experiments, day-of-hatch chicks were randomly assigned to 2 different groups: control group without DFM or Bacillus-DFM group, containing 106 spores/g of feed. In each experiment, 8 pens of 20 chicks (n = 160/group) were used. Performance parameters of BW, BW gain (BWG), feed intake (FI), and feed conversion (FCR) were evaluated in each growth phase. Additionally, in experiment 2, intestinal samples were collected to determine duodenal and ileal morphology (n = 8/group), as well as the microbiota population of total lactic acid bacteria (TLAB), total Gram-negative bacteria (TGNB), and total anaerobic bacteria (TAB) on d 28 (n = 16/group). Furthermore, both tibias were evaluated for bone strength and bone composition (n = 16/group). In both experiments, BW, BWG, and FCR were improved by the DFM when compared to the control group (P < 0.05). In experiment 2, chickens supplemented with the DFM had less TGNB in the foregut intestinal segment and higher TLAB counts in both foregut and hindgut sections (P < 0.05). In addition, significant increases in tibia breaking strength and bone mineralization were observed in the DFM group when compared with the control. In the case of intestinal morphology, DFM dietary inclusion increased villus height (VH), villus width, villus area, muscular thickness, and the VH to crypt depth ratio (VH:CD) in both duodenum and ileum sections. Results of the present study suggest that consumption of a selected Bacillus-DFM producing a variable set of enzymes could contribute to enhanced performance, intestinal microbial balance, and bone quality in broiler chickens consuming a grower diet that contains corn-DDGS.
Key words: Bacillus-DFM, DDGS, enzymes, microbiota, bone quality
Table 2. Evaluation of body weight, body weight gain, feed intake, and feed conversion ratio in broiler chickens consuming a corn-DDGS-soybean grower diet with or without dietary inclusion of a Bacillus-direct-fed microbial (DFM) (Experiment 1).1 | Table 3. Evaluation of body weight, body weight gain, feed intake, and feed conversion ratio in broiler chickens consuming a corn-DDGS-soybean grower diet with or without dietary inclusion of a Bacillus-direct-fed microbial (DFM) (Experiment 2).1 | |
AOAC International. 2000. Animal feeds. Pages 1–54 in Official Methods of Analysis of AOAC International. Horwaitz, W. ed. AOAC International, Gaithersburg, MD, USA.
Aptekmann, K. P., S. M. Baraldi Artoni, M. A. Stefanini, and M. A. Orsi. 2001. Morphometric analysis of the intestine of domestic quails (Coturnix coturnix japonica) treated with different levels of dietary calcium. Anat. Histol. Embryol. 30: 277–280.
Barekatain, M., C. Antipatis, N. Rodgers, S. Walkden-Brown, P. Iji, and M. Choct. 2013. Evaluation of high dietary inclusion of distillers dried grains with solubles and supplementation of protease and xylanase in the diets of broiler chickens under necrotic enteritis challenge. Poult. Sci. 92:1579–1594.
Bedford, M. R., H. L. Classen, and G. Campbell. 1991. The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci. 70:1571– 1577.
Bedford, M. R., and H. L. Classen. 1993. An in vitro assay for prediction of broiler intestinal viscosity and growth when fed ryebased diets in the presence of exogenous enzymes. Poult. Sci. 72: 137–143.
Bedford, M. R., and H. Schulze. 1998. Exogenous enzymes for pigs and poultry. Nut. Res. Rev. 11:91–114.
Behnke, K. C. 2007. Feed manufacturing considerations for using DDGS in poultry and livestock diets. Proc. Mid-Atlantic Nutrition Conference, MD, USA, College Park.
Cartman, S. T., R. M. La Ragione, and M. J. Woodward. 2007. Bacterial spore formers as probiotics for poultry. Food. Sci. Technol. Bull. 4:21–30.
Choct, M., R. J. Hughes, R. P. Trimble, K. Angkanaporn, and G. Annison. 1995. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. J. Nutr. 125:485–492.
Choct, M. 2006. Enzymes for the feed industry: Past, present and future. World Poult. Sci. J. 62:5–16.
Choi, Y. M., H. J. Suh, and J. M. Kim. 2001. Purification and properties of extracellular phytase from Bacillus spp. KHU-10. J. Protein. Chem. 20:287–292.
Cobb-Vantress Inc. 2015. Broiler performance and nutrition supplement. Accessed Sep. 2016. http://www.cobb-vantress.com/docs/ default-source/cobb-500guides/Cobb500 Broiler PerformanceAnd Nutrition Supplement.pdf.
Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28:214–220. Donohue, M., and D. L. Cunningham. 2009. Effects of grain and oil seed prices on the costs of US poultry production. J. App. Poult. Res. 18:325–337.
Fastinger, N. D., J. D. Latshaw, and D. C. Mahan. 2006. Amino acid availability and true metabolizable energy content of corn distillers dried grains with solubles in adult cecectomized roosters. Poult. Sci. 85:1212–1216.
Hendricks, C. W., J. D. Doyle, and B. Hugley. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61:2016–2019.
Hosoi, T., A. Ametani, K. Kiuchi, and S. Kaminogawa. 2000. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can. J. Microbiol. 46:892–897.
Ibrahim, S. E., H. B. El Amin, E. N. Hassan, and A. M. E. Sulieman. 2012. Amylase production on solid state fermentation by Bacillus spp. Food Public Health. 2:30–35.
Jaworski, N. W., H. N. Lærke, K. E. Bach Knudsen, and H. H. Stein. 2015. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 93: 1103–1113.
Kim, Y., N. S. Mosier, R. Hendrickson, T. Ezeji, H. Blaschek, B. Dien, M. Cotta, B. Dale, and M. R. Ladisch. 2008. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour. Technol. 99:5165–5176.
Langhout, D., J. Schutte, C. Geerse, A. Kies, J. De jong, and M. Verstegen. 1997. Effects on chick performance and nutrient digestibility of an endo-xylanase added to a wheat-and rye-based diet in relation to fat source. Br. Poult. Sci. 38: 557–563.
Latorre, J. D., X. Hernandez-Velasco, G. Kallapura, A. Menconi, N. R. Pumford, M. J. Morgan, S. L. Layton, L. R. Bielke, B. M. Hargis, and G. T´ellez. 2014a. Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens. Poult. Sci. 93: 1793–1800.
Latorre, J. D., X. Hernandez-Velasco, M. H. Kogut, J. L. Vicente, R. Wolfenden, A. Wolfenden, B. M. Hargis, V. A. Kuttappan, and G. Tellez. 2014b. Role of a Bacillus subtilis direct-fed microbial on digesta viscosity, bacterial translocation, and bone mineralization in turkey poults fed with a rye-based diet. Front. Vet. Sci. 1:26.
Latorre, J. D., X. Hernandez-Velasco, L. R. Bielke, J. L. Vicente, R. Wolfenden, A. Menconi, B. Hargis, and G. Tellez. 2015a. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br. Poult. Sci. 56:723–732.
Latorre, J. D., X. Hernandez-Velasco, V. A. Kuttappan, R. E. Wolfenden, J. L. Vicente, A. D. Wolfenden, L. R. Bielke, O. F. Prado-Rebolledo, E. Morales, B. M. Hargis, and G. Tellez. 2015b. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front.Vet. Sci. 2:25.
Loar, R.E., II, J. S. Moritz, J. R. Donaldson, and A. Corzo. 2010. Effect of feeding distillers dried grains with solubles to broilers from 0 to 28 days posthatch on broiler performance, feed manufacturing efficiency, and selected intestinal characteristics. Poult. Sci. 89:2242–2250.
Martinez-Amezcua, C., C. M. Parsons, V. Singh, R. Srinivasan, and G. S. Murthy. 2007. Nutritional characteristics of distillers dried grains with solubles as affected by the amounts of grain versus solubles and different processing techniques. Poult. Sci. 86:2624– 2630.
Menconi, A., M. J. Morgan, N. R. Pumford, B. M. Hargis, and G. Tellez. 2013. Physiological properties and Salmonella growth inhibition of probiotic Bacillus strains isolated from environmental and poultry sources. Int. J. Bacteriol. 2013:1–8.
Min, Y., F. Liu, A. Karimi, C. Coto, C. Lu, F. Yan, and P.Waldroup. 2011. Effect of Rovabio Max AP on performance, energy and nitrogen digestibility of diets high in distillers dried grains with solubles (DDGS) in broilers. Int. J. Poult. Sci. 10:796–803.
Monisha, R., M. V. Uma, and V. Krishna Murthy. 2009. Partial purification and characterization of Bacillus pumilus xylanase from soil source. KATSU 5:137–148.
NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.
Olajuyigbe, F.M., and J. O. Ajele. 2005. Production dynamics of extracellular protease from Bacillus species. Afr. J. Biotechnol. 4:776–779.
Rasband, W. S. 1997–2012. ImageJ user guide. U.S. National Institutes of Health, Bethesda, MD, USA. Accessed Sep. 2016. https://imagej.nih.gov/ij/docs/guide/146.html.
Sakamoto, K., H. Hirose, A. Onizuka, M. Hayashi, N. Futamura, Y. Kawamura, and T. Ezaki. 2000. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res. 94:99–106.
SAS Institute. 2002. SAS User Guide. Version 9.1. SAS Institute Inc., Cary, NC.
Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut. 35 (1 Suppl): S35–S38.
Shah, K. R., and S. A. Bhatt. 2011. Purification and characterization of lipase from Bacillus subtilis Pa2. J. Biochem. Tech. 3:292–295.
Shivaramaiah, S., N. Pumford, M. Morgan, R. Wolfenden, A. Wolfenden, A. Torres-Rodriguez, B. Hargis, and G. Tellez. 2011. Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poult. Sci. 90:1574–1580.
Singh, V., D. B. Johnston, K. Naidu, K. D. Rausch, R. L. Belyea, and M. Tumbleson. 2005. Comparison of modified dry-grind corn processes for fermentation characteristics and DDGS composition. Cereal. Chem. 82:187–190.
Slominski, B. A. 2011. Recent advances in research on enzymes for poultry diets. Poult. Sci. 90:2013–2033.
Spiehs, M. J., M. H. Whitney, and G. C. Shurson. 2002. Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80:2639–2645.
Stein, H. H. 2007. Distillers dried grains with solubles (DDGS) in diets fed to swine. Swine Focus 1:1–8.
´Swi _ atkiewicz, S., and J. Koreleski. 2008. The use of distillers dried grains with solubles (DDGS) in poultry nutrition. World Poult. Sci. J. 64:257–266.
US Grains Council. 2012. A guide to distiller’s dried grains with solubles (DDGS). Accessed sep. 2016. http://www.grains.org/ buyingselling/ddgs/ddgs-user-handbook.
Wang, Z., S. Cerrate, C. Coto, F. Yan, and P. W. Waldroup. 2007a. Utilization of distillers dried grains with solubles (DDGS) in broiler diets using a standardized nutrient matrix. Int. J. Poult. Sci. 6:470–477.
Wang, Z., S. Cerrate, C. Coto, F. Yan, and P. W. Waldroup. 2007b. Use of constant or increasing levels of distillers dried grains with solubles (DDGS) in broiler diets. Int. J. Poult. Sci. 6:501–507.
Wolfenden, R., N. Pumford, M. Morgan, S. Shivaramaiah, A. Wolfenden, G. Tellez, and B. Hargis. 2010. Evaluation of a screening and selection method for Bacillus isolates for use as effective direct-fed microbials in commercial poultry. Int. J. Poult. Sci. 9:317–323.
Wolfenden, R., N. Pumford, M. Morgan, S. Shivaramaiah, A. Wolfenden, C. Pixley, J. Green, G. Tellez, and B. Hargis. 2011.
Evaluation of selected direct-fed microbial candidates on live performance and Salmonella reduction in commercial turkey brooding houses. Poult. Sci. 90:2627–2631.
Zhang, B., and C. N. Coon. 1997. The relationship of various tibia bone measurements in hens. Poult. Sci. 76:1698–1701.
Zhao, S., L. Deng, N. Hu, B. Zhao, and Y. Liang 2008. Cost-effective production of Bacillus licheniformis using simple netting bag solid bioreactor. World J. Microbiol. Biotechnol. 24:2859–2863.
Zijlstra, R., A. Owusu-Asiedu, and P. Simmins. 2010. Future of NSPdegrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livest. Sci. 134:255–257.