Author details:
Campylobacter jejuni is the leading cause of bacterial gastroenteritis, or campylobacteriosis, in humans worldwide, and poultry serves as a major source of infection. To reduce the risk associated with C. jejuni transmission via poultry meat, effective interventions during poultry production are needed, and the use of probiotics is a promising approach. In this study, 15 Bacillus subtilis strains were initially screened for their anti-Campylobacter activities. B. subtilis PS-216 strain demonstrated the best anti-Campylobacter activity against 15 C. jejuni isolates when examined using in vitro co-cultures. To evaluate the suitability of B. subtilis PS-216 for probiotic use, its susceptibility to eight clinically important antimicrobials and simulated gastric conditions was investigated. B. subtilis PS-216 was sensitive to all of the tested antibiotics. Although vegetative cells were sensitive to gastric conditions, B. subtilis PS-216 spores were highly resistant. We further evaluated the use of a B. subtilis PS-216 spore preparation (2.5 × 106 CFU/mL water) to prevent and/or reduce C. jejuni colonization in broiler chickens in vivo. Compared to the untreated group, significantly lower Campylobacter counts were detected in caeca of broilers continuously treated with B. subtilis PS-216 spores in their drinking water. Furthermore, broilers continuously treated with B. subtilis PS-216 spores showed improved weight gain, compared to the control group. Together, these results demonstrate the potential of B. subtilis PS-216 for use in poultry to reduce C. jejuni colonization and improve weight gain.
Keywords: Campylobacter jejuni, Bacillus subtilis, probiotic, alternative to antibiotics, spore-containing drinking water, broiler chicken.
Aguiar, V. F., Donoghue, A. M., Arsi, K., Reyes-Herrera, I., Metcalf, J. H., de los Santos, F. S., et al. (2013). Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathog. Dis. 10, 435–441. doi: 10.1089/fpd.2012.1302
Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Sachan, S., Karthik, K., and Dhama, K. (2018). The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 25, 10611–10618. doi: 10.1007/s11356-018-1687-x
Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., and Donoghue, D. J. (2015). Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. J. Food Prot. 78, 209–213. doi: 10.4315/0362-028X.JFP-14-326
Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J., and Henriques, A. O. (2005). Screening for bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 71, 968–978. doi: 10.1128/AEM.71.2.968-978.2005
Berndtson, E., Danielsson-Tham, M. L., and Engvall, A. (1996). Campylobacter incidence on a chicken farm and the spread of Campylobacter during the slaughter process. Int. J. Food Microbiol. 32, 35–47. doi: 10.1016/0168-1605(96) 01102-6
Cartman, S. T., La Ragione, R. M., and Woodward, M. J. (2008). Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl. Environ. Microbiol. 74, 5254–5258. doi: 10.1128/AEM.00580-08
Ciurescu, G., Dumitru, M., Gheorghe, A., Untea, A. E., and Draghici, R. (2020). ˘ Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources. Poult. Sci. 99, 5960–5971. doi: 10.1016/j.psj.2020.08.075
Dogan, O. B., Clark, J., Mattos, F., and Wang, B. (2019). A quantitative microbial risk assessment model of Campylobacter in broiler chickens: evaluating processing interventions. Food Control 100, 97–110. doi: 10.1016/j.foodcont. 2019.01.003
Efremenkova, O. V., Gabrielyan, N. I., Malanicheva, I. A., Efimenko, T. A., Terekhova, L. P., Udalova, V. V., et al. (2016). Antibiotic activity of probiotic strain Bacillus subtilis 534 against clinical isolates of Acinetobacter baumannii. Antibiot. Khimioter. 61, 3–7.
EFSA (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10:2740. doi: 10.2903/j.efsa.2012.2740
EFSA, and ECDC (2019). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 17:5598. doi: 10.2903/j.efsa.2019.5598
EFSA, and ECDC (2021a). The European Union One Health 2019 zoonoses report. EFSA J. 19:6406. doi: 10.2903/j.efsa.2021.6406 EFSA, and ECDC (2021b). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 19:6490. doi: 10.2903/j.efsa.2021.6490
El-Hack, M. E. A., El-Saadony, M. T., Shafi, M. E., Qattan, S. Y. A., Batiha, G. E., Khafaga, A. F., et al. (2020). Probiotics in poultry feed: a comprehensive review. J. Anim. Physiol. Anim. Nutr. 104, 1835–1850. doi: 10.1111/jpn.13454
Erega, A., Stefanic, P., Dogsa, I., Danevci ˇ c, T., Simunovic, K., Klan ˇ cnik, A., ˇ et al. (2021). Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Appl. Environ. Microbiol. 87:e0295520. doi: 10. 1128/AEM.02955-20
FEEDAP Panel on Additives and Products or Substances used in Animal Feed (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10:2740.
Fritts, C. A., Kersey, J. H., Motl, M. A., Kroger, E. C., Yan, F., Si, J., et al. (2000). Bacillus subtilis C-3102 (Calsporin) improves live performance and microbiological status of broiler chickens. J. Appl. Poult. Res. 9, 149–155. doi: 10.1093/japr/9.2.149
Guyard-Nicodème, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le Berre, B., et al. (2016). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 95, 298–305. doi: 10.3382/ps/pev303
Hayashi, R. M., Lourenço, M. C., Kraieski, A. L., Araujo, R. B., Gonzalez-Esquerra, R., Leonardecz, E., et al. (2018). Effect of feeding Bacillus subtilis spores to broilers challenged with Salmonella enterica serovar Heidelberg Brazilian strain UFPR1 on performance, immune response, and gut health. Front. Vet. Sci 5:13 doi: 10.3389/fvets.2018.00013
Helms, M., Simonsen, J., Olsen, K. E. P., and Mølbak, K. (2005). Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study. J. Infect. Dis. 191, 1050–1055. doi: 10.1086/42 8453
Hmani, H., Daoud, L., Jlidi, M., Jalleli, K., Ben Ali, M., Hadj Brahim, A., et al. (2017). A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. J. Ind. Microbiol. Biotechnol. 44, 1157–1166. doi: 10.1007/s10295-017-1944-x
Hong, H. A., Duc, L. H., and Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835. doi: 10.1016/j.femsre. 2004.12.001
Huang, T., Geng, H., Miyyapuram, V. R., Sit, C. S., Vederas, J. C., and Nakano, M. M. (2009). Isolation of a variant of subtilosin A with hemolytic activity. J. Bacteriol. 191, 5690–5696. doi: 10.1128/JB.00541-09
Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., and Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult. Sci. 92, 370–374. doi: 10.3382/ps.2012-02528
Jha, R., Das, R., Oak, S., and Mishra, P. (2020). Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a Systematic Review. Animals 10:1863. doi: 10. 3390/ani10101863
Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Davies, R., et al. (2020). Update and review of control options for Campylobacter in broilers at primary production. EFSA J. 18:e06090. doi: 10.2903/j.efsa.2020. 6090
Kovac, J., Stessl, B., ˇ Cadež, N., Gruntar, I., Cimerman, M., Stingl, K., et al. (2018). ˇ Population structure and attribution of human clinical Campylobacter jejuni isolates from central Europe to livestock and environmental sources. Zoonoses Public Health 65, 51–58. doi: 10.1111/zph.12366
Kuhn, K. G., Nygård, K. M., Guzman-Herrador, B., Sunde, L. S., Rimhanen-Finne, R., Trönnberg, L., et al. (2020). Campylobacter infections expected to increase due to climate change in Northern Europe. Sci. Rep. 10:13874. doi: 10.1038/ s41598-020-70593-y
La Ragione, R. M., Casula, G., Cutting, S. M., and Woodward, M. J. (2001). Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet. Microbiol. 79, 133–142. doi: 10.1016/s0378-1135(00)00350-3
La Ragione, R. M., and Woodward, M. J. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol. 94, 245–256. doi: 10.1016/s0378- 1135(03)00077-4
Latorre, J. D., Hernandez-Velasco, X., Kallapura, G., Menconi, A., Pumford, N. R., Morgan, M. J., et al. (2014). Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens. Poult. Sci. 93, 1793–1800. doi: 10.3382/ps.2013-03809
Lutful Kabir, S. M. (2009). The role of probiotics in the poultry industry. Int. J. Mol. Sci. 10, 3531–3546. doi: 10.3390/ijms10083531
Meunier, M., Guyard-Nicodème, M., Dory, D., and Chemaly, M. (2016). Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. J. Appl. Microbiol 120, 1139–1173. doi: 10.1111/jam.12986
Mingmongkolchai, S., and Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. J. Appl. Microbiol. 124, 1334–1346. doi: 10.1111/jam.13690
Mohan, V. (2015). The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1503–1513. doi: 10.1007/s10096-015-2392-z
Mortada, M., Cosby, D. E., Shanmugasundaram, R., and Selvaraj, R. K. (2020). In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J. Appl. Poult. Res. 29, 435–446. doi: 10.1016/j.japr.2020.02.001
Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M., and Mandic Mulec, I. (2015). Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb. Biotechnol. 8, 527–540. doi: 10.1111/1751-7915.12258
Pariza, M. W., Gillies, K. O., Kraak-Ripple, S. F., Leyer, G., and Smith, A. B. (2015). Determining the safety of microbial cultures for consumption by humans and animals. Regul. Toxicol. Pharmacol. 73, 164–171. doi: 10.1016/j.yrtph.2015.07. 003
Park, J. H., Kim, Y. M., Kang, D. K., and Kim, I. H. (2017). Effect of Dietary Bacillus subtilis C14 and RX7 strains on growth performance, blood parameter, and intestinal microbiota in broiler chickens challenged with Salmonella gallinarum. J. Poult. Sci. 54, 236–241. doi: 10.2141/jpsa.0160078
Robyn, J., Rasschaert, G., Hermans, D., Pasmans, F., and Heyndrickx, M. (2013). In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poult. Sci. 92, 265–271. doi: 10.3382/ps.2012-02712
Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G., and Zhang, Q. (2015). Campylobacter in poultry: ecology and potential interventions. Avian Dis. 59, 185–200. doi: 10.1637/11072-032315-Review
Saint-Cyr, M. J., Guyard-Nicodème, M., Messaoudi, S., Chemaly, M., Cappelier, J. M., Dousset, X., et al. (2016). Recent advances in screening of antiCampylobacter activity in probiotics for use in poultry. Front. Microbiol 7:553. doi: 10.3389/fmicb.2016.00553
Sharma, P., Tomar, S. K., Goswami, P., Sangwan, V., and Singh, R. (2014). Antibiotic resistance among commercially available probiotics. Food Res. Int. 57, 176–195. doi: 10.1016/j.foodres.2014.01.025
Šimunovic, K., Stefanic, P., Klan ´ cnik, A., Erega, A., Mandic-Mulec, I., ˇ and Smole Možina, S. S. (2022). Bacillus subtilis PS-216 antagonistic activities against Campylobacter jejuni NCTC 11168 are modulated by temperature, oxygen, and growth medium. Microorganisms 10:289. doi: 10. 3390/microorganisms10020289
Štefanic, P., and Mandic Mulec, I. (2009). Social interactions and distribution ˇ of Bacillus subtilis pherotypes at microscale. J. Bacteriol. 191, 1756–1764. doi: 10.1128/JB.01290-08
Tam, C. C., and O’Brien, S. J. (2016). Economic cost of Campylobacter, norovirus and rotavirus disease in the United Kingdom. PLoS One 11:e0138526. doi: 10.1371/journal.pone.0138526
Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., et al. (2002). Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob. Agents Chemother. 46, 315–320. doi: 10.1128/AAC.46.2.315-320.2002
van Wagenberg, C. P. A., van Horne, P. L. M., and van Asseldonk, M. A. P. M. (2020). Cost-effectiveness analysis of using probiotics, prebiotics, or synbiotics to control Campylobacter in broilers. Poult. Sci. 99, 4077–4084. doi: 10.1016/j. psj.2020.05.003
Warriner, K., and Waites, W. M. (1999). Enhanced sporulation in Bacillus subtilis grown on medium containing glucose:ribose. Lett. Appl. Microbiol. 29, 97–102. doi: 10.1046/j.1365-2672.1999.00593.x
Wine, E., Gareau, M. G., Johnson-Henry, K., and Sherman, P. M. (2009). Strainspecific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol. Lett 300, 146–152. doi: 10.1111/j.1574-6968.2009.01781.x
Zheng, M., Zhang, R., Tian, X., Zhou, X., Pan, X., and Wong, A. (2017). Assessing the risk of probiotic detary supplements in the context of antibiotic resistance. Front. Microbiol 8:908 doi: 10.3389/fmicb.2017.00908
Zhou, X., Jin, E., Li, S., Wang, C., Qiao, E., and Wu, G. (2015). Effects of dietary supplementation of probiotics (Bacillus subtilis, Bacillus licheniformis, and Bacillus natto) on broiler muscle development and meat quality. Turk. J. Vet. Anim. Sci. 39, 203–210.