Author details
1 Department of Animal Science, Iowa State University, Ames, IA 50011, USA; 2 Department of Animal Science, University of California, Davis, CA 95615, USA; 3 Hy-Line International, Dallas Center, IA 50063, USA; 4 School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however, poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.
Keywords: haplotype; heat stress; Newcastle disease virus; commercial poultry; immune response.
1. Kitalyi, A.J. Village Chicken Production Systems in Rural Africa: Household Food Security and Gender Issues; FAO: Rome, Italy, 1998.
2. Nyoni, N.M.B.; Grab, S.; Archer, E.R.M. Heat stress and chickens: Climate risk effects on rural poultry farming in low-income countries. Clim. Dev. 2018. [CrossRef]
3. Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [CrossRef] [PubMed]
4. Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, livability, and feed conversion of 1957 vs. 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult. Sci. 1994, 73, 1785–1794. [CrossRef] [PubMed]
5. Cole, R.K.; Hutt, F.B. Genetic differences in resistance to Newcastle disease. Avian Dis. 1961, 5, 205–214. [CrossRef]
6. Gordon, C.D.; Beard, C.W.; Hopkins, S.R.; Siegel, H.S. Chick mortality as a criterion for selection toward resistance or susceptibility to Newcastle disease. Poult. Sci. 1970, 50, 783–789. [CrossRef] [PubMed]
7. Peleg, B.A.; Soller, M.; Ron, N.; Hornstein, K.; Brody, T.; Kalmar, E. Familial differences in antibody response of broiler chickens to vaccination with attenuated and inactivated Newcastle disease virus vaccine. Avian Dis. 1976, 20, 661–668. [CrossRef] [PubMed]
8. Pitcovski, J.; Heller, D.E.; Cahaner, A.; Peleg, B.A. Selection for early responsiveness of chicks to Escherichia coli and Newcastle disease virus. Poult. Sci. 1987, 66, 1276–1282. [CrossRef] [PubMed]
9. Soller, M.; Heller, D.; Peleg, B.; Ron-Kuper, N.; Hornstein, K. Genetic and phenotypic correlations between immune response to Escherichia coli and to Newcastle disease virus vaccines. Poult. Sci. 1981, 60, 49–53. [CrossRef] [PubMed]
10. Wilson, H.R.; Wilcox, C.J.; Voitle, R.A.; Baird, C.D.; Dorminey, R.W. Characteristics of White Leghorn chickens selected for heat tolerance. Poult. Sci. 1975, 54, 126–130. [CrossRef] [PubMed]
11. Mack, L.A.; Felver-Gant, J.N.; Dennis, R.L.; Cheng, H.W. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 2013, 92, 285–294. [CrossRef] [PubMed]
12. Washburn, K.W.; Peavey, R.; Renwick, G.M. Relationship of strain variation and feed restriction to variation in blood pressure and response to heat stress. Poult. Sci. 1980, 59, 2586–2588. [CrossRef] [PubMed]
13. Hu, Z.; Hu, J.; Hu, S.; Song, Q.; Ding, P.; Zhu, J.; Liu, X.; Wang, X.; Liu, X. High levels of virus replication and an intense inflammatory response contribute to the severe pathology in lymphoid tissues caused by Newcastle disease virus genotype VIId. Arch. Virol. 2015, 160, 639–648. [CrossRef] [PubMed]
14. Rasoli, M.; Yeap, S.K.; Tan, S.W.; Moeini, H.; Ideris, A.; Bejo, M.H.; Alitheen, N.B.M.; Kaiser, P.; Omar, A.R. Alteration in lymphocyte responses, cytokine and chemokine profiles in chickens infected with genotype VII and VIII velogenic Newcastle disease virus. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 11–21. [CrossRef] [PubMed]
15. Schilling, M.A.; Katani, R.; Memari, S.; Cavanaugh, M.; Buza, J.; Radzio-Basu, J.; Mpenda, F.N.; Deist, M.S.; Lamont, S.J.; Kapur, V. Transcriptional innate immune response of the developing chicken embryo to Newcastle disease virus infection. Front. Genet. 2018, 9, 61. [CrossRef] [PubMed]
16. Wang, S.H.; Cheng, C.Y.; Tang, P.C.; Chen, C.F.; Chen, H.H.; Lee, Y.P.; Huang, S.Y. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 2013, 79, 374–382. [CrossRef] [PubMed]
17. Jia, Y.Q.; Wang, X.L.; Wang, X.W.; Yan, C.Q.; Lv, C.J.; Li, X.Q.; Chu, Z.L.; Adam, F.E.A.; Xiao, S.; Zhang, S.X.; et al. Common microRNA–mRNA interactions in different Newcastle disease virus-infected chicken embryonic visceral tissues. Int. J. Mol. Sci. 2018, 19. [CrossRef] [PubMed]
18. Guo, X.; Wang, L.; Cui, D.; Ruan, W.; Liu, F.; Li, H. Differential expression of the Toll-like receptor pathway and related genes of chicken bursa after experimental infection with infectious bursa disease virus. Arch. Virol. 2012, 157, 2189–2199. [CrossRef] [PubMed]
19. Rue, C.A.; Susta, L.; Cornax, I.; Brown, C.C.; Kapczynski, D.R.; Suarez, D.L.; King, D.J.; Miller, P.J.; Afonso, C.L. Virulent Newcastle disease virus elicits a strong innate immune response in chickens. J. Gen. Virol. 2011, 92, 931–939. [CrossRef] [PubMed]
20. Kang, Y.; Feng, M.; Zhao, X.; Dai, X.; Xiang, B.; Gao, P.; Li, Y.; Li, Y.; Ren, T. Newcastle disease virus infection in chicken embryonic fibroblasts but not duck embryonic fibroblasts is associated with elevated host innate immune response. Virol. J. 2016, 13. [CrossRef] [PubMed]
21. Cheng, J.; Sun, Y.; Zhang, X.; Zhang, F.; Zhang, S.; Yu, S.; Qiu, X.; Tan, L.; Song, C.; Gao, S.; et al. Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Arch. Virol. 2014, 159, 2937–2948. [CrossRef] [PubMed]
22. Xu, D.; Li, W.; Huang, Y.; He, J.; Tian, Y. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz (PAMK) on immune response in chicken spleen under heat stress. Biol. Trace Elem. Res. 2014, 160, 232–237. [CrossRef] [PubMed]
23. Sun, L.; Lamont, S.J.; Cooksey, A.M.; Mccarthy, F.; Tudor, C.O.; Vijay-Shanker, K.; Derita, R.M.; Rothschild, M.; Ashwell, C.; Persia, M.E.; et al. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 2015, 20, 939–950. [CrossRef] [PubMed]
24. Reemers, S.S.; van Haarlem, D.A.; Groot Koerkramp, M.J.; Vervelde, L. Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. J. Gen. Virol. 2009, 90, 2134–2146. [CrossRef] [PubMed]
25. Micheli, L.; Leonardi, L.; Conti, F.; Maresca, G.; Colazingari, S.; Mattei, E.; Lira, S.A.; Farioli-Vecchioli, S.; Caruso, M.; Tirone, F. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-κB. J. Biol. Chem. 2011. [CrossRef] [PubMed]
26. Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Novel analysis of the Harderian gland transcriptome response to Newcastle disease virus in two inbred chicken lines. Sci. Rep. 2018, 8. [CrossRef] [PubMed]
27. Hiscott, J.; Nguyen, T.L.A.; Arguello, M.; Nakhaei, P.; Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 2006, 25, 6844–6867. [CrossRef] [PubMed]
28. Byland, R.; Vance, P.J.; Hoxie, J.A.; Marsh, M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol. Biol. Cell 2007, 18, 414–425. [CrossRef] [PubMed]
29. Gytz, H.; Hansen, M.F.; Skovbjerg, S.; Kristensen, A.C.M.; Hørlyck, S.; Jensen, M.B.; Fredborg, M.; Markert, L.D.; McMillan, N.A.; Christensen, E.I.; et al. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins. Biol. Cell 2017, 109, 94–112. [CrossRef] [PubMed]
30. Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [CrossRef] [PubMed]
31. Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [CrossRef] [PubMed]
32. Li, Z.; Menoret, A.; Srivastava, P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol. 2002, 14, 45–51. [CrossRef]
33. Kilic, I.; Simsek, E. The effects of heat stress on egg production and quality of laying hens. J. Anim. Vet. Adv. 2013, 12, 42–47.
34. Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamonta, S.J. Novel mechanisms revealed in the trachea transcriptome of resistant and susceptible chicken lines following infection with Newcastle disease virus. Clin. Vaccine Immunol. 2017, 24. [CrossRef] [PubMed]
35. Rowland, K.; Wolc, A.; Gallardo, R.A.; Kelly, T.; Zhou, H.; Dekkers, J.C.M.; Lamont, S.J. Genetic analysis of a commercial egg laying line challenged with Newcastle disease virus. Front. Genet. 2018, 9. [CrossRef] [PubMed]
36. Saelao, P.; Wang, Y.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Dekkers, J.C.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Genomic regions affecting response to Newcastle disease virus infection in heat stressed Hy-Line Brown layers using chicken 600 K SNP array. BMC Genet. 2018. submitted.
37. Fulton, J.E.; McCarron, A.M.; Lund, A.R.; Pinegar, K.N.; Wolc, A.; Chazara, O.; Bed’Hom, B.; Berres, M.; Miller, M.M. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet. Sel. Evol. 2016, 48, 1. [CrossRef] [PubMed]
38. Kranis, A.; Gheyas, A.A.; Boschiero, C.; Turner, F.; Yu, L.; Smith, S.; Talbot, R.; Pirani, A.; Brew, F.; Kaiser, P.; et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genom. 2013, 14. [CrossRef] [PubMed]
39. Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [CrossRef] [PubMed]
40. Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33. [CrossRef]
41. Wang, Y.; Saelao, P.; Rowland, K.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Dekkers, J.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Genomic regions affecting response to heat stress in Hy-Line Brown layers using chicken 600 K SNP array. Unpublished word. 2018.
42. Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide Release 4.1 Functional Specification; VSN International Ltd.: Hemel Hempstead, UK, 2015.
43. VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [CrossRef] [PubMed]
44. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.
45. Lwelamira, J.; Kifaro, G.C.; Gwakisa, P.S. Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Trop. Anim. Health Prod. 2009, 41, 51–59. [CrossRef] [PubMed]
46. Van Goor, A.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genom. 2016, 17, 287. [CrossRef] [PubMed]
47. Lan, X.; Wang, Y.; Tian, K.; Ye, F.; Yin, H.; Zhao, X.; Xu, H.; Huang, Y.; Liu, H.; Hsieh, J.C.F.; et al. Integrated host and viral transcriptome analyses reveal pathology and inflammatory response mechanisms to ALV-J injection in SPF chickens. Sci. Rep. 2017, 7. [CrossRef] [PubMed]
48. Cong, F.; Liu, X.; Han, Z.; Shao, Y.; Kong, X.; Liu, S. Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genom. 2013. [CrossRef] [PubMed]
49. Miao, J.; Bao, Y.; Ye, J.; Shao, H.; Qian, K.; Qin, A. Transcriptional profiling of host gene expression in chicken embryo fibroblasts infected with reticuloendotheliosis virus strain HA1101. PLoS ONE 2015. [CrossRef] [PubMed]
50. Li, J.; He, L.; Zhang, Y.; Xue, C.; Cao, Y. A novel method for genome-wide profiling of dynamic host-pathogen interactions using 30 end enriched RNA-seq. Sci. Rep. 2017, 7. [CrossRef] [PubMed]
51. Panayotova-Heiermann, M.; Loo, D.D.F.; Lostao, M.P.; Wright, E.M. Sodium/D-glucose cotransporter charge movements involve polar residues. J. Biol. Chem. 1994, 269, 21016–21020. [PubMed]
52. Garriga, C.; Hunter, R.R.; Amat, C.; Planas, J.M.; Mitchell, M.A.; Moretó, M. Heat stress increases apical glucose transport in the chicken jejunum. Am. J. Physiol. Integr. Comp. Physiol. 2006. [CrossRef] [PubMed]
53. Cervantes, M.; Cota, M.; Arce, N.; Castillo, G.; Avelar, E.; Espinoza, S.; Morales, A. Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. J. Therm. Biol. 2016. [CrossRef] [PubMed]
54. Iezaki, T.; Onishi, Y.; Ozaki, K.; Fukasawa, K.; Takahata, Y.; Nakamura, Y.; Fujikawa, K.; Takarada, T.; Yoneda, Y.; Yamashita, Y.; et al. The transcriptional modulator interferon-related developmental regulator 1 in osteoblasts suppresses bone formation and promotes bone resorption. J. Bone Miner. Res. 2016. [CrossRef] [PubMed]
55. ChickenQTLdb. Available online: https://www.animalgenome.org/cgi-bin/gbrowse/gallus/ (accessed on 15 June 2018).
56. Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Xi, L.; Liu, H.C.; Odle, J.; Luo, X. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS ONE 2014. [CrossRef] [PubMed]
57. Nishikawa, M.; Takemoto, S.; Takakura, Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008, 354, 23–27. [CrossRef] [PubMed]
58. Zhang, J.; Kaiser, M.G.; Deist, M.S.; Gallardo, R.A.; David, A.B.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Transcriptome analysis in spleen reveals differential regulation of response to Newcastle disease virus in two chicken lines. Sci. Rep. 2018, 8. [CrossRef] [PubMed]
59. Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genom. 2017, 18. [CrossRef] [PubMed]