Author details:
Simple Summary: This present study evaluated the efficacy of dietary benzoic acid (BA) and oregano essential oil (OEO) separately or together as a substitute for a commercial coccidiostatic drug (salinomycin) on growth performance and physiological and immunological responses in broiler chickens challenged with Eimeria species. It was found that the BA and OEO applied alone or in combination significantly reduced gut pathogenic bacteria (Salmonella and Escherichia coli) and Eimeria spp. and concurrently enhanced the Lactobacillus population with better body weight gain, improved feed utilization, and superior hematological values. It boosted the immune system by enhancing Eimeria-specific immunoglobulin Y titer and up- and down-regulated various immune gene expressions to protect the chickens from inflammatory reactions that were not demonstrated in salinomycin-treated birds. This study suggests that the combined application of OEO and BA can substitute for salinomycin in controlling coccidiosis as well as improving growth performance, gut health, and immune responses in broiler chickens.
Abstract: To overcome the antimicrobial residues in food, benzoic acid (BA) and oregano essential oil (OEO) are used in the broiler chicken industry. Independently, both exerted anticoccidial and antimicrobial actions and improved growth performance in broiler chickens. Their effect may be multiplied when they are used in combination. This present study was carried out to evaluate the efficacy of dietary BA and OEO alone or in combination as a substitute for a commercial coccidiostatic drug on growth performance and physiological and immunological responses in broiler chickens challenged with Eimeria species. A total of 252 unsexed 1-day-old broiler chicks were equally allotted to 36 pens, each pen containing seven chicks. The pens were randomly assigned to six treatments with six pens (replicates) for each treatment (n = 6)—(i) negative control, (ii) positive control, coccidia-challenged and non-treated, (iii) supplemented with salinomycin (an anti-coccidial drug) at 60 mg/kg of feed and coccidia-challenged, (iv) supplemented with BA at 500 mg/kg of feed and coccidia-challenged, (v) supplemented with OEOat 500 mg/kg of feed and coccidia-challenged (OEO), and (vi) supplemented with BA at 500 mg/kg of feed and OEO at 500 mg/kg of feed and coccidia-challenged (B&O). The liver enzymes and thyroxine and creatinine levels were not affected (p > 0.05) both in coccidia-challenged and supplemented chickens. The BA and OEO applied separately or in combination (B&O) significantly (p < 0.05) reduced gut pathogenic bacteria (Salmonella and Escherichia coli) and Eimeria spp., and concurrently enhanced (p > 0.05) the Lactobacillus population with better body weight gain, improved feed utilization, and superior hematological values. It also up-regulated (p > 0.05) the interferon-γ gene expression and down-regulated (p < 0.05) the interleukin-10 and Toll-like receptor-4 gene expression to protect the chickens from inflammatory reactions, which were not demonstrated in salinomycin-treated birds. The B&O supplementation increased (p < 0.05) the immune system by enhancing Eimeria-specific immunoglobulin Y titer and lymphocyte proliferation response. This study suggests that the combined application of OEO and BA can substitute for a commercial anti-coccidial agent (salinomycin) in controlling coccidiosis as well as improving growth performance, gut health, and immune responses in broiler chickens with a means of antimicrobial-resistant free food products.
Keywords: coccidia infection; feed additive; hematobiochemical profile; immunity; intestinal bacteria; phytocompound; poultry.
1. Ahmad, R.; Yu, Y.H.; Hua, K.F.; Chen, W.J.; Zaborski, D.; Dybus, A.; Hsiao, F.S.; Cheng, Y.H. Management and control of coccidiosis in poultry—A review. Anim. Biosci. 2024, 37, 1–15. [CrossRef]
2. Geng, T.; Ye, C.; Lei, Z.; Shen, B.; Fang, R.; Hu, M.; Zhao, J.; Zhou, Y. Prevalence of Eimeria parasites in the Hubei and Henan provinces of China. Parasitol. Res. 2021, 120, 655–663. [CrossRef]
3. Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken Coccidiosis: From the parasite lifecycle to control of the disease. Front. Vet. Sci. 2021, 8, 787653. [CrossRef]
4. Al-Badri, R.; Barta, J.R. The kinetics of oocyst shedding and sporulation in two immunologically distinct strains of Eimeria maxima, GS and M6. Parasitol. Res. 2012, 111, 1947–1952. [CrossRef]
5. Alfaro, D.M.; Silva, V.F.A.; Borges, A.S.; Maiorka, A.; Vargas, S.; Santin, E. Use of Yucca schidigera extract in broiler diets and its effects on performance results obtained with different coccidiosis control methods. Int. J. Poult. Sci. 2007, 16, 248–254. [CrossRef]
6. Chapman, H.D.; Jeffers, T.K. Restoration of sensitivity to salinomycin in Eimeria following 5 flocks of broiler chickens reared in floor-pens using drug programs and vaccination to control coccidiosis. Poult. Sci. J. 2015, 94, 943–946. [CrossRef]
7. Mukherjee, A.; Kar, I.; Patra, A.K. Understanding anthelmintic resistance in livestock using “omics” approaches. Environ. Sci. Pollut. Res. 2023, 30, 125439–125463. [CrossRef]
8. Shahid, A.; Ali, M.A.; Muzammil, S.; Aslam, B.; Shahid, M.; Saqalein, M.; Akash, M.S.H.; Almatroudi, A.; Allemailem, K.S.; Khurshid, M. Antibiotic residues in food chains; Impact on the environment and human health: A review. Appl. Ecol. Environ. Res. 2021, 19, 3959–3977. [CrossRef]
9. Adams, J.R.G.; Mehat, J.; La Ragione, R.; Behboudi, S. Preventing bacterial disease in poultry in the post-antibiotic era: A case for innate immunity modulation as an alternative to antibiotic use. Front. Immunol. 2023, 14, 205869. [CrossRef]
10. Nawarathne, S.R.; Kim, D.M.; Cho, H.M.; Hong, J.; Kim, Y.; Yu, M.; Yi, Y.J.; Lee, H.; Wan, V.; Ng, N.K.J.; et al. Combinatorial effect of dietary oregano extracts and 3,4,5-trihydroxy benzoic acid on growth performance and elimination of coccidiosis in broiler chickens. J. Poult. Sci. 2022, 59, 233–246. [CrossRef]
11. Jo’zefiak, D.; Kaczmarek, S.; Rutkowski, A. The effects of benzoic acid supplementation on the performance of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010, 94, 29–34. [CrossRef]
12. Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [CrossRef]
13. Zhang, H.; Li, M.; Zhang, K.; Ding, X.; Bai, S.; Zeng, Q.; Chu, L.; Hou, D.; Xuan, Y.; Yin, H.; et al. Effect of benzoic acid, Enterococcus faecium, and essential oil complex on intestinal microbiota of laying hens under coccidia and Clostridium perfringens challenge. Poult. Sci. 2023, 102, 102490. [CrossRef]
14. Yu, M.; Oh, J.J.; Min, C.H.; Seon, H.J.; Bin, K.Y.; Randima, N.S.; Sudharaka, W.S.; Young-Joo, Y.; Hans, L.; Vannie, W.; et al. Broiler responses to dietary 3,4,5-trihydroxybenzoic acid and oregano extracts under Eimeria challenge conditions. J. Anim. Sci. Technol. 2021, 63, 1362–1375. [CrossRef]
15. Giannenas, I.; Papaneophytou, C.P.; Tsalie, E.; Pappas, I.; Triantafillou, E.; Tontis, D.; Kontopidis, G.A. Dietary Supplementation of Benzoic Acid and Essential Oil Compounds Affects Buffering Capacity of the Feeds, Performance of Turkey Poults and their Antioxidant Status, pH in the Digestive Tract, Intestinal Microbiota and Morphology. Asian Australas. J. Anim. Sci. 2014, 27, 225–236. [CrossRef]
16. Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Patra, A.K. The usefulness of oregano and its derivatives in poultry nutrition. World’s Poult. Sci. J. 2018, 74, 463–474. [CrossRef]
17. Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Prev. Vet. Med. 2015, 120, 195–202. [CrossRef]
18. Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Da Silva, A.S. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [CrossRef]
19. El-Sayed, Y.; Khalil, W.; Fayez, N.; Abdel-Fattah, A.F.F. Enhancing effect of oregano essential oil and Bacillus subtilis on broiler immune function, intestinal morphology and growth performance. BMC Vet. Res. 2024, 20, 112. [CrossRef]
20. Mohamed, E.R.A.; Elazab, M.F.; El-Habashi, N.; Elhawary, N.; Mokhbatly, A.A. Anticoccidial effect of Origanum majoranum aqueous extract on Eimeria tenella-infected chicken. Trop. Biochem. 2021, 38, 62–72. [CrossRef]
21. Ryzner, M.; Takáˇcová, J.; Cobanov ˇ á, K.; Plachá, I.; Venglovská, K.; Faix, Š. Effect of dietary Salvia officinalis essential oil and sodium selenite supplementation on antioxidative status and blood phagocytic activity in broiler chickens. Acta Vet. Brno 2013, 82, 43–48. [CrossRef]
22. Gordillo-Jaramillo, F.X.; Kim, D.H.; Lee, S.H.; Kwon, S.K.; Jha, R.; Lee, K.W. Role of oregano and Citrus species-based essential oil preparation for the control of coccidiosis in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 47. [CrossRef]
23. Johansen, C.H.; Bjerrum, L.; Pedersen, K. Impact of salinomycin on the intestinal microflora of broiler chickens. Acta Vet. Scand. 2007, 49, 30. [CrossRef]
24. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances usedin Animal Feed). Scientific Opinion on the safety and efficacy of benzoic acid for pigs and poultry. EFSA J. 2018, 16, e05210. [CrossRef]
25. Lu, H.; Adedokun, S.A.; Adeola, L.; Ajuwon, K.M. Anti-inflammatory effects of non-antibiotic alternatives in coccidia challenged broiler chickens. J. Poult. Sci. 2014, 51, 14–21. [CrossRef]
26. Cobb 500 Broiler Performance & Nutrition Supplement. 2022. Available online: https://www.cobbgenetics.com/assets/CobbFiles/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf (accessed on 26 January 2022).
27. Tao, X.; Xin, H. Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market–size broilers. Trans. ASAE 2003, 46, 491–497. [CrossRef]
28. Omomowo, O.O.; Falayi, F.R. Temperature-humidity index and thermal comfort of broilers in humid tropics. Agric. Eng. Int. CIGR J. 2021, 23, 101–110. Available online: https://cigrjournal.org/index.php/Ejournal/article/view/6425 (accessed on 30 January 2022).
29. Molden, D.P.; Alexander, N.M.; Neeley, W.E. Fetal hemoglobin: Optimum conditions for its estimation by alkali denaturation. Am. J. Clin. Pathol. 1982, 77, 568–572. [CrossRef]
30. Wintrobe, M.M. Clinical Haematology, 8th ed.; Lea and Febiger: Philadelphia, PA, USA, 1981.
31. Jain, N.C. Essentials of Veterinary Hematology; Lea and Febiger: Philadelphia, PA, USA, 1993.
32. Soulsby, E.J.L. Helminth, Arthropods and Protozoa of Domesticated Animals, 7th ed.; ELBS, Bailliere, Tindall: London, UK, 1982.
33. Quinn, P.J.; Carter, M.E.; Markey, B.; Carter, G.R. Veterinary Clinical Microbiology; Wolfe Publication: London, UK, 1994.
34. Abuharfeil, N.; Al-Oran, R.; Abo-Shehada, M. The effect of bee honey on the proliferative activity of human B- and T-lymphocytes and the activity of phagocytes. Food Agric. Immunol. 1999, 11, 169–177. [CrossRef]
35. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [CrossRef]
36. Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [CrossRef]
37. Mockett, A.P.A.; Cook, J.K.; Huggins, M.B. Maternally-derived antibody to infectious bronchitis virus: Its detection in chick trachea and serum and its role in protection. Avian Pathol. 1987, 16, 407–416. [CrossRef]
38. Calik, A.; Nima, K.E.; Schyns, G.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult. Sci. 2022, 101, 101858. [CrossRef]
39. Pfaffl, M. Development and validation of an externally standardised quantitative insulin-like growth factor-1 RT-PCR using LightCycler SYBR Green I technology. In Rapid Cycle Real-Time PCR; Meuer, S., Wittwer, C., Nakagawara, K.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 281–291. [CrossRef]
40. Statistical Analysis System (SAS). User’s Guide: Statistics, version 8.2.; SAS Institute: Cary, NC, USA, 2001.
41. Kala, S.; Gattani, A.; Kumar, A.; Samantaray, S. Evaluation of polyether Ionophores against coccidiosis in broiler chicken. Haryana Vet. 2014, 52, 63–67.
42. Nouri, A. Encapsulated organic acids as a safe alternative or synergistic compound with anticoccidials for more effective control of coccidiosis in Eimeria-challenged broilers. Livest. Sci. 2023, 278, 105353. [CrossRef]
43. Chowdhury, S.; Mandal, G.P.; Patra, A.K.; Kumar, P.; Samanta, I.; Pradhan, S.; Samanta, A.K. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [CrossRef]
44. Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected Blend of Organic Acids and Essential Oils Improves Growth Performance, Nutrient Digestibility, and Intestinal Health of Broiler Chickens Undergoing an Intestinal Challenge. Front. Vet. Sci. 2020, 6, 493878. [CrossRef]
45. Muthamilselvan, T.; Kuo, T.F.; Wu, Y.C.; Yang, W.C. Herbal remedies for coccidiosis control: A review of plants, compounds, and anticoccidial actions. Evid.-Based Complement. Altern. Med. 2016, 2016, 2657981. [CrossRef]
46. Collier, C.T.; Hofacre, C.L.; Payne, A.M.; Anderson, D.B.; Kaiser, P.; Mackie, R.I.; Gaskins, H.R. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet. Immunol. Immunopathol. 2008, 122, 104–115. [CrossRef]
47. Chen, H.L.; Zhao, X.Y.; Zhao, G.X.; Huang, H.B.; Li, H.R.; Shi, C.W.; Yang, G.L. Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasites Vectors 2020, 13, 56. [CrossRef]
48. Freitas, L.F.V.B.; Sakomura, N.K.; Reis, M.P.; Mariani, A.B.; Lambert, W.; Andretta, I.; Létourneau-Montminy, M.P. Coccidiosis infection and growth performance of broilers in experimental trials: Insights from a meta-analysis including modulating factors. Poult. Sci. 2023, 102, 103021. [CrossRef]
49. Hirani, N.D.; Hasnani, J.J.; Pandya, S.S.; Patel, P.V. Haematological Changes in Broiler Birds with Induced Caecal Coccidiosis following Prophylaxis with Different Coccidiostats. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1094–1100. [CrossRef]
50. Berezina, T.L.; Zaets, S.B.; Kozhura, V.L.; Novoderzhkina, I.S.; Kirsanova, A.K.; Deitch, E.A.; Machiedo, G.W. Morphologic changes of red blood cells during hemorrhagic shock replicate changes of aging. Shock 2001, 15, 467–470. [CrossRef]
51. Turk, D.E. Macroelements in the circulation of coccidiosis-infected chicks. Poult. Sci. 1986, 65, 462–468. [CrossRef]
52. Asif, M.J.; Javed, M.T.; Rehman, A.U.; Manzoor, F.; Riaz, M.; Javed, M.A.; Zarnab, S.; Rasool, G. Recovery of E. coli from liver and spleen of broiler birds and the effects of induced high ammonia level on haematobiochemical parameters and its amelioration by different modifiers. Dose Response 2021, 19, 15593258211066693. [CrossRef]
53. Melkamu, S.; Chanie, M.; Asrat, M. Haematological changes caused by coccidiosis in experimentally infected broiler chickens. J. Anim. Res. 2018, 8, 345–351. [CrossRef]
54. Alqhtani, A.H.; Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Ali, A.B. Serum biochemistry indices, leukogram, carcass variables and intestinal measurements of Eimeria tenella-infected or non-infected broilers treated with dietary Cinnamomum verum bark. J. Appl. Anim. Res. 2023, 51, 40–51. [CrossRef]
55. Irizaary-Rovira, A.R. Introduction to Avian and Reptilian Clinical Pathology, Section XI. In Veterinary Clinical Pathology Secrets; Elsevier Inc.: St. Louis, MO, USA, 2004. [CrossRef]
56. Adamu, M.; Boonkaewwan, C.; Gongruttananun, N.; Vongpakorn, M. Hematological, biochemical and histopathological changes caused by coccidiosis in chickens. Agric. Nat. Resour. 2013, 47, 238–246.
57. Moryani, A.A.; Rajput, N.; Naeem, M.; Shah, A.H.; Jahejo, A.R. Screening of the herbs and evaluation of their combined effects on the health and immunity of coccidiosis challenged broiler chickens. Pak. Vet. J. 2021, 41, 2074–7764. [CrossRef]
58. Farahani, M.; Hosseinian, S.A. Effects of dietary stinging nettle (Urtica dioica) on hormone stress and selected serum biochemical parameters of broilers subjected to chronic heat stress. Vet. Med. Sci. 2022, 8, 660–667. [CrossRef]
59. Knezevic, J.; Starchl, C.; Tmava Berisha, A.; Amrein, K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020, 12, 1769. [CrossRef]
60. Nari, N.; Ghasemi, H.A. Growth performance, nutrient digestibility, bone mineralization, and hormone profile in broilers fed with phosphorus-deficient diets supplemented with butyric acid and Saccharomyces boulardii. Poult. Sci. 2020, 99, 926–935. [CrossRef]
61. Fröhlich, E.; Wahl, R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol. Metab. 2019, 30, 479–490. [CrossRef]
62. Rajaian, H.; Nazifi, S.; Sedaghat, S.; Hajimohammadi, A.; Mohsenifard, E.; Mirzaei, A. Effect of salinomycin on thyroid hormones, homocysteine and antioxidant trace elements in sheep. J. Vet. Res. 2022, 26, 269–279.
63. Vasilatos-Younken, R.; Zhou, Y.; Wang, X.; McMurtry, J.P.; Rosebrough, R.W.; Decuypere, E.; Buys, N.; Darras, V.M.; Van der Geyten, S.; Tomas, F. Altered chicken thyroid hormone metabolism with chronic GH enhancement in vivo: Consequences for skeletal muscle growth. J. Endocrinol. 2000, 166, 609–620. [CrossRef]
64. Byerly, M.S.; Simon, J.; Lebihan-Duval, E.; Duclos, M.J.; Cogburn, L.A.; Porter, T.E. Effects of BDNF, T3 , and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1180–R1189. [CrossRef]
65. Abd El-maksoud, H.A.; Afaf, D.; Abdel-Magid, M.; El-Badry, M.A. Biochemical effect of coccidian infestation in laying hen. Benha Vet. Med. J. 2014, 26, 127–133.
66. Scanes, C.G. Hormones and Metabolism in Poultry. In Update on Mechanisms of Hormone Action—Focus on Metabolism, Growth and Reproduction; Aimaretti, G., Marzullo, P., Prodam, F., Eds.; IntechOpen: Longdon, UK, 2011; pp. 111–132. [CrossRef]
67. Mondal, D.K.; Saibal, C.; Subhasish, B.; Asit, K.; Debasis, B. Serum biochemical indices at various stages of infection with a field isolate of E. tenella in broiler chicken. Vet. World 2011, 4, 404–409. [CrossRef]
68. Café, M.B.; Rinaldi, F.P.; Morais, H.R.; de Mattos Nascimento, M.R.B.; Mundim, A.V.; Marchini, C.F.P. Biochemical blood parameters of broilers at different ages under thermoneutral environment. World’s Poult. Sci. J. 2012, 5, 143–146.
69. Tóthová, C.; Sesztakova, E.; Bielik, B.; Oskar, N. Changes of total protein and protein fractions in broiler chickens during the fattening period. Vet. World 2019, 12, 598–604. [CrossRef]
70. Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [CrossRef]
71. Chasser, K.M.; Duff, A.F.; Wilson, K.M.; Briggs, W.N.; Latorre, J.D.; Barta, J.R.; Bielke, L.R. Research Note: Evaluating fecal shedding of oocysts in relation to body weight gain and lesion scores during Eimeria infection. Poult. Sci. 2020, 99, 886–892. [CrossRef]
72. Koltai, T.; Reshkin, S.J.; Harguindey, S. Pharmacological interventions part III. In An Innovative Approach to Understanding and Treating Cancer: Targeting pH; Koltai, T., Reshkin, S.J., Harguindey, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 335–359. [CrossRef]
73. Giannenas, I.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Essential oils and their applications in animal nutrition. Med. Aromat. Plants 2013, 2, 1000140. [CrossRef]
74. Guerrini, A.; Zago, M.; Avallone, G.; Brigandì, E.; Tedesco, D.E.A. A field study on Citrus aurantium L. var. dulcis peel essential oil and Yucca schidigera saponins efficacy on broiler chickens health and growth performance during coccidiosis infection in rural free-range breeding system. Livest. Sci. 2024, 282, 105437. [CrossRef]
75. Wei, Z.; Zhao, Y.; Zhang, N.; Han, Z.; Liu, X.; Jiang, A.; Zhang, Y.; Wang, C.; Gong, P.; Li, J.; et al. Eimeria tenella induces the release of chicken heterophil extracellular traps. Vet. Parasitol. 2019, 275, 108931. [CrossRef]
76. Northcutt, J.K.; Berrang, M.E.; Dickens, J.A.; Fletcher, D.L.; Cox, N.A. Effect of broiler age, feed withdrawal, and transportation on levels of coliforms, Campylobacter, Escherichia coli and Salmonella on carcasses before and after immersion chilling. Poult. Sci. 2003, 82, 169–173. [CrossRef]
77. Yan, W.; Sun, C.; Yuan, J.; Yang, N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 2017, 7, 45308. [CrossRef]
78. Sand, J.M.; Arendt, M.K.; Repasy, A.; Deniz, G.; Cook, M.E. Oral antibody to interleukin-10 reduces growth rate depression due to Eimeria spp. infection in broiler chickens. Poult. Sci. 2016, 95, 439–446. [CrossRef]
79. Lodh, S.; Das, P.K.; Mukherjee, J.; Naskar, S.; Banerjee, D.; Ghosh, P.R.; Munsi, S.; Patra, A.K. Effect of dietary oregano essential oil and milk replacer on physiological status and immunological responses of pre- and post-weaned Ghoongroo piglets. Anim. Biotechnol. 2023, 34, 2793–2804. [CrossRef]
80. Jiao, J.; Yang, Y.; Liu, M.; Li, J.; Cui, Y.; Yin, S.; Tao, J. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Vet. Parasitol. 2018, 254, 172–177. [CrossRef]
81. Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [CrossRef]
82. Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [CrossRef]
83. Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult. Sci. 2022, 101, 101563. [CrossRef]
84. Bravo, D.; Pirgozliev, V.; Rose, S.P. A mixture of carvacrol, cinnamaldehyde, and capsicum oleoresin improves energy utilization and growth performance of broiler chickens fed maize-based diet. J. Anim. Sci. 2014, 92, 1531–1536. [CrossRef]
85. Hellebrekers, P.; Hietbrink, F.; Vrisekoop, N.; Leenen, L.P.; Koenderman, L. Neutrophil functional heterogeneity: Identification of competitive phagocytosis. Front. Immunol. 2017, 8, 1498. [CrossRef]
86. Scanes, C.G. Chapter 17—Blood. In Sturkie’s Avian Physiology, 7th ed.; Scanes, C.G., Dridi, S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 293–326. [CrossRef]
87. Rose, M.E. Immune Responses in infections with coccidia: Macrophage activity. Infect. Immun. 1974, 10, 862–871. [CrossRef]
88. Ovington, K.S.; Smith, N.C.; Joysey, H.S. Oxygen derived free radicals and the course of Eimeria vermiformis infection in inbred strains of mice. Parasite Immunol. 1990, 12, 623–631. [CrossRef]
89. Lu, C.; Yan, Y.; Jian, F.; Ning, C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front. Cell. Infect. Microbiol. 2021, 11, 751481. [CrossRef]
90. Lillehoj, H.S.; Min, W.; Dalloul, R.A. Recent progress on the cytokine regulation of intestinal immune responses to Eimeria. Poult. Sci. 2004, 83, 611–623. [CrossRef]
91. Ebokaiwe, A.P.; Njoya, E.M.; Sheng, Y.; Zhang, Z.; Li, S.; Zhou, Z.; Qiang, Z.; Peng, T.; Hussein, A.A.; Zhang, G.; et al. Salinomycin promotes T-cell proliferation by inhibiting the expression and enzymatic activity of immunosuppressive indoleamine-2,3- dioxygenase in human breast cancer cells. Toxicol. Appl. Pharmacol. 2020, 404, 115203. [CrossRef]
92. Davou, K.P.; Lawal, I.; Joseph, A.; Lawal, S.; Abraham, D.G. Antibody Response in Broiler Chickens Infected with Different Developmental Stages of Eimeria tenella. SOJ Immunol. 2018, 6, 1–4. [CrossRef]
93. Wallach, M. Role of antibody in immunity and control of chicken coccidiosis. Trends Parasitol. 2010, 26, 382–387. [CrossRef]
94. Panda, A.K.; Rao, S.S.R.; Raju, M.V.; Sharma, S.S. Effect of probiotics (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. J. Sci. Food. Agric. 2008, 88, 43–47. [CrossRef]
95. Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J. Appl. Anim. Res. 2017, 45, 603–608. [CrossRef]
96. Maron, D.F.; Smith, T.J.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [CrossRef]
97. Lee, Y.; Lu, M.; Lillehoj, H.S. Coccidiosis: Recent progress in host immunity and alternatives to antibiotic strategies. Vaccines 2022, 10, 215. [CrossRef]
98. Lee, K.W.; Lillehoj, H.S.; Jang, S.I.; Lee, S.H.; Bautista, D.A.; Donald Ritter, G.; Lillehoj, E.P.; Siragusa, G.R. Comparison of live Eimeria vaccination with in-feed salinomycin on growth and immune status in broiler chickens. Res. Vet. Sci. 2013, 95, 110–114. [CrossRef]
99. Bremner, A.; Kim, S.; Morris, K.M.; Nolan, M.J.; Borowska, D.; Wu, Z.; Vervelde, L. Kinetics of the cellular and transcriptomic response to Eimeria maxima in relatively resistant and susceptible chicken lines. Front. Immunol. 2021, 12, 653085. [CrossRef]
100. Khater, H.F.; Ziam, H.; Abbas, A.; Abbas, R.Z.; Raza, M.A.; Hussain, K.; Younis, E.Z.; Radwan, I.T.; Selimand, A. Avian coccidiosis: Recent advances in alternative control strategies and vaccine development. Agrobiol. Rec. 2020, 1, 11–25. [CrossRef]
101. Mustafa, A.; Bai, S.; Zeng, Q.; Ding, X.; Wang, J.; Xuan, Y.; Su, Z.; Zhang, K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021, 11, 140. [CrossRef]
102. Macdonald, S.E.; Nolan, M.J.; Harman, K.; Boulton, K.; Hume, D.A.; Tomley, F.M.; Blake, D.P. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE 2017, 12, e0184890. [CrossRef]
103. Sumners, L.H.; Miska, K.B.; Jenkins, M.C.; Fetterer, R.H.; Cox, C.M.; Kim, S.; Dalloul, R.A. Expression of Toll-like receptors and antimicrobial peptides during Eimeria praecox infection in chickens. Exp. Parasitol. 2011, 127, 714–718. [CrossRef]