Author details:
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signaling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Keywords: antioxidants; poultry; oxidative stress; Nrf2; vitagenes.
1. Surai, P.F.; Fisinin, V.I. Vitagenes in poultry production. Part 1. Technological and environmental stresses.
Worlds Poult. Sci. J. 2016, 72, 721–733. [CrossRef]
2. Surai, P.F.; Fisinin, V.I. Vitagenes in poultry production. Part 2. Nutritional and internal stresses. Worlds Poult.
Sci. J. 2016, 72, 761–772. [CrossRef]
3. Chen, X.; Li, S.; Liu, L. Engineering redox balance through cofactor systems. Trends Biotechnol. 2014, 32,
337–343. [CrossRef] [PubMed]
4. Corsello, T.; Komaravelli, N.; Casola, A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent
Maintenance of Cellular Redox Balance. Antioxidants 2018, 7, 10. [CrossRef]
5. Surai, P.F. Vitamin E in avian reproduction. Poult. Avian Biol. Rev. 1999, 10, 1–60.
6. Surai, P.F. Natural Antioxidants in Avian Nutrition and Reproduction; Nottingham University Press: Nottingham,
UK, 2002.
7. Surai, P.F. Selenium in Nutrition and Health; Nottingham University Press: Nottingham, UK, 2006.
8. Santoro, M.M. Fashioning blood vessels by ROS signalling and metabolism. Semin. Cell Dev. Biol. 2018, 80,
35–42. [CrossRef]
9. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64.
[CrossRef]
10. Francois, M.; Donovan, P.; Fontaine, F. Modulating transcription factor activity: Interfering with protein-protein interaction networks. Semin. Cell Dev. Biol. 2018. S1084-9521(17)30547-5. [CrossRef]
11. Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.;
Oliva, B.; et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine
Approach. Pharm. Rev. 2018, 70, 348–383. [CrossRef]
12. Calabrese, V.; Giordano, J.; Crupi, R.; Di Paola, R.; Ruggieri, M.; Bianchini, R.; Ontario, M.L.; Cuzzocrea, S.;
Calabrese, E.J. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J. Neurosci. Res. 2017, 95, 1182–1193. [CrossRef]
13. Surai, P.F.; Kochish, I.I.; Fisinin, V.I. Antioxidant systems in poultry biology: Nutritional modulation of vitagenes. Eur. J. Poult. Sci. 2017, 81, 1612–9199.
14. Bureau, C.; Hennequet-Antier, C.; Couty, M.; Guémené, D. Gene array analysis of adrenal glands in broiler chickens following ACTH treatment. Bmc Genom. 2009, 10, 430. [CrossRef] [PubMed]
15. Surai, P.F. Selenium in Poultry Nutrition and Health; Wageningen Academic Publishers: Wageningen,
The Netherlands, 2018.
16. Soleimani, A.F.; Zulkifli, I.; Omar, A.R.; Raha, A.R. Physiological responses of 3 chicken breeds to acute heat stress. Poult. Sci. 2011, 90, 1435–1440. [CrossRef] [PubMed]
17. Surai, P.F.; Fisinin, V.I. Antioxidant-Prooxidant Balance in the Intestine: Applications in Chick Placement and Pig Weaning. J. Vet. Sci. Med. 2015, 3, 1–16.
18. Fisinin, V.I.; Surai, P.F. First days of chicken life: From a protection against stresses to an effective adaptation.
Russian Poult. Sci. (Ptitsevodstvo Russia) 2012, 2, 11–15.
19. Fisinin, V.I.; Surai, P.F. Early chicken nutrition and muscle tissue development. Russian Poult. Sci. (Ptitsevodstvo
Russia) 2012, 3, 9–12.
20. Geyra, A.; Uni, Z.; Sklan, D. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. Br. J. Nutr. 2001, 86, 53–61. [CrossRef]
21. Karadas, F.; Surai, P.F.; Sparks, N.H. Changes in broiler chick tissue concentrations of lipid-soluble antioxidants immediately post-hatch. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 160, 68–71. [CrossRef]
22. Grigorieva, M.A.; Velichko, O.A.; Shabaldin, S.V.; Fisinin, V.I.; Surai, P.F. Vitagene regulation as a new strategy to fight stresses in poultry production. Agric. Biol. (Sel’skokhozyaistvennaya Biologiya) 2017, 52, 716–730.
[CrossRef]
23. Puron, D.; Santamaria, R.; Segura, J.C.; Alamilla, J.L. Broiler performance at different stocking densities.
J. Appl. Poult. Res. 1995, 4, 55–60. [CrossRef]
24. Tsiouris, V.; Georgopoulou, I.; Batzios, C.; Pappaioannou, N.; Ducatelle, R.; Fortomaris, P. High stocking density as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2015, 44, 59–66. [CrossRef]
[PubMed]
25. Simitzis, P.E.; Kalogeraki, E.; Goliomytis, M.; Charismiadou, M.A.; Triantaphyllopoulos, K.; Ayoutanti, A.;
Niforou, K.; Hager-Theodorides, A.L.; Deligeorgis, S.G. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Brit. Poult. Sci. 2012, 53, 721–730. [CrossRef] [PubMed]
26. Sørensen, P.; Su, G.; Kestin, S.C. Effects of age and stocking density on leg weakness in broiler chickens.
Poult. Sci. 2000, 79, 864–870. [CrossRef] [PubMed]
27. Buijs, S.; Van Poucke, E.; Van Dongen, S.; Lens, L.; Baert, J.; Tuyttens, F.A. The influence of stocking density on broiler chicken bone quality and fluctuating asymmetry. Poult. Sci. 2012, 91, 1759–1767. [CrossRef]
[PubMed]
28. Cengiz, Ö.; Köksal, B.H.; Tatlı, O.; Sevim, Ö.; Ahsan, U.; Üner, A.G.; Uluta¸s, P.A.; Beyaz, D.; Büyükyörük, S.;
Yakan, A.; et al. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers. Poult. Sci. 2015, 94, 2395–2403. [CrossRef] [PubMed]
29. Tong, H.B.; Lu, J.; Zou, J.M.; Wang, Q.; Shi, S.R. Effects of stocking density on growth performance, carcass yield, and immune status of a local chicken breed. Poult. Sci. 2012, 91, 667–673. [CrossRef] [PubMed]
30. Mirfendereski, E.; Jahanian, R. Effects of dietary organic chromium and vitamin C supplementation on performance, immune responses, blood metabolites, and stress status of laying hens subjected to high stocking density. Poult. Sci. 2015, 94, 281–288. [CrossRef]
31. Thiamhirunsopit, K.; Phisalaphong, C.; Boonkird, S.; Kijparkorn, S. Effect of chili meal (Capsicum frutescens
LINN.) on growth performance, stress index, lipid peroxidation and ileal nutrient digestibility in broilers reared under high stocking density condition. Anim. Feed Sci. Technol. 2014, 192, 90–100. [CrossRef]
32. Lara, L.; Rostagno, M. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [CrossRef]
33. Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.;
Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [CrossRef]
34. Song, J.; Xiao, K.; Ke, Y.L.; Jiao, L.F.; Hu, C.H.; Diao, Q.Y.; Shi, B.; Zou, X.T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 2014,
93, 581–588. [CrossRef] [PubMed]
35. Chen, X.Y.; Li, R.; Geng, Z.Y. Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens.
Poult. Sci. 2015, 94, 2597–2603. [CrossRef] [PubMed]
36. Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry
Production. Antioxidants 2019, 8, 3. [CrossRef] [PubMed]
37. Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [CrossRef] [PubMed]
38. Farag, M.R.; Alagawany, M. Physiological alterations of poultry to the high environmental temperature. J.
Biol. 2018, 76, 101–106. [CrossRef] [PubMed]
39. Habibian, M.; Sadeghi, G.; Ghazi, S.; Moeini, M.M. Selenium as a feed supplement for heat-stressed poultry:
A review. Biol. Trace Elem. Res. 2015, 165, 183–193. [CrossRef] [PubMed]
40. Bottje, W.G.; Wideman, R.F., Jr. Potential role of free radicals in the pathogenesis of pulmonary hypertension syndrome. Poult. Avian Biol. Rev. 1995, 6, 211–231.
41. Bottje, W.G.; Wang, S.; Kelly, F.J.; Dunster, C.; Williams, A.; Mudway, I. Antioxidant defenses in lung lining fluid of broilers: Impact of poor ventilation conditions. Poult. Sci. 1998, 77, 516–522. [CrossRef]
42. Huth, J.C.; Archer, G.S. Comparison of Two LED Light Bulbs to a Dimmable CFL and their Effects on Broiler
Chicken Growth, Stress, and Fear. Poult. Sci. 2015, 94, 2027–2036. [CrossRef]
43. Van der Pol, C.W.; Molenaar, R.; Buitink, C.J.; Van Roovert-Reijrink, I.A.; Maatjens, C.M.; Van den Brand, H.;
Kemp, B. Lighting schedule and dimming period in early life: Consequences for broiler chicken leg bone development. Poult. Sci. 2015, 94, 2980–2988. [CrossRef]
44. Surai, P.F.; Dvorska, J.E. Effects of Mycotoxins on Antioxidant Status and Immunity. In The Mycotoxin Blue
Book; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 93–137.
45. Surai, P.F.; Mezes, M.; Melnichuk, S.D.; Fotina, T.I. Mycotoxins and animal health: From oxidative stress to gene expression. Krmiva 2008, 50, 35–43.
46. Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; et al. Ochratoxin A:
Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018, 112, 320–331. [CrossRef] [PubMed]
47. Wang, X.; Wu, Q.; Wan, D.; Liu, Q.; Chen, D.; Liu, Z.; Martínez-Larrañaga, M.R.; Martínez, M.A.; Anadón, A.;
Yuan, Z. Fumonisins: Oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch. Toxicol.
2016, 90, 81–101. [CrossRef] [PubMed]
48. Wu, Q.H.; Wang, X.; Yang, W.; Nüssler, A.K.; Xiong, L.Y.; Kuˇca, K.; Dohnal, V.; Zhang, X.J.; Yuan, Z.H.
Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol 2014, 88, 1309–1326. [CrossRef] [PubMed]
49. Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.;
Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [CrossRef] [PubMed]
50. Kövesi, B.; Cserháti, M.; Erdélyi, M.; Zándoki, E.; Mézes, M.; Balogh, K. Long-Term Effects of Ochratoxin A on the Glutathione Redox System and Its Regulation in Chicken. Antioxidants 2019, 8, 6. [CrossRef]
51. Tavárez, M.A.; Boler, D.D.; Bess, K.N.; Zhao, J.; Yan, F.; Dilger, A.C.; McKeith, F.K.; Killefer, J. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation. Poult. Sci.
2011, 90, 922–930. [CrossRef]
52. Yue, H.Y.; Wang, J.; Qi, X.L.; Ji, F.; Liu, M.F.; Wu, S.G.; Zhang, H.J.; Qi, G.H. Effects of dietary oxidized oil on laying performance, lipid metabolism, and apolipoprotein gene expression in laying hens. Poult. Sci 2011,
90, 1728–1736. [CrossRef]
53. Zhang, W.; Xiao, S.; Lee, E.J.; Ahn, D.U. Consumption of oxidized oil increases oxidative stress in broilers and affects the quality of breast meat. J. Agric. Food Chem. 2011, 59, 969–974. [CrossRef]
54. Delles, R.M.; Xiong, Y.L.; True, A.D.; Ao, T.; Dawson, K.A. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poult. Sci. 2014, 93, 1561–1570. [CrossRef]
55. Delles, R.M.; Xiong, Y.L.; True, A.D.; Ao, T.; Dawson, K.A. Augmentation of water-holding and textural properties of breast meat from oxidatively stressed broilers by dietary antioxidant regimens. Brit. Poult. Sci.
2015, 56, 304–314. [CrossRef] [PubMed]
56. Pappas, A.C.; Zoidis, E.; Georgiou, C.A.; Demiris, N.; Surai, P.F.; Fegeros, K. Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 446–454.
[CrossRef] [PubMed]
57. Guo, Q.; Majeed, S.; Xu, R.; Zhang, K.; Kakade, A.; Khan, A.; Hafeez, F.Y.; Mao, C.; Liu, P.; Li, X. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review.
J. Environ. Manag 2019, 240, 266–272. [CrossRef] [PubMed]
58. Kar, I.; Mukhopadhayay, S.K.; Patra, A.K.; Pradhan, S. Bioaccumulation of selected heavy metals and histopathological and hematobiochemical alterations in backyard chickens reared in an industrial area, India.
Environ. Sci. Pollut. Res. Int. 2018, 25, 3905–3912. [CrossRef] [PubMed]
59. Bao, R.K.; Zheng, S.F.; Wang, X.Y. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ. Sci. Pollut. Res. Int. 2017, 24, 20342–20353.
[CrossRef]
60. Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium.
Poult. Sci. 2018. [CrossRef]
61. Yao, L.; Du, Q.; Yao, H.; Chen, X.; Zhang, Z.; Xu, S. Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals 2015, 28, 255–265. [CrossRef]
62. Cinar, M.; Yildirim, E.; Yigit, A.A.; Yalcinkaya, I.; Duru, O.; Kisa, U.; Atmaca, N. Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers. Biol. Trace Elem. Res.
2014, 158, 186–196. [CrossRef]
63. Berzina, N.; Markovs, J.; Dizhbite, T.; Apsite, M.; Vasilyeva, S.; Basova, N.; Smirnova, G.; Isajevs, S. Oxidative stress and innate immunity status in chickens exposed to high dose of ascorbic acid. Cell Biochem. Funct.
2013, 31, 551–559. [CrossRef]
64. Maes, S.; Vackier, T.; Huu, S.N.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.;
De Reu, K. Occurrence and characterisation of biofilms in drinking water systems of broiler houses.
BMC Microbiol. 2019, 19, 77. [CrossRef]
65. Rauch, E.; Hirsch, N.; Firnkäs, N.; Erhard, M.H.; Bergmann, S. Animal hygiene, water quality and animal health using round drinkers as an animal-friendly water supply for Pekin ducks under practical conditions.
Berl Munch Tierarztl Wochenschr. 2016, 129, 15–27. [PubMed]
66. Giammarino, M.; Quatto, P. Nitrates in drinking water: Relation with intensive livestock production. J. Prev.
Med. Hyg. 2015, 56, E187–E189. [PubMed]
67. King, A.J. Water quality and poultry production. Poult Sci. 1996, 75, 852–853. [CrossRef] [PubMed]
68. Charvat, R.A.; Arrizabalaga, G. Oxidative stress generated during monensin treatment contributes to altered
Toxoplasma gondii mitochondrial function. Sci. Rep. 2016, 6, 22997. [CrossRef] [PubMed]
69. Yu, S.N.; Kim, S.H.; Kim, K.Y.; Ji, J.H.; Seo, Y.K.; Yu, H.S.; Ahn, S.C. Salinomycin induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol. Rep. 2017, 37, 3321–3328. [CrossRef] [PubMed]
70. Yang, X.J.; Li, W.L.; Feng, Y.; Yao, J.H. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poult. Sci. 2011, 90, 2740–2746. [CrossRef] [PubMed]
71. Nelson, J.R.; McIntyre, D.R.; Pavlidis, H.O.; Archer, G.S. Reducing Stress Susceptibility of Broiler Chickens by
Supplementing a Yeast Fermentation Product in the Feed or Drinking Water. Animals 2018, 8, 10. [CrossRef]
72. Kaab, H.; Bain, M.M.; Eckersall, P.D. Acute phase proteins and stress markers in the immediate response to a combined vaccination against Newcastle disease and infectious bronchitis viruses in specific pathogen free (SPF) layer chicks. Poult. Sci. 2018, 97, 463–469. [CrossRef]
73. Rehman, Z.U.; Meng, C.; Sun, Y.; Safdar, A.; Pasha, R.H.; Munir, M.; Ding, C. Oxidative Stress in Poultry:
Lessons from the Viral Infections. Oxid. Med. Cell. Longev. 2018, 2018, 5123147. [CrossRef]
74. Rehman, Z.U.; Che, L.; Ren, S.; Liao, Y.; Qiu, X.; Yu, S.; Sun, Y.; Tan, L.; Song, C.; Liu, W.; et al. Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative
Stress and Tissue Damage. Cell Physiol. Biochem. 2018, 47, 1655–1666. [CrossRef]
75. Rehman, Z.U.; Qiu, X.; Sun, Y.; Liao, Y.; Tan, L.; Song, C.; Yu, S.; Ding, Z.; Munir, M.; Nair, V.; et al. Vitamin
E Supplementation Ameliorates Newcastle Disease Virus-iduced Oxidative Stress and Alleviates Tissue
Damage in the Brains of Chickens. Viruses 2018, 10, 4. [CrossRef] [PubMed]
76. Zhao, D.; Yang, J.; Han, K.; Liu, Q.; Wang, H.; Liu, Y.; Huang, X.; Zhang, L.; Li, Y. The unfolded protein response induced by Tembusu virus infection. BMC Vet. Res. 2019, 15, 34. [CrossRef] [PubMed]
77. Neerukonda, S.N.; Katneni, U.K.; Bott, M.; Golovan, S.P.; Parcells, M.S. Induction of the unfolded protein response (UPR) during Marek’s disease virus (MDV) infection. Virology 2018, 522, 1–12. [CrossRef] [PubMed]
78. Da Rosa, G.; Da Silva, A.S.; Souza, C.F.; Baldissera, M.D.; Mendes, R.E.; Araujo, D.N.; Alba, D.F.; Boiago, M.M.;
Stefani, L.M. Impact of colibacillosis on production in laying hens associated with interference of the phosphotransfer network and oxidative stress. Microb. Pathog. 2019, 130, 131–136. [CrossRef] [PubMed]
79. He, J.; He, Y.; Pan, D.; Cao, J.; Sun, Y.; Zeng, X. Associations of Gut Microbiota with Heat Stress-Induced
Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks.
Front. Microbiol. 2019, 10, 903. [CrossRef] [PubMed]
80. Le Roy, C.I.; Woodward, M.J.; Ellis, R.J.; La Ragione, R.M.; Claus, S.P. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet. Res. 2019,
15, 37. [CrossRef] [PubMed]
81. Pereira, R.; Bortoluzzi, C.; Durrer, A.; Fagundes, N.S.; Pedroso, A.A.; Rafael, J.M.; Perim, J.E.L.; Zavarize, K.C.;
Napty, G.S.; Andreote, F.D.; et al. Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. J. Anim. Physiol. Anim. Nutr. 2019, 103, 72–86. [CrossRef]
82. Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F.
Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res. 2018,
49, 43. [CrossRef]
83. Janssens, Y.; Nielandt, J.; Bronselaer, A.; Debunne, N.; Verbeke, F.; Wynendaele, E.; Van Immerseel, F.;
Vandewynckel, Y.P.; De Tré, G.; De Spiegeleer, B. Disbiome database: Linking the microbiome to disease.
BMC Microbiol. 2018, 18, 50. [CrossRef]
84. Surai, P.F.; Fisinin, V.I. Natural antioxidants in chicken embryogenesis and protection against stresses in postnatal development. Agric. Biol. 2013, 2, 3–18.
85. Surai, P.F.; Fisinin, V.I.; Karadas, F. Antioxidant Systems in Chick Embryo Development. Part 1. Vitamin E,
Carotenoids and Selenium. Anim. Nutr. 2016, 2, 1–11. [CrossRef] [PubMed]
86. Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional modulation of the antioxidant capacities in poultry: The case of vitamin E. Poult Sci. 2019, pez072. [CrossRef] [PubMed]
87. Skulachev, V.P. Biochemical mechanisms of evolution and the role of oxygen. Biochemistry 1998, 63, 1335–1343.
[PubMed]
88. Surai, P.F. Antioxidant Action of Carnitine: Molecular Mechanisms and Practical Applications. EC Vet. Sci.
2015, 2.1, 66–84.
89. Surai, P.F. Carnitine Enigma: From Antioxidant Action to Vitagene Regulation. Part 1. Absorption,
Metabolism and Antioxidant Activities. J. Veter. Sci. Med. 2015, 3, 14. [CrossRef]
90. Surai, P.F. Carnitine Enigma: From Antioxidant Action to Vitagene Regulation Part 2. Transcription Factors and Practical Applications. J. Veter. Sci. Med. 2015, 3, 17.
91. Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives.
Antioxidants 2015, 4, 204–247. [CrossRef] [PubMed]
92. Surai, P.F. Antioxidant systems in Poultry Biology: Heat shock proteins. J. Sci. 2015, 5, 1188–1222.
93. Surai, P.F. Antioxidant systems in Poultry Biology: Superoxide dismutase. Anim. Nutr. 2016, 1, 8. [CrossRef]
94. Surai, P.F. Antioxidant defences: Food for thoughts. EC Nutr. 2017, 10.2, 65–66.
95. Sies, H. Oxidative stress: Introductory remarks. In Oxidative Stress; Sies, H., Ed.; Academic Press: London,
UK, 1985; p. 1e8.
96. Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox. Biol. 2015, 4, 180–183. [CrossRef]
[PubMed]
97. Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [CrossRef] [PubMed]
98. Sies, H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin.
Toxicol. 2018, 7, 122–126. [CrossRef]
99. Sies, H. Oxidative Stress: Eustress and Distress in Redox Homeostasis. In Stress: Physiology, Biochemistry, and
Pathology; Fink, G., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands,
2019; pp. 153–163.
100. Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015, 33, 8–13.
[CrossRef] [PubMed]
101. Niki, E. Antioxidants: Basic principles, emerging concepts, and problems. Biomed J. 2014, 37, 106–111.
[CrossRef] [PubMed]
102. Pomatto, L.C.D.; Davies, K.J.A. Adaptive homeostasis and the free radical theory of ageing. Free Radic.
Biol. Med. 2018, 124, 420–430. [CrossRef] [PubMed]
103. Forman, H.J. Redox signaling: An evolution from free radicals to aging. Free Radic. Biol. Med. 2016, 97,
398–407. [CrossRef]
104. Yan, L.J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014, 2, 165–169.
[CrossRef]
105. Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Grozina, A.A.; Shatskikh, E.V. Molecular Mechanisms of Gut Health Support in Poultry: Role of Microbiota; Agricultural Technologies: Moscow, Russia, 2018.
106. Rattan, S.I. The nature of gerontogenes and vitagenes. Antiaging effects of repeated heat shock on human fibroblasts. Ann. N. Y. Acad. Sci. 1998, 854, 54–60. [CrossRef]
107. Calabrese, V.; Boyd-Kimball, D.; Scapagnini, G.; Butterfield, D.A. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. In Vivo 2004, 18, 245–267.
108. Calabrese, V.; Guagliano, E.; Sapienza, M.; Panebianco, M.; Calafato, S.; Puleo, E.; Pennisi, G.; Mancuso, C.;
Butterfield, D.A.; Stella, A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: Role of vitagenes. Neurochem. Res. 2007, 32, 757–773. [CrossRef] [PubMed]
109. Calabrese, V.; Cornelius, C.; Mancuso, C.; Barone, E.; Calafato, S.; Bates, T.; Rizzarelli, E.; Kostova, A.T.
Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front. Biosci. 2009, 14,
376–397. [CrossRef]
110. Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.;
Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity:
Role of vitagenes. J. Cell Commun. Signal. 2014, 8, 369–384. [CrossRef] [PubMed]
111. Surai, P.F.; Fisinin, V.I. Vitagenes in poultry production. Part 3. Vitagene concept development. Worlds Poult.
Sci. J. 2016, 72, 793–804. [CrossRef]
112. Surai, P.F.; Fisinin, V.I. Antioxidant system regulation: From vitamins to vitagenes. In Handbook of Cholesterol;
Watson, R.R., De Meester, F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 451–481.
113. Surai, P.F.; Kochish, I.I. Antioxidant systems and vitagenes in poultry biology: Heat Shock Proteins. In Heat
Shock Proteins in Veterinary; Asea Alexzander, A.A., Punit, K., Eds.; Springer: Basel, Switzerland, 2017; pp. 123–177.
114. Pockley, A.G.; Multhoff, G. Cell stress proteins in extracellular fluids: Friend or foe? Novartis Found. Symp.
2008, 291, 86–95.
115. Velichko, A.K.; Markova, E.N.; Petrova, N.V.; Razin, S.V.; Kantidze, O.L. Mechanisms of heat shock response in mammals. Cell. Mol. Life Sci. 2013, 70, 4229–4241. [CrossRef] [PubMed]
116. Meijering, R.A.; Henning, R.H.; Brundel, B.J. Reviving the protein quality control system: Therapeutic target for cardiac disease in the elderly. Trends Cardiovasc. Med. 2015, 25, 243–247. [CrossRef]
117. Fujimoto, M.; Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 2010, 277,
4112–4125. [CrossRef]
118. Sakurai, H.; Enoki, Y. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J. 2010, 277, 4140–4149. [CrossRef]
119. Takii, R.; Fujimoto, M.; Tan, K.; Takaki, E.; Hayashida, N.; Nakato, R.; Shirahige, K.; Nakai, A. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol.
Cell. Biol. 2015, 35, 11–25. [CrossRef]
120. Nakai, A.; Morimoto, R.I. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 1993, 13, 1983–1997. [CrossRef] [PubMed]
121. Tanabe, M.; Nakai, A.; Kawazoe, Y.; Nagata, K. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 1997, 272, 15389–15395. [CrossRef] [PubMed]
122. Inouye, S.; Katsuki, K.; Izu, H.; Fujimoto, M.; Sugahara, K.; Yamada, S.; Shinkai, Y.; Oka, Y.; Katoh, Y.;
Nakai, A. Activation of heat shock genes is not necessary for protection by heat shock transcription factor
1 against cell death due to a single exposure to high temperatures. Mol. Cell Biol. 2003, 23, 5882–5895.
[CrossRef] [PubMed]
123. Nakai, A.; Ishikawa, T. A nuclear localization signal is essential for stress-induced dimer-to-trimer transition of heat shock transcription factor 3. J. Biol. Chem. 2000, 275, 34665–34671. [CrossRef] [PubMed]
124. Nakai, A.; Ishikawa, T. Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. Embo J. 2001, 20, 2885–2895. [CrossRef]
125. Shabtay, A.; Arad, Z. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: Is redundancy developmentally related? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R566–R572. [CrossRef]
126. Shinkawa, T.; Tan, K.; Fujimoto, M.; Hayashida, N.; Yamamoto, K.; Takaki, E.; Takii, R.; Prakasam, R.;
Inouye, S.; Mezger, V.; et al. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol. Biol. Cell 2011, 22, 3571–3583. [CrossRef]
127. Vihervaara, A.; Sistonen, L. HSF1 at a glance. J. Cell. Sci. 2014, 127, 261–266. [CrossRef]
128. Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell
Biol. 2019. [CrossRef]
129. Fernández-Fernández, M.R.; Valpuesta, J.M. Hsp70 chaperone: A master player in protein homeostasis.
F1000Research 2018, 7, F1000 Faculty Rev-1497. [CrossRef]
130. Mayer, M.P.; Gierasch, L.M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 2019, 294, 2085–2097. [CrossRef] [PubMed]
131. Balogi, Z.; Multhoff, G.; Jensen, T.K.; Lloyd-Evans, E.; Yamashima, T.; Jäättelä, M.; Harwood, J.L.; Vígh, L.
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog. Lipid Res.
2019, 74, 18–30. [CrossRef] [PubMed]
132. Clerico, E.M.; Meng, W.; Pozhidaeva, A.; Bhasne, K.; Petridis, C.; Gierasch, L.M. Hsp70 molecular chaperones:
Multifunctional allosteric holding and unfolding machines. Biochem. J. 2019, 476, 1653–1677. [CrossRef]
[PubMed]
133. Morimoto, R.I.; Hunt, C.; Huang, S.Y.; Berg, K.L.; Banerji, S.S. Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. J. Biol. Chem. 1986, 261, 12692–12699. [PubMed]
Antioxidants 2019, 8, 235 28 of 36
134. Gabriel, J.E.; Ferro, J.A.; Stefani, R.M.; Ferro, M.I.; Gomes, S.L.; Macari, M. Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. Br. Poult. Sci.
1996, 37, 443–449. [CrossRef] [PubMed]
135. Leandro, N.S.; Gonzales, E.; Ferro, J.A.; Ferro, M.I.; Givisiez, P.E.; Macari, M. Expression of heat shock protein in broiler embryo tissues after acute cold or heat stress. Mol. Reprod. Dev. 2004, 67, 172–177. [CrossRef]
[PubMed]
136. Maamoun, H.; Benameur, T.; Pintus, G.; Munusamy, S.; Agouni, A. Crosstalk Between Oxidative Stress and
Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated with
Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front. Physiol. 2019, 10, 70. [CrossRef]
137. Lee, H.; Choi, Y.K. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases.
Int. J. Mol. Sci. 2018, 20, 1. [CrossRef]
138. Sebastián, V.P.; Salazar, G.A.; Coronado-Arrázola, I.; Schultz, B.M.; Vallejos, O.P.; Berkowitz, L.;
Álvarez-Lobos, M.M.; Riedel, C.A.; Kalergis, A.M.; Bueno, S.M. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front. Immunol. 2018, 9, 1956. [CrossRef]
139. Waza, A.A.; Hamid, Z.; Ali, S.; Bhat, S.A.; Bhat, M.A. A review on heme oxygenase-1 induction: Is it a necessary evil. Inflamm. Res. 2018, 67, 579–588. [CrossRef]
140. Bonkovsky, H.L.; Healey, J.F.; Pohl, J. Purification and characterization of heme oxygenase from chick liver.
Comparison of the avian and mammalian enzymes. Eur. J. Biochem. 1990, 189, 155–166. [PubMed]
141. Druyan, S.; Cahaner, A.; Ashwell, C.M. The expression patterns of hypoxia-inducing factor subunit alpha-1, heme oxygenase, hypoxia upregulated protein 1, and cardiac troponin T during development of the chicken heart. Poult. Sci. 2007, 86, 2384–2389. [CrossRef] [PubMed]
142. Surai, P.F.; Noble, R.C.; Speake, B.K. Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochim. Biophys. Acta. 1996, 1304, 1–10.
[CrossRef]
143. Halliwell, B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994, 52, 253–265. [CrossRef]
[PubMed]
144. McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein).
J. Biol. Chem. 1969, 244, 6049–6055. [PubMed]
145. Azadmanesh, J.; Borgstahl, G.E.O. A Review of the Catalytic Mechanism of Human Manganese Superoxide
Dismutase. Antioxidants 2018, 7, 2. [CrossRef]
146. Weisiger, R.A.; Fridovich, I. Superoxide dismutase. Organelle specificity. J. Biol. Chem. 1973, 248, 3582–3592.
147. Surai, P.F. Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. Brit. Poult. Sci. 1999, 40, 397–405. [CrossRef]
148. Surai, P.F.; Blesbois, E.; Grasseau, I.; Ghalah, T.; Brillard, J.-P.; Wishart, G.J.; Cerolini, S.; Sparks, N.H. Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comp. Biochem. Physiol. 1998, 120B, 527–533. [CrossRef]
149. Dali-Youcef, N.; Lagouge, M.; Froelich, S.; Koehl, C.; Schoonjans, K.; Auwerx, J. Sirtuins: The ‘magnificent seven’, function, metabolism and longevity. Ann. Med. 2007, 39, 335–345. [CrossRef]
150. Lee, S.H.; Lee, J.H.; Lee, H.Y.; Min, K.J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019, 52,
24–34. [CrossRef] [PubMed]
151. Lin, S.; Xing, H.; Zang, T.; Ruan, X.; Wo, L.; He, M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res. Rev. 2018, 44, 22–32. [CrossRef] [PubMed]
152. Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in
Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [CrossRef] [PubMed]
153. Radak, Z.; Koltai, E.; Taylor, A.W.; Higuchi, M.; Kumagai, S.; Ohno, H.; Goto, S.; Boldogh, I. Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radic. Biol. Med. 2013, 58, 87–97. [CrossRef] [PubMed]
154. Lagunas-Rangel, F.A. Current role of mammalian sirtuins in DNA repair. DNA Repair 2019, 80, 85–92.
[CrossRef]
155. Morris, B.J. Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med. 2013, 56, 133–171.
[CrossRef] [PubMed]
156. Hubbard, B.P.; Sinclair, D.A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharm. Sci. 2014, 35, 146–154. [CrossRef]
157. Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.;
Sinclair, D.A.; Pfluger, P.T.; Tschöp, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism.
Physiol. Rev. 2012, 92, 1479–1514. [CrossRef]
158. Hickey, A.J.; Jüllig, M.; Aitken, J.; Loomes, K.; Hauber, M.E.; Phillips, A.R. Birds and longevity: Does flight driven aerobicity provide an oxidative sink? Ageing Res. Rev. 2012, 11, 242–253. [CrossRef]
159. Han, C.; Wan, H.; Ma, S.; Liu, D.; He, F.; Wang, J.; Pan, Z.; Liu, H.; Li, L.; He, H.; et al. Role of mammalian sirtuin 1 (SIRT1) in lipids metabolism and cell proliferation of goose primary hepatocytes. Mol. Cell.
Endocrinol. 2014, 382, 282–291. [CrossRef]
160. Fang, X.L.; Zhu, X.T.; Chen, S.F.; Zhang, Z.Q.; Zeng, Q.J.; Deng, L.; Peng, J.L.; Yu, J.J.; Wang, L.N.; Wang, S.B.; et al. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: Functions of glucose and lipid metabolism in the feed intake of chickens. Poult. Sci. 2014,
93, 2841–2854. [CrossRef] [PubMed]
161. Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr. 2017, 71, 362–372. [CrossRef] [PubMed]
162. Ren, J.; Xu, N.; Ma, Z.; Li, Y.; Li, C.; Wang, Y.; Tian, Y.; Liu, X.; Kang, X. Characteristics of expression and regulation of sirtuins in chicken (Gallus gallus). Genome 2017, 60, 431–440. [CrossRef] [PubMed]
163. Cogburn, L.A.; Trakooljul, N.; Chen, C.; Huang, H.; Wu, C.H.; Carré, W.; Wang, X.; White, H.B., 3rd.
Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). Bmc Genom. 2018, 19, 695. [CrossRef] [PubMed]
164. Trovato, A.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.;
Reibaldi, M.; Longo, A.; et al. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol. 2014, 5, 129. [CrossRef] [PubMed]
165. Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Ontario, M.L.; Bua, O.; Di Mauro, P.; Toscano, M.A.;
Petralia, C.C.T.; Maiolino, L.; et al. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: Relevance to Alzheimer’s disease pathogenesis. Immun. Ageing 2016, 13,
23. [CrossRef] [PubMed]
166. Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.;
Petralia, A.; et al. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology 2016, 53, 350–358.
[CrossRef] [PubMed]
167. Calabrese, V.; Giordano, J.; Signorile, A.; Laura Ontario, M.; Castorina, S.; De Pasquale, C.; Eckert, G.;
Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res. 2016, 94, 1588–1603. [CrossRef]
168. Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J.
Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res.
2016, 94, 1488–1498. [CrossRef]
169. Calabrese, V.; Calafato, S.; Puleo, E.; Cornelius, C.; Sapienza, M.; Morganti, P.; Mancuso, C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes. Clin.
Dermatol. 2008, 26, 358–363. [CrossRef]
170. Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.;
Graziano, A.; Crupi, R.; et al. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: Role of vitagenes. Immun. Ageing 2013, 10, 41. [CrossRef] [PubMed]
171. Cornelius, C.; Koverech, G.; Crupi, R.; Di Paola, R.; Koverech, A.; Lodato, F.; Scuto, M.; Salinaro, A.T.;
Cuzzocrea, S.; Calabrese, E.J.; et al. Osteoporosis and Alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front. Pharmacol. 2014, 5, 120. [CrossRef]
[PubMed]
172. Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.;
Serra, A.; Calabrese, E.J.; et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing 2015, 12, 20. [CrossRef] [PubMed]
173. Calabrese, V.; Cornelius, C.; Trovato, A.; Cavallaro, M.; Mancuso, C.; Di Rienzo, L.; Condorelli, D.; De
Lorenzo, A.; Calabrese, E.J. The hormetic role of dietary antioxidants in free radical-related diseases. Curr.
Pharm. Des. 2010, 16, 877–883. [CrossRef] [PubMed]
174. Calabrese, V.; Dattilo, S.; Petralia, A.; Parenti, R.; Pennisi, M.; Koverech, G.; Calabrese, V.; Graziano, A.;
Monte, I.; Maiolino, L.; et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: Redox status and proteomics. Free Radic. Res. 2015, 49, 511–524. [CrossRef]
175. Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Asp. Med. 2011, 32, 279–304.
[CrossRef] [PubMed]
176. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.;
Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta 2012, 1822, 753–783. [CrossRef]
177. Fisinin, V.I.; Surai, P.F. Effective protection from stresses in poultry production: From vitamins to vitagenes.
Part 1. Ptitza I Ptitzeproducti (Poultry and Poultry Products, Moscow). 2011, 5, 23–26.
178. Fisinin, V.I.; Surai, P.F. Effective protection from stresses in poultry production: From vitamins to vitagenes.
Part 2. Ptitza I Ptitzeproducti (Poultry and Poultry Products, Moscow). 2011, 6, 10–13.
179. Surai, P.F.; Fisinin, V.I. Modern methods of fighting stresses in poultry production: From antioxidants to vitagenes. Agricult. Biol. (Selskokhozaistvennaya Biologia, Russia). 2012, 4, 3–13.
180. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors 2009, 35, 146–160. [CrossRef] [PubMed]
181. Surai, P.F. Taurine and carnitine in poultry production: From vitagene activation to chicken health maintenance.
Ukr. Poult. Sci. (Ptahivnitstvo.ua). 2018, 1–2, 12–17.
182. Ma, Q.; He, X. Molecular basis of electrophilic and oxidative defense: Promises and perils of Nrf2.
Pharmacol. Rev. 2012, 64, 1055–1081. [CrossRef] [PubMed]
183. Majzunova, M.; Dovinova, I.; Barancik, M.; Chan, J.Y. Redox signaling in pathophysiology of hypertension.
J. Biomed. Sci. 2013, 20, 69. [CrossRef] [PubMed]
184. Song, P.; Zou, M.H. Redox regulation of endothelial cell fate. Cell Mol. Life Sci. 2014, 71, 3219–3239. [CrossRef]
185. Kweider, N.; Huppertz, B.; Kadyrov, M.; Rath, W.; Pufe, T.; Wruck, C.J. A possible protective role of Nrf2 in preeclampsia. Ann. Anat. 2014, 196, 268–277. [CrossRef] [PubMed]
186. Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the
Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis. 2019, 10, 637–651. [CrossRef]
187. Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2, 535–562. [CrossRef]
188. Wang, X.; Hai, C. Novel insights into redox system and the mechanism of redox regulation. Mol. Biol. Rep.
2016, 43, 607–628. [CrossRef]
189. Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem.
Physiol. C Toxicol. Pharm. 2011, 153, 175–190. [CrossRef]
190. Itoh, K.; Mimura, J.; Yamamoto, M. Discovery of the negative regulator of Nrf2, Keap1: A historical overview.
Antioxid. Redox Signal. 2010, 13, 1665–1678. [CrossRef] [PubMed]
191. Tang, W.; Jiang, Y.F.; Ponnusamy, M.; Diallo, M. Role of Nrf2 in chronic liver disease. World J. Gastroenterol.
2014, 20, 13079–13087. [CrossRef] [PubMed]
192. Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell Longev. 2013, 2013, 104308. [CrossRef]
[PubMed]
193. Vriend, J.; Reiter, R.J. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol. 2015, 401, 213–220. [CrossRef] [PubMed]
194. Keum, Y.S.; Choi, B.Y. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules
2014, 19, 10074–10089. [CrossRef] [PubMed]
195. Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim. Biophys. Acta 2018, 1865, 721–733. [CrossRef] [PubMed]
196. Choi, B.H.; Kang, K.S.; Kwak, M.K. Effect of redox modulating NRF2 activators on chronic kidney disease.
Molecules 2014, 19, 12727–12759. [CrossRef]
197. Helou, D.G.; Martin, S.F.; Pallardy, M.; Chollet-Martin, S.; Kerdine-Römer, S. Nrf2 Involvement in
Chemical-Induced Skin Innate Immunity. Front. Immunol. 2019, 10, 1004. [CrossRef]
198. Panieri, E.; Saso, L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid. Med. Cell. Longev.
2019, 2019, 8592348. [CrossRef]
199. Bhakkiyalakshmi, E.; Sireesh, D.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol. Res. 2015, 91, 104–114. [CrossRef]
200. Zolnourian, A.; Galea, I.; Bulters, D. Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. Oxid. Med. Cell Longev. 2019, 2019, 6218239. [CrossRef] [PubMed]
201. Sussan, T.E.; Biswal, S. Oxidative stress and respiratory diseases: The critical role of Nrf2. In Studies on
Respiratory Disorders; Ganguly, N.K., Ed.; Humana Press: New York, NY, USA, 2014; pp. 335–348.
202. Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol. Life Sci. 2016, 73,
3221–3247. [CrossRef] [PubMed]
203. Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of Mitochondrial Biogenesis as a Way for Active
Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019, 10, 435.
[CrossRef] [PubMed]
204. Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.;
Levonen, A.L.; Kensler, T.W.; et al. Therapeutic targeting of the NRF2 and Keap1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317. [CrossRef] [PubMed]
205. Surai, P.F.; Kochish, I.I.; Fisinin, V.I. Glutathione peroxidases in poultry biology: Part 1. Classification and mechanisms of action. Worlds Poult. Sci. J. 2018, 73, 185–197. [CrossRef]
206. Surai, P.F.; Kochish, I.I.; Fisinin, V.I. Glutathione peroxidases in poultry biology: Part 2. Modulation of enzymatic activities. Worlds Poult. Sci. J. 2018, 73, 239–250. [CrossRef]
207. García-Giménez, J.L.; Romá-Mateo, C.; Pérez-Machado, G.; Peiró-Chova, L.; Pallardó, F.V. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic. Biol. Med. 2017, 112, 36–48. [CrossRef]
208. Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [CrossRef]
209. Ribas, V.; García-Ruiz, C.; Fernández-Checa, J.C. Glutathione and mitochondria. Front. Pharm. 2014, 5, 151.
[CrossRef]
210. Hansen, J.M.; Harris, C. Glutathione during embryonic development. Biochim. Biophys. Acta 2015, 1850,
1527–1542. [CrossRef]
211. Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant.
Front. Pharm. 2014, 5, 196. [CrossRef] [PubMed]
212. Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim.
Biophys. Acta 2013, 1830, 3217–3266. [CrossRef] [PubMed]
213. Griffiths, H.R.; Dias, I.H.; Willetts, R.S.; Devitt, A. Redox regulation of protein damage in plasma. Redox Biol.
2014, 2, 430–435. [CrossRef] [PubMed]
214. Farina, M.; Aschner, M. Glutathione antioxidant system and methylmercury-induced neurotoxicity:
An intriguing interplay. Biochim. Biophys. Acta 2019. In Press. [CrossRef] [PubMed]
215. Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid. Redox Signal. 2017, 27,
989–1010. [CrossRef] [PubMed]
216. Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013, 100, 30–47. [CrossRef] [PubMed]
217. Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019. [CrossRef]
218. Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory Redox Interactions.
Iubmb Life 2019, 71, 430–441. [CrossRef]
219. Schmidlin, C.J.; Dodson, M.B.; Madhavan, L.; Zhang, D.D. Redox regulation by NRF2 in aging and disease.
Free Radic. Biol. Med. 2019, S0891-5849(18)32591-7, in press. [CrossRef]
220. Koháryová, M.; Kollárová, M. Thioredoxin system—A novel therapeutic target. Gen. Physiol. Biophys. 2015,
34, 221–233. [CrossRef]
221. Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [CrossRef]
[PubMed]
222. Jones, S.W.; Luk, K.C. Isolation of a chicken thioredoxin cDNA clone. Thioredoxin mRNA is differentially expressed in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. J. Biol. Chem. 1988,
263, 9607–9611. [PubMed]
223. Tanaka, Y.; Tran, P.O.; Harmon, J.; Robertson, R.P. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc. Nat. Acad. Sci. USA 2002, 99,
12363–12368. [CrossRef] [PubMed]
224. Wang, D.; Masutani, H.; Oka, S.; Tanaka, T.; Yamaguchi-Iwai, Y.; Nakamura, H.; Yang, K.T.; Lin, C.Y.;
Huang, H.L.; Liou, J.S.; et al. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J. Biol. Chem. 2006, 281, 7384–7391. [CrossRef] [PubMed]
225. Xiao, R.; Power, R.F.; Mallonee, D.; Routt, K.; Spangler, L.; Pescatore, A.J.; Cantor, A.H.; Ao, T.; Pierce, J.L.;
Dawson, K.A. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles.
Mol. Cell. Probes. 2008, 22, 47–54. [CrossRef]
226. Xiao, R.; Power, R.F.; Mallonee, D.; Routt, K.; Spangler, L.; Pescatore, A.J.; Cantor, A.H.; Ao, T.; Pierce, J.L.;
Dawson, K.A. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poult. Sci. 2012, 91, 1660–1669. [CrossRef]
227. Marzoni, M.; Castillo, A.; Sagona, S.; Citti, L.; Rocchiccioli, S.; Romboli, I.; Felicioli, A. A proteomic approach to identify seminal plasma proteins in roosters (Gallus gallus domesticus). Anim. Reprod. Sci. 2013, 140,
216–223. [CrossRef]
228. Hu, L.; Yu, W.; Li, Y.; Li, Y.; Guo, J.; Tang, Z. Prokaryotic expression and antioxidant properties of mitochondrial thioredoxin-2 from broiler chicken. Chin. Vet. Sci. 2015, 4, S831.
229. Yang, J.; Gong, Y.; Liu, Q.; Cai, J.; Zhang, B.; Zhang, Z. Thioredoxin silencing-induced cardiac supercontraction occurs through endoplasmic reticulum stress and calcium overload in chicken. Metallomics 2018, 10, 1667–1677.
[CrossRef]
230. Smith, A.D.; Morris, V.C.; Levander, O.A. Rapid determination of glutathione peroxidase and thioredoxin reductase activities using a 96-well microplate format: Comparison to standard cuvette-based assays. Int. J.
Vitam. Nutr. Res. 2001, 71, 87–92. [CrossRef]
231. Gowdy, K.M.; Edens, F.W.; Mahmoud, K.Z. Comparative Effects of Various Forms of Selenium on Thioredoxin
Reductase Activity in Broiler Chickens. Int. J. Poult. Sci. 2015, 14, 376–382.
232. Placha, I.; Takacova, J.; Ryzner, M.; Cobanova, K.; Laukova, A.; Strompfova, V.; Venglovska, K.; Faix, S. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br. Poult. Sci.
2014, 55, 105–114. [CrossRef] [PubMed]
233. Lin, S.L.; Wang, C.W.; Tan, S.R.; Liang, Y.; Yao, H.D.; Zhang, Z.W.; Xu, S.W. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol. Trace Elem. Res.
2014, 161, 263–271. [CrossRef] [PubMed]
234. Zhao, X.; Yao, H.; Fan, R.; Zhang, Z.; Xu, S. Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol. Trace Elem. Res. 2014, 161, 341–349. [CrossRef] [PubMed]
235. Liang, Y.; Lin, S.L.; Wang, C.W.; Yao, H.D.; Zhang, Z.W.; Xu, S.W. Effect of selenium on selenoprotein expression in the adipose tissue of chickens. Biol. Trace Elem. Res. 2014, 160, 41–48. [CrossRef] [PubMed]
236. Xu, J.X.; Zhang, C.; Cao, C.Y.; Zhu, S.Y.; Li, H.; Sun, Y.C.; Li, J.L. Dietary Selenium Status Regulates the Transcriptions of Selenoproteome and Activities of Selenoenzymes in Chicken Kidney at Low or
Super-nutritional Levels. Biol. Trace Elem. Res. 2016, 170, 438–448. [CrossRef] [PubMed]
237. Wang, J.; Liu, Z.; He, X.; Lian, S.; Liang, J.; Yu, D.; Sun, D.; Wu, R. Selenium deficiency induces duodenal villi cell apoptosis via an oxidative stress-induced mitochondrial apoptosis pathway and an inflammatory signaling-induced death receptor pathway. Metallomics 2018, 10, 1390–1400. [CrossRef] [PubMed]
238. Wang, Y.X.; Xiao, X.; Zhan, X.A. Antagonistic effects of different selenium sources on growth inhibition, oxidative damage, and apoptosis induced by fluorine in broilers. Poult. Sci. 2018, 97, 3207–3217. [CrossRef]
239. Zhu, Y.; Jiao, X.; An, Y.; Li, S.; Teng, X. Selenium against lead-induced apoptosis in chicken nervous tissues via mitochondrial pathway. Oncotarget 2017, 8, 108130–108145. [CrossRef]
240. Zhang, J.; Bai, K.W.; He, J.; Niu, Y.; Lu, Y.; Zhang, L.; Wang, T. Curcumin attenuates hepatic mitochondrial dysfunction through the maintenance of thiol pool, inhibition of mtDNA damage, and stimulation of the mitochondrial thioredoxin system in heat-stressed broilers. J. Anim. Sci. 2018, 96, 867–879. [CrossRef]
241. Han, J.Y.; Song, K.D.; Shin, J.H.; Han, B.K.; Park, T.S.; Park, H.J.; Kim, J.K.; Lillehoj, H.S.; Lim, J.M.; Kim, H.
Identification and characterization of the peroxiredoxin gene family in chickens. Poult. Sci. 2005, 84,
1432–1438. [CrossRef] [PubMed]
242. Lavric, M.; Maughan, M.N.; Bliss, T.W.; Dohms, J.E.; Bencina, D.; Keeler, C.L., Jr.; Narat, M. Gene expression modulation in chicken macrophages exposed to Mycoplasma synoviae or Escherichia coli. Vet. Microbiol.
2008, 126, 111–121. [CrossRef] [PubMed]
243. Cao, Z.; Han, Z.; Shao, Y.; Geng, H.; Kong, X.; Liu, S. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Sci. 2011, 9, 11.
[CrossRef] [PubMed]
244. Huang, J.; Ruan, J.; Tang, X.; Zhang, W.; Ma, H.; Zou, S. Comparative proteomics and phosphoproteomics analyses of DHEA-induced on hepatic lipid metabolism in broiler chickens. Steroids 2011, 76, 1566–1574.
[CrossRef] [PubMed]
245. Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Jeong, M.; Kim, D.K.; Xu, S.; Lee, S.K.; Kim, J.B.; Park, H.J.; Kim, H.R.; et al.
Immune and anti-oxidant effects of in ovo selenium proteinate on post-hatch experimental avian necrotic enteritis. Vet. Parasitol. 2014, 206, 115–122. [CrossRef] [PubMed]
246. Cheng, C.Y.; Tu, W.L.; Chen, C.J.; Chan, H.L.; Chen, C.F.; Chen, H.H.; Tang, P.C.; Lee, Y.P.; Chen, S.E.;
Huang, S.Y. Functional genomics study of acute heat stress response in the smallyellow follicles of layer-type chickens. Sci. Rep. 2018, 8, 1320. [CrossRef] [PubMed]
247. Drummond, H.A.; Mitchell, Z.L.; Abraham, N.G.; Stec, D.E. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants 2019, 8, 6. [CrossRef] [PubMed]
248. Lever, J.M.; Boddu, R.; George, J.F.; Agarwal, A. Heme Oxygenase-1 in Kidney Health and Disease. Antioxid.
Redox. Signal. 2016, 25, 165–183. [CrossRef]
249. Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry 2014, 79, 1562–1583. [CrossRef]
[PubMed]
250. Kasai, S.; Mimura, J.; Ozaki, T.; Itoh, K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin
Metabolism in Physiology and Disease. Front. Vet. Sci. 2018, 5, 242. [CrossRef]
251. Zhou, S.; Sun, W.; Zhang, Z.; Zheng, Y. The role of Nrf2-mediated pathway in cardiac remodelling and heart failure. Oxid. Med. Cell Longev. 2014, 2014, 260429. [CrossRef] [PubMed]
252. Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [CrossRef] [PubMed]
253. Dayalan Naidu, S.; Kostov, R.V.; Dinkova-Kostova, A.T. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 2015, 36, 6–14. [CrossRef] [PubMed]
254. Itoh, K.; Ye, P.; Matsumiya, T.; Tanji, K.; Ozaki, T. Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J. Clin. Biochem. Nutr. 2015, 56, 91–97. [CrossRef] [PubMed]
255. Sihvola, V.; Levonen, A.L. Keap1 as the redox sensor of the antioxidant response. Arch. Biochem. Biophys.
2017, 617, 94–100. [CrossRef] [PubMed]
256. Sahin, K.; Orhan, C.; Tuzcu, M.; Ali, S.; Sahin, N.; Hayirli, A. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult. Sci. 2010, 89, 2251–2258. [CrossRef] [PubMed]
257. Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Hayirli, A.; Bilgili, S.; Kucuk, O. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult. Sci. 2016, 95, 1088–1095.
[CrossRef] [PubMed]
258. Sahin, N.; Hayirli, A.; Orhan, C.; Tuzcu, M.; Akdemir, F.; Komorowski, J.R.; Sahin, K. Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress.
Poult. Sci. 2017, 96, 4317–4324. [CrossRef] [PubMed]
259. Zhang, J.F.; Bai, K.W.; Su, W.P.; Wang, A.A.; Zhang, L.L.; Huang, K.H.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and
Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219.
[CrossRef] [PubMed]
260. Zhang, C.; Chen, K.; Zhao, X.; Geng, Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis.
J. Sci. Food Agric. 2018, 98, 5409–5417. [CrossRef] [PubMed]
261. Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Dietary taurine supplementation improves breast meat quality in chronic heat-stressed broilers via activating the Nrf2 pathway and protecting mitochondria from oxidative attack. J. Sci. Food Agric. 2019, 99, 1066–1072. [CrossRef] [PubMed]
262. Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress. Mol. Biol. Rep. 2018, 45, 389–394. [CrossRef]
[PubMed]
263. Monson, M.S.; Cardona, C.J.; Coulombe, R.A.; Reed, K.M. Hepatic Transcriptome Responses of Domesticated and Wild Turkey Embryos to Aflatoxin B1
. Toxins 2016, 8, 1. [CrossRef] [PubMed]
264. Liu, Y.; Wang, W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Anim. Sci. J. 2016, 87, 1490–1500.
[CrossRef] [PubMed]
265. Wang, W.J.; Xu, Z.L.; Yu, C.; Xu, X.H. Effects of aflatoxin B1 on mitochondrial respiration, ROS generation and apoptosis in broiler cardiomyocytes. Anim. Sci. J. 2017, 88, 1561–1568. [CrossRef] [PubMed]
266. Wang, H.; Muhammad, I.; Li, W.; Sun, X.; Cheng, P.; Zhang, X. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B(1)-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. Environ. Toxicol. Pharmacol. 2018, 59, 94–104. [CrossRef] [PubMed]
267. Muhammad, I.; Wang, X.; Li, S.; Li, R.; Zhang, X. Curcumin confers hepatoprotection against AFB(1)-induced toxicity via activating autophagy and ameliorating inflammation involving Nrf2/HO-1 signaling pathway.
Mol. Biol. Rep. 2018, 45, 1775–1785. [CrossRef] [PubMed]
268. Li, S.; Muhammad, I.; Yu, H.; Sun, X.; Zhang, X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol. Env. Saf. 2019, 176,
137–145. [CrossRef]
269. Chaudhary, M.; Rao, P.V. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice.
Food Chem. Toxicol. 2010, 48, 3436–3442. [CrossRef]
270. Yu, M.; Chen, L.; Peng, Z.; Wang, D.; Song, Y.; Wang, H.; Yao, P.; Yan, H.; Nüssler, A.K.; Liu, L.; et al.
Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway. Toxins 2017, 9,
6. [CrossRef]
271. Zhang, C.; Lin, J.; Ge, J.; Wang, L.L.; Li, N.; Sun, X.T.; Cao, H.B.; Li, J.L. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol. Vitr. 2017, 44,
349–356. [CrossRef] [PubMed]
272. Chen, M.; Li, X.; Fan, R.; Cao, C.; Yao, H.; Xu, S. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response. Ecotoxicol. Env. Saf. 2017, 145, 503–510.
[CrossRef] [PubMed]
273. Wang, J.; Huang, X.; Zhang, K.; Mao, X.; Ding, X.; Zeng, Q.; Bai, S.; Xuan, Y.; Peng, H. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells.
Metallomics 2017, 9, 1562–1575. [CrossRef] [PubMed]
274. Ma, Y.; Zhu, M.; Miao, L.; Zhang, X.; Dong, X.; Zou, X. Mercuric Chloride Induced Ovarian Oxidative Stress by Suppressing Nrf2-Keap1 Signal Pathway and its Downstream Genes in Laying Hens. Biol. Trace Elem. Res.
2018, 185, 185–196. [CrossRef] [PubMed]
275. Ma, Y.; Zheng, Y.X.; Dong, X.Y.; Zou, X.T. Effect of mercury chloride on oxidative stress and nuclear factor erythroid 2-related factor 2 signalling molecule in liver and kidney of laying hens. J. Anim. Physiol. Anim. Nutr.
2018, 102, 1199–1209. [CrossRef] [PubMed]
276. Wang, J.; Yuan, Z.; Zhang, K.; Ding, X.; Bai, S.; Zeng, Q.; Peng, H.; Celi, P. Epigallocatechin-3-gallate protected vanadium-induced eggshell depigmentation via P38MAPK-Nrf2/HO-1 signaling pathway in laying hens.
Poult. Sci. 2018, 97, 3109–3118. [CrossRef] [PubMed]
277. Zheng, X.C.; Wu, Q.J.; Song, Z.H.; Zhang, H.; Zhang, J.F.; Zhang, L.L.; Zhang, T.Y.; Wang, C.; Wang, T. Effects of Oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide.
Poult. Sci. 2016, 95, 2281–2289. [CrossRef]
278. Zhang, P.; Zhong, S.; Wang, G.; Zhang, S.Y.; Chu, C.; Zeng, S.; Yan, Y.; Cheng, X.; Bao, Y.; Hocher, B.; et al. N-Acetylcysteine Suppresses LPS-Induced Pathological Angiogenesis. Cell Physiol. Biochem. 2018, 49,
2483–2495. [CrossRef]
279. Ruan, D.; Fouad, A.M.; Fan, Q.L.; Chen, W.; Xia, W.G.; Wang, S.; Cui, Y.Y.; Wang, Y.; Yang, L.; Zheng, C.T.
Effects of corn dried distillers’ grains with solubles on performance, egg quality, yolk fatty acid composition and oxidative status in laying ducks. Poult. Sci. 2018, 97, 568–577. [CrossRef]
280. Gou, Z.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Jiang, Z.Y.; Zheng, C.T.; Ding, F.Y.; Jiang, S.Q. Effects of oxidative stress induced by high dosage of dietary iron ingested on intestinal damage and caecal microbiota in Chinese
Yellow broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 924–932. [CrossRef]
281. Kang, B.; Wang, X.; Xu, Q.; Wu, Y.; Si, X.; Jiang, D. Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese. Biosci. Rep. 2018, 38, 5. [CrossRef] [PubMed]
282. Lu, P.; Xue, W.Y.; Zhang, X.L.; Wu, D.W.; Ding, L.R.; Wen, C.; Zhou, Y.M. Heat-induced protein oxidation of soybean meal impairs growth performance and antioxidant status of broilers. Poult. Sci. 2019, 98, 276–286.
[CrossRef] [PubMed]
283. Khaliq, H.; Wang, J.; Xiao, L.; Yang, K.-L.; Sun, P.P.; Lei, C.; Qiu, W.-W.; Lei, Z.; Liu, H.-Z.; Hui, S.; et al. Boron
Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2
Pathway in the African Ostrich Chicks. Biol. Trace Elem. Res. 2018, 186, 226–237. [CrossRef] [PubMed]
284. Ge, J.; Li, H.; Sun, F.; Li, X.N.; Lin, J.; Xia, J.; Zhang, C.; Li, J.L. Transport stress-induced cerebrum oxidative stress is not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks. J. Anim.
Sci. 2017, 95, 2871–2878. [CrossRef] [PubMed]
285. Xu, L.; Zhang, H.J.; Yue, H.Y.; Wu, S.G.; Yang, H.M.; Qi, G.H.; Wang, Z.Y. Low-current & high-frequency electrical stunning increased oxidative stress, lipid peroxidation, and gene transcription of the mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (MAPK/Nrf2/ARE) signaling pathway in breast muscle of broilers. Food Chem. 2018, 242, 491–496. [PubMed]
286. Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol.
Anim. Nutr. 2014, 98, 19–31. [CrossRef]
287. Lee, M.T.; Lin, W.C.; Lee, T.T. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 309–319. [CrossRef]
288. Lee, M.T.; Lin, W.C.; Wang, S.Y.; Lin, L.J.; Yu, B.; Lee, T.T. Evaluation of potential antioxidant and anti-inflammatory effects of Antrodia cinnamomea powder and the underlying molecular mechanisms via
Nrf2- and NF-κB-dominated pathways in broiler chickens. Poult. Sci. 2018, 97, 2419–2434. [CrossRef]
289. Lin, X.; Jiang, S.; Jiang, Z.; Zheng, C.; Gou, Z. Effects of equol on H2O2 -induced oxidative stress in primary chicken intestinal epithelial cells. Poult. Sci. 2016, 95, 1380–1386. [CrossRef]
290. Lin, W.C.; Lee, M.T.; Chang, S.C.; Chang, Y.L.; Shih, C.H.; Yu, B.; Lee, T.T. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult. Sci. 2017,
96, 1191–1203. [CrossRef]
291. Niu, Y.; Zhang, J.F.; Wan, X.L.; Huang, Q.; He, J.T.; Zhang, X.H.; Zhao, L.G.; Zhang, L.L.; Wang, T. Effect of fermented Ginkgo biloba leaves on nutrient utilisation, intestinal digestive function and antioxidant capacity in broilers. Br. Poult. Sci. 2019, 60, 47–55. [CrossRef] [PubMed]
292. Sahin, K.; Yenice, E.; Bilir, B.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ozercan, I.H.; Kabil, N.; Ozpolat, B.; Kucuk, O.
Genistein Prevents Development of Spontaneous Ovarian Cancer and Inhibits Tumor Growth in Hen Model.
Cancer Prev. Res. 2019, 12, 135–146. [CrossRef] [PubMed]
293. Ruan, D.; Zhu, Y.W.; Fouad, A.M.; Yan, S.J.; Chen, W.; Zhang, Y.N.; Xia, W.G.; Wang, S.; Jiang, S.Q.; Yang, L.; et al. Dietary curcumin enhances intestinal antioxidant capacity in ducklings via altering gene expression of antioxidant and key detoxification enzymes. Poult. Sci. 2019, pez058. [CrossRef] [PubMed]
294. Jiang, S.Q.; Gou, Z.Y.; Lin, X.J.; Li, L. Effects of dietary tryptophan levels on performance and biochemical variables of plasma and intestinal mucosa in yellow-feathered broiler breeders. J. Anim. Physiol. Anim. Nutr.
2018, 102, e387–e394. [CrossRef] [PubMed]
295. Ruan, D.; Fouad, A.M.; Fan, Q.; Xia, W.; Wang, S.; Chen, W.; Lin, C.; Wang, Y.; Yang, L.; Zheng, C. Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders. Br. J. Nutr. 2018, 119, 121–130. [CrossRef]
[PubMed]
296. Bai, W.K.; Zhang, F.J.; He, T.J.; Su, P.W.; Ying, X.Z.; Zhang, L.L.; Wang, T. Dietary Probiotic Bacillus subtilis
Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage.
PLoS ONE 2016, 11, 12, e0167339. [CrossRef] [PubMed]
297. Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96,
74–82. [CrossRef]
298. Seidel, U.; Huebbe, P.; Rimbach, G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle
Function. Mol. Nutr. Food Res. 2018, e1800569. [CrossRef]
299. Kong, B.W.; Hudson, N.; Seo, D.; Lee, S.; Khatri, B.; Lassiter, K.; Cook, D.; Piekarski, A.; Dridi, S.; Anthony, N.; et al. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. BMC Genom. 2017, 18, 82.
[CrossRef]
300. Khatri, B.; Seo, D.; Shouse, S.; Pan, J.H.; Hudson, N.J.; Kim, J.K.; Bottje, W.; Kong, B.C. MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. Bmc Genom.
2018, 19, 683. [CrossRef]
301. Sivandzade, F.; Prasad, S.; Bhalerao, A.; Cucullo, L. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019,
21, 101059. [CrossRef] [PubMed]
302. Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic. Res. 2018, 52, 507–543.
[CrossRef] [PubMed]
303. Stefanson, A.L.; Bakovic, M. Dietary regulation of Keap1/Nrf2/ARE pathway: Focus on plant-derived compounds and trace minerals. Nutrients 2014, 6, 3777–3801. [CrossRef] [PubMed]
304. Velichko, O.A.; Shabaldin, S.V.; Surai, P.F. Practical aspects of vitagene concept use in poultry production.
Poult. Poult. Prod. (Moscow) 2013, 4, 42–45.
305. Shatskih, E.; Latipova, E.; Fisinin, V.; Denev, S.; Surai, P. Molecular mechanisms and new strategies to fight stresses in egg-producing birds. Agric. Sci. Technol. 2015, 7, 3–10.
306. Shatskih, E.; Latipova, E.; Nesvet, E.G.; Koburneev, I.V. Usage of Antistress Preparations in Poultry Production;
Ural State Agricultural University: Ekaterinburg, Russia, 2016.