[1] Kagnoff MF. Immunology of the
Intestinal Tract. Gastroenterology.
1993;(105):1275-1280.
[2] Yamauchi K-E, Isshiki Y. Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from 1 to
30 days of age. 1991;(32):67-78.
[3] Calhoun M. Microscopic Anatomy of the Digestive System. Iowa: Iowa State
College Press, Ames; 1954.
[4] Ziswiler V, Farner DS. Digestion and digestive system. In: Farner D,
King J, editors. Avian Biology. London:
Academic Press, London; 1972. p.
343-430.
[5] Bennett T. Peripheral and autonomic nervous systems. In: Farner DS, King JR, editors. Avian Biology. New York:
Academic Press, New York; 1974. p. 1-77.
[6] Bartlet AL. Actions of putative transmitters in the chicken vagus nerve/oesophagus and Remak nerve/ rectum preparations. Br J Pharmacol
Chemother. 1974;51:549-558.
[7] Takewaki T, Ohashi H, Okada T.
Non-cholinergic and non-adrenergic mechanism in the contraction and relaxation of the chicken rectum. Jap J
Pharmac. 1977;27:105-115.
[8] Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr
Metab Care. 2002;5:685-694.
[9] Hughes RJ. An integrated approach to understanding gut function and gut health of chickens. Asia Pac J Clin Nutr.
2005;14:S27.
[10] Yegani M, Korver DR. Review
Factors Affecting Intestinal Health in Poultry. Poult Sci [Internet].
2008;87(10):2052-2063. Available from: http://dx.doi.org/10.3382/ ps.2008-00091
[11] Jiang Z. Gene and expression analysis of secretory mucins and trefoil factor(s) in the intestinal mucosa of chicken. PhD Thesis Purdue University;
2011.
[12] Johansson ME V, Hansson GC.
Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol
[Internet]. 2016;16(10):639-649.
Available from: http://dx.doi. org/10.1038/nri.2016.88
[13] Johansson MEV, Sjövall H,
Hansson GC. The gastrointestinal mucus system in health and disease. Nat
Rev Gastroenterol Hepatol [Internet].
2013;10(6):352-361. Available from: http://dx.doi.org/10.1038/ nrgastro.2013.35
[14] Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. Vol. 124, Advanced Drug
Delivery Reviews. Elsevier B.V.; 2018. p. 3-15.
[15] Hollingsworth MA, Swanson BJ.
Mucins in cancer: Protection and control of the cell surface. Nat Rev Cancer.
2004;4(1):45-60.
[16] Hill HD, Reynolds JA, Hill RL.
Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem.
1977;252(11):3791-3798.
[17] Lang T, Hansson GC,
Samuelsson T. An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics.
2006;7:1-10.
[18] Lai SK, Wang YY, Wirtz D, Hanes J.
Micro- and macrorheology of mucus.
Vol. 61, Advanced Drug Delivery
Reviews. Elsevier; 2009. p. 86-100.
[19] Berkes J, Viswanathan VK,
Savkovic SD. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut
[Internet]. 2003;52:439-451. Available from: www.gutjnl.com
[20] Png CW, Lindén SK, Gilshenan KS,
Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol.
2010;105(11):2420-2428.
[21] Sonnenburg JL, Xu J, Leip DD,
Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont.
Science (80- ). 2005;307(5717):1955-9.
[22] Linden SK, Sutton P, Karlsson NG,
Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal
Immunol. 2008;1(3):183-197.
[23] Kashyap PC, Marcobal A,
Ursell LK, Smits SA, Sonnenburg ED,
Costello EK, et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota.
Proc Natl Acad Sci U S A.
2013;110(42):17059-17064.
[24] Sommer F, Adam N,
Johansson MEV, Xia L, Hansson GC,
Bäckhed F. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One. 2014;9(1).
[25] Thim L. Trefoil peptides: from structure to function. Cell Mol Life Sci.
1997;53.
[26] Tran CP, Cook GA, Yeomans ND,
Thim L, Giraud AS. Trefoil peptide
TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis.
Gut. 1999;44(5):636-642.
[27] Babyatsky MW, DeBeaumont M,
Thim L, Podolsky DK. Oral trefoil peptides protect against ethanoland indomethacin-induced gastric injury in rats. Gastroenterology.
1996;110(2):489-497.
[28] Wong WM,
Poulsom R, Wright NA. Trefoil peptides.
Gut. 1999;44(6):890-895.
[29] Taupin D, Podolsky DK. Trefoil factors: Initiators of mucosal healing. Nat Rev Mol Cell Biol.
2003;4(9):721-732.
[30] Baus-Loncar M, Kayademir T,
Takaishi S, Wang T. Trefoil factor family
2 deficiency and immune response. Cell
Mol Life Sci. 2005;62(24):2947-2955.
[31] Cook GA, Familari M, Thim L,
Giraud AS. The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett. 1999 Jul
30;456(1):155-159.
[32] Dubeykovskaya Z, Dubeykovskiy A,
Solal-Cohen J, Wang TC. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem.
2009;284(6):3650-3662.
[33] Thim L, Madsen F,
Poulsen SS. Effect of trefoil factors on the viscoelastic properties of mucus gels.
Eur J Clin Invest. 2002;32(7):519-527.
[34] Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am
J Physiol - Cell Physiol. 1991;260(2
29-2):83-93.
[35] Yang Q, Bermingham NA,
Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine.
Science (80- ). 2001;294(5549):2155-8.
[36] Ye DZ, Kaestner KH. Foxa1 and
Foxa2 Control the Differentiation of Goblet and Enteroendocrine L- and
D-Cells in Mice. Gastroenterology. 2009
Dec 1;137(6):2052-2062.
[37] Nexø E, Poulsen SS, Hansen SN,
Kirkegaard P, Olsen PS. Characterisation of a novel proteolytic enzyme localised to goblet cells in rat and man. Gut.
1984;25(6):656-664.
[38] Lo DD. Vigilance or Subversion?
Constitutive and Inducible M Cells in Mucosal Tissues. Trends Immunol
[Internet]. 2018;39(3):185-95. Available from: https://doi.org/10.1016/j. it.2017.09.002
[39] Barton ES, Forrest JC, Connolly JL,
Chappell JD, Liu Y, Schnell FJ, et al.
Junction adhesion molecule is a receptor for reovirus. Cell. 2001;104(3):441-451.
[40] Clark MA, Hirst BH, Jepson MA.
M-cell surface β1 integrin expression and invasin-mediated targeting of
Yersinia pseudotuberculosis to mouse
Peyer’s patch M cells. Infect Immun.
1998;66(3):1237-1243.
[41] Glomski IJ, Piris-Gimenez A,
Huerre M, Mock M, Goossens PL.
Primary involvement of pharynx and Peyer’s patch in inhalational and intestinal anthrax. PLoS Pathog.
2007;3(6):0699-0708.
[42] Sakhony OS, Rossy B, Gusti V,
Pham AJ, Vu K, Lo DD. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue
Barriers. 2015;3(1):1-2.
[43] Gassler N. Paneth cells in intestinal physiology and pathophysiology.
World J Gastrointest Pathophysiol.
2017;8(4):150-160.
[44] Wang L, Li J, Li J, Li RX, Lv CF,
Li S, et al. Identification of the Paneth cells in chicken small intestine. Poult
Sci. 2016;95(7):1631-1635.
[45] Deckx RJ, Vantrappen GR,
Parein MM. Localization of lysozyme activity in a Paneth cell granule fraction. Biochim Biophys Acta.
1967;139(1):204-207.
[46] Ouellette AJ, Miller SI,
Henschen AH, Selsted ME. Purification and primary structure of murine cryptdin-1, a Paneth cell defensin. FEBS
Lett. 1992;304(2-3):146-148.
[47] Peterson LW, Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis.
Nat Rev Immunol [Internet].
2014;14(3):141-153. Available from: http://dx.doi.org/10.1038/nri3608
[48] Clevers HC, Bevins CL.
Paneth cells: Maestros of the small intestinal crypts. Annu Rev Physiol.
2013;75:289-311.
[49] Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol.
2014;14(10):667-685.
[50] Pasupuleti M, Schmidtchen A,
Malmsten M. Antimicrobial peptides:
Key components of the innate immune system. Crit Rev Biotechnol.
2012;32(2):143-171.
[51] Evans EW, Beach GG, Wunderlich J,
Harmon BG. Isolation of antimicrobial peptides from avian heterophils. J
Leukoc Biol. 1994;56(5):661-665.
[52] Cuperus T, Coorens M, van
Dijk A, Haagsman HP. Avian host defense peptides. Dev Comp Immunol
[Internet]. 2013;41(3):352-369.
Available from: http://dx.doi. org/10.1016/j.dci.2013.04.019
[53] Zhang G, Sunkara LT. Avian antimicrobial host defense peptides:
From biology to therapeutic applications. Pharmaceuticals.
2014;7(3):220-247.
[54] Zasloff M. Antimicrobial peptides of multicellular organismMy perspective. Adv Exp Med Biol.
2002;1117(January):3-6.
[55] Takahashi D, Shukla SK, Prakash O,
Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.
Biochimie [Internet]. 2010;92(9):1236-
1241. Available from: http://dx.doi. org/10.1016/j.biochi.2010.02.023
[56] Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals.
2014;7(5):545-594.
[57] Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev
Microbiol. 2005;3(3):238-250.
[58] Jenssen H, Hamill P, Hancock REW.
Peptide antimicrobial agents. Clin
Microbiol Rev. 2006;19(3):491-511.
[59] Pálffy R, Gardlík R, Behuliak M,
Kadasi L, Turna J, Celec P. On the physiology and pathophysiology of antimicrobial peptides. Mol Med.
2009;15(1-2):51-59.
[60] Nicolas P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J.
2009;276(22):6483-6496.
[61] Evans EW, Beach FG, Moore KM,
Jackwood MW, Glisson JR, Harmon BG.
Antimicrobial activity of chicken and turkey heterophil peptides CHP1,
CHP2, THP1, and THP3. Vet Microbiol.
1995 Dec 1;47(3-4):295-303.
[62] Harwig SSL, Swiderek KM,
Kokryakov VN, Tan L, Lee TD,
Panyutich EA, et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett.
1994;342(3):281-285.
[63] Milona P, Townes CL, Bevan RM,
Hall J. The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars.
Biochem Biophys Res Commun. 2007
Apr 27;356(1):169-174.
[64] Derache C, Labas V,
Aucagne V, Meudal H, Landon C,
Delmas AF, et al. Primary structure and antibacterial activity of chicken bone marrow-derived β-defensins.
Antimicrob Agents Chemother.
2009;53(11):4647-4655.
[65] Hervé-Grépinet V,
Réhault-Godbert S, Labas V,
Magallon T, Derache C, Lavergne M, et al. Purification and characterization of avian β-defensin 11, an antimicrobial peptide of the hen egg. Antimicrob Agents Chemother.
2010;54(10):4401-4408.
[66] Lee MO, Jang HJ, Rengaraj D,
Yang SY, Han JY, Lamont SJ, et al. Tissue expression and antibacterial activity of host defense peptides in chicken.
BMC Vet Res [Internet]. 2016;12(1):1-
9. Available from: http://dx.doi. org/10.1186/s12917-016-0866-6
[67] Higgs R, Lynn DJ,
Cahalane S, Alaña I, Hewage CM,
James T, et al. Modification of chicken avian β-defensin-8 at positively selected amino acid sites enhances specific antimicrobial activity. Immunogenetics.
2007;59(7):573-580.
[68] Higgs R, Lynn DJ, Gaines S,
McMahon J, Tierney J, James T, et al.
The synthetic form of a novel chicken
β-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics.
2005;57(1-2):90-98.
[69] Van Dijk A, Veldhuizen EJA,
Kalkhove SIC, Tjeerdsma-Van
Bokhoven JLM, Romijn RA,
Haagsman HP. The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens.
Antimicrob Agents Chemother.
2007;51(3):912-922.s:
[70] Bommineni YR, Dai H, Gong YX,
Soulages JL, Fernando SC, DeSilva U, et al. Fowlicidin-3 is an α-helical cationic host defense peptide with potent antibacterial and lipopolysaccharideneutralizing activities. FEBS J.
2007;274(2):418-428.
[71] Goitsuka R, Chen CLH,
Benyon L, Asano Y, Kitamura D,
Cooper MD. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal
M cell gateway. Proc Natl Acad Sci U S
A. 2007;104(38):15063-15068.
[72] van Dijk A, Molhoek EM,
Veldhuizen EJA, Bokhoven JLMT van, Wagendorp E, Bikker F, et al.
Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Mol
Immunol. 2009;46(13):2465-2473.
[73] Xiao Y, Cai Y, Bommineni YR,
Fernando SC, Prakash O, Gilliland SE, et al. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem.
2006;281(5):2858-2867.
[74] Oh D, Shin SY, Lee S, Kang JH,
Kim SD, Ryu PD, et al. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry.
2000;39(39):11855-11864.
[75] Xiao Y, Herrera AI, Bommineni YR,
Soulages JL, Prakash O, Zhang G. The central kink region of fowlicidin-2, an α-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. J Innate
Immun. 2009;1(3):268-280.
[76] Molhoek EM, van Dijk A,
Veldhuizen EJA, Dijk-Knijnenburg H,
Mars-Groenendijk RH, Boele LCL, et al.
Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents. Int J Antimicrob Agents.
2010;36(3):271-274.
[77] Giangaspero A, Sandri L, Tossi A.
Amphipathic α helical antimicrobial peptides.. Eur J Biochem.
2001;268(21):5589-5600.
[78] Shin SY, Kang JH, Jang SY, Kim Y,
Kim KL, Hahm KS. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-
12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells.
Biochim Biophys Acta - Biomembr.
2000;1463(2):209-218.
[79] Yang YR, Jiang YB, Yin QQ, Liang
H De, She RP. Chicken intestine defensins activated murine peripheral blood mononuclear cells through the
TLR4-NF-κB pathway. Vet Immunol
Immunopathol. 2010;133(1):59-65.
[80] Yang D, Liu Z, Tewary P,
Chen Q, de la Rosa G, Oppenheim J.
Defensin Participation in Innate and
Adaptive Immunity. Curr Pharm Des.
2007;13(30):3131-3139.
[81] Zhang H hua, Yang X mei, Xie
Q mei, Ma J yun, Luo Y na, Cao Y chang, et al. The potent adjuvant effects of chicken β-defensin-1 when genetically fused with infectious bursal disease virus VP2 gene. Vet Immunol
Immunopathol [Internet]. 2010;136(1-
2):92-7. Available from: http://dx.doi. org/10.1016/j.vetimm.2010.02.018
[82] Macpherson AJS, Maloy KJ.
Adaptive immunity in the gastrointestinal tract. In: Immunological
Aspects of Gastroenterology. 2001. p. 35-53.
[83] Vervelde L, Jeurissen SHM.
Postnatal development of intraepithelial leukocytes in the chicken digestive tract: phenotypical characterization in situ. Cell Tissue Res.
1993;274(2):295-301.
[84] Lillehoj HS, Min W,
Dalloul RA. Recent progress on the cytokine regulation of intestinal immune responses to Eimeria. Poult
Sci [Internet]. 2004;83(4):611-
623. Available from: http://dx.doi. org/10.1093/ps/83.4.611
[85] Imhof BA, Dunon D, Courtois D,
Luhtala M, Vainio O. Intestinal CD8αα and CD8αβ Intraepithelial Lymphocytes
Are Thymus Derived and Exhibit Subtle
Differences in TCRβ Repertoires. J
Immunol. 2000;165(12):6716-6722.
[86] Egan CE, Maurer KJ, Cohen SB,
Mack M, Simpson KW, Denkers EY. Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection. Mucosal Immunol.
2011;4(6):658-670.
[87] Brandtzaeg P, Farstad IN,
Johansen FE, Morton HC,
Norderhaug IN, Yamanaka T. The
B-cell system of human mucosae and exocrine glands. Immunol Rev.
1999;171(1):45-87.
[88] Everett M Lou,
Palestrant D, Miller SE, Bollinger RR,
Parker W. Immune exclusion and immnune inclusion: A new model of host-bacterial interactions in the gut. Clin Appl Immunol Rev.
2004;4(5):321-332.
[89] Slack E, Balmer ML, Fritz JH,
Hapfelmeier S. Functional flexibility of intestinal IgA -broadening the fine line.
Front Immunol. 2012;3(MAY):1-10.
[90] Johansen FE, Brandtzaeg P.
Transcriptional regulation of the mucosal IgA system. Trends Immunol.
2004;25(3):150-157.
[91] Mantis N, Rol N, Corthésy B.
Secretory IgA’s Complex Roles in
Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunol [Internet].
2011;6:603-611. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/
PMC3624763/pdf/nihms412728.pdf
[92] Liévin-Le Moal V, Servin AL.
The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and Microbiota. Clin
Microbiol Rev. 2006;19(2):315-337.
[93] Mantis NJ, Forbes SJ. Secretory
IgA: Arresting microbial pathogens at epithelial borders. Immunol Invest.
2010;39(4-5):383-406.
[94] Mazanec MB, Nedrud JG,
Kaetzel CS, Lamm ME. A threetiered view of the role of IgA in mucosal defense. Immunol Today.
1993;14(9):430-435.
[95] Fernandez MI, Pedron T,
Tournebize R, Olivo-Marin JC,
Sansonetti PJ, Phalipon A. Antiinflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity.
2003;18(6):739-749.
[96] Brisbin JT, Gong J,
Sharif S. Interactions between commensal bacteria and the gutassociated immune system of the chicken. Anim Heal Res Rev.
2008;9(1):101-110.
[97] Honda K, Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol.
2009;2(3):187-196.
[98] Snel J, Bakker MH, Heidt PJ.
Quantification of antigen-specific immunoglobulin A after oral booster immunization with ovalbumin in mice mono-associated with segmented filamentous bacteria or
Clostridium innocuum. Immunol Lett.
1997;58(1):25-28.
[99] Yurong Y, Ruiping S, Shimin Z,
Yibao J. Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Arch Anim
Nutr. 2005;59(4):237-246.
[100] Haghighi HR, Gong J, Gyles CL,
Hayes MA, Zhou H, Sanei B, et al.
Probiotics stimulate production of natural antibodies in chickens. Clin
Vaccine Immunol. 2006;13(9):975-980.
[101] Zhang Q, Eicher SD, Applegate TJ.
Development of intestinal mucin 2, IgA, and polymeric Ig receptor expressions in broiler chickens and Pekin ducks.
Poult Sci [Internet]. 2015;94(2):172-
180. Available from: http://dx.doi. org/10.3382/ps/peu064
[102] Friedman A, Elad O, Cohen I, Bar
Shira E. The gut associated lymphoid system in the post-hatch chick:
Dynamics of maternal IgA. Isr J Vet
Med. 2012;67(2):75-81.
[103] Bar-Shira E, Cohen I, Elad O,
Friedman A. Role of goblet cells and mucin layer in protecting maternal
IgA in precocious birds. Dev Comp
Immunol [Internet]. 2014;44(1):186-
194. Available from: http://dx.doi. org/10.1016/j.dci.2013.12.010
[104] Snoeck V, Peters IR, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res.
2006;37:455-467.
[105] Kaetzel CS. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev.
2005;206:83-99.
[106] Phalipon A, Corthésy B.
Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol.
2003;24(2):55-58.
[107] Johansen FE, Kaetzel CS.
Regulation of the polymeric immunoglobulin receptor and
IgA transport: New advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol.
2011;4(6):598-602.
[108] Blanch VJ, Piskurich JF,
Kaetzel CS. Cutting edge: Coordinate regulation of IFN regulatory factor-1 and the polymeric Ig receptor by proinflammatory cytokines. J Immunol.
1999;162(3):1232-1235.
[109] Schjerven H, Brandtzaeg P,
Johansen F-E. Mechanism of IL-4-
Mediated Up-Regulation of the
Polymeric Ig Receptor: Role of
STAT6 in Cell Type-Specific Delayed
Transcriptional Response. J Immunol.
2000;165(7):3898-3906.
[110] Bar-Shira E, Sklan D, Friedman A.
Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev Comp Immunol.
2003;27(2):147-157.
[111] Lammers A, Wieland WH, Kruijt L,
Jansma A, Straetemans T, Schots A, et al. Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. Dev Comp
Immunol [Internet]. 2010;34(12):1254-
1262. Available from: http://dx.doi. org/10.1016/j.dci.2010.07.001
[112] Bruno MEC, Frantz AL, Rogier EW,
Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells.
Mucosal Immunol. 2011;4(4):468-478.
[113] Cant JP, McBride BW,
Croom WJ. The Regulation of Intestinal
Metabolism and Its Impact on Whole
Animal Energetics. J Anim Sci.
1996;74(10):2541-2553.
[114] Applegate T. Influence of
Phytogenics on the Immunity of
Livestock and Poultry. In: Steiner T, editor. Phytogenics in Animal Nutrition.
Nottingham, United Kingdom: Nottingham University Press; 2009. p.
39-59.
[115] Thornburn CC, Willcox JS.
The caeca of the domestic fowl and digestion of the crude fibre complex:
II. Experiments in vivo with fistulated birds, and the artificial and isolated caecum in vitro. Br Poult Sci.
1965;6(1):33-43.
[116] Józefiak D, Rutkowski A,
Martin SA. Carbohydrate fermentation in the avian ceca: A review. Anim Feed
Sci Technol. 2004;113(1-4):1-15.
[117] Rinttilä T, Apajalahti J. Intestinal microbiota and metabolitesImplications for broiler chicken health and performance. J Appl
Poult Res [Internet]. 2013;22(3):647-
658. Available from: http://dx.doi. org/10.3382/japr.2013-00742
[118] Bortoluzzi C, Rochell SJ,
Applegate TJ. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult
Sci [Internet]. 2018;97(3):937-
945. Available from: http://dx.doi. org/10.3382/ps/pex394
[119] Bortoluzzi C, Fernandes JIM,
Doranalli K, Applegate TJ. Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens.
Anim Feed Sci Technol [Internet].
2020;262(September):114383. Available from: https://doi.org/10.1016/j. anifeedsci.2019.114383
[120] Gilbert MS, Ijssennagger N,
Kies AK, van Mil SWC. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am J Physiol - Gastrointest
Liver Physiol. 2018;315(2):G159–G170.
[121] Bortoluzzi C, Vieira BS,
Applegate TJ. Influence of Dietary
Zinc, Copper, and Manganese on the
Intestinal Health of Broilers Under
Eimeria Challenge. Front Vet Sci.
2020;7(January):1-7.
[122] Patra AK, Amasheh S,
Aschenbach JR. Modulation of
Gastrointestinal Barrier and Nutrient
Transport Function in Farm Animals by
Natural Plant Bioactive Compounds – A
Comprehensive Review. 2018;8398.
[123] Patra AK, Amasheh S,
Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds–A comprehensive review. Crit Rev Food
Sci Nutr [Internet]. 2019;59(20):3237-
66. Available from: https://doi.org/10.10
80/10408398.2018.1486284
[124] Applegate TJ, Troche C. Influence of probiotics on intestinal structure and barrier functionality of poultry. In:
Abdelrahman WHA, Mohlnl M, editors.
Probiotics in Poultry Production.
5MEnterpri ed. Sheffield, England;
2014. p. 51-69.
[125] Patra AK. Influence of Plant
Bioactive Compounds on Intestinal
Epithelial Barrier in Poultry. MiniReviews Med Chem. 2020;20:
566-577.
[126] Montagne L, Pluske JR,
Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol.
2003;108(1-4):95-117.
[127] Bach Knudsen KE. The nutritional significance of “dietary fibre” analysis. Anim Feed Sci Technol.
2001;90(1-2):3-20.
[128] Kumar V, Sinha AK, Makkar HPS, de Boeck G, Becker K. Dietary Roles of
Non-Starch Polysachharides in Human
Nutrition: A Review. Crit Rev Food Sci
Nutr. 2012;52(10):899-935.
[129] Marquardt RR, Brenes A,
Zhang Z, Boros D. Use of enzymes to improve nutrient availability in poultry feedstuffs. Anim Feed Sci Technol.
1996;60(3-4):321-330.
[130] Perry GC. Effects of Nonstarch polysaccharide on Avian
Gastrointestinal Function. In: Avian Gut
Function in Health and Disease. Oxon:
CABI; 2006. p. 159-170.
[131] Shakouri MD, Iji PA, Mikkelsen LL,
Cowieson AJ. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation.
J Anim Physiol Anim Nutr (Berl).
2009;93(5):647-658.
[132] Korver DR. Overview of the immune dynamics of the digestive system. J Appl Poult Res [Internet].
2006;15(1):123-135. Available from: http://dx.doi.org/10.1093/japr/15.1.123
[133] Crisol-Martínez E, Stanley D,
Geier MS, Hughes RJ, Moore RJ. Sorghum and wheat differentially affect caecal microbiota and associated performance characteristics of meat chickens. PeerJ.
2017;2017(3):1-20.
[134] Field CJ, McBurney MI,
Massimino S, Hayek MG, Sunvold GD.
The fermentable fiber content of the diet alters the function and composition of canine gut associated lymphoid tissue. Vet Immunol Immunopathol.
1999;72(3-4):325-341.
[135] Cox CM, Stuard LH, Kim S,
McElroy AP, Bedford MR, Dalloul RA.
Performance and immune responses to dietary β-glucan in broiler chicks.
Poult Sci [Internet]. 2010;89(9):1924-
1933. Available from: http://dx.doi. org/10.3382/ps.2010-00865
[136] Cox CM, Sumners LH, Kim S,
Mcelroy AP, Bedford MR, Dalloul RA.
Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poult Sci [Internet].
2010;89(12):2597-2607. Available from: http://dx.doi.org/10.3382/ ps.2010-00987
[137] Schley PD, Field CJ. The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr.
2002;87(S2):S221–S230.
[138] Roberfroid M. Prebiotics: The concept revisited. J Nutr. 2007;137(3).
[139] Koh A, De Vadder F,
Kovatcheva-Datchary P, Bäckhed F.
From dietary fiber to host physiology:
Short-chain fatty acids as key bacterial metabolites. Cell.
2016;165(6):1332-1345.
[140] Liao X, Shao Y, Sun G, Yang Y,
Zhang L, Guo Y, et al. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult
Sci [Internet]. 2020;99(11):5883-
95. Available from: https://doi. org/10.1016/j.psj.2020.08.033
[141] Song J, Li Q, Li P, Liu RR, Cui H,
Zheng M, et al. The effects of inulin on the mucosal morphology and immune status of specific pathogenfree chickens. Poult Sci [Internet].
2018;97(11):3938-3946. Available from: http://dx.doi.org/10.3382/ps/pey260
[142] Gibson GR. Fibre and effects on probiotics (the prebiotic concept). Clin
Nutr Suppl. 2004;1(2):25-31.
[143] Sanchez JI, Marzorati M,
Grootaert C, Baran M, Van
Craeyveld V, Courtin CM, et al.
Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of
Human Intestinal Microbial Ecosystem.
Microb Biotechnol. 2009;2(1):101-113.
[144] Jha R, Berrocoso JFD. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim Feed
Sci Technol [Internet]. 2016;212:18-
26. Available from: http://dx.doi. org/10.1016/j.anifeedsci.2015.12.002
[145] Bach Knudsen KE, Hedemann MS,
Lærke HN. The role of carbohydrates in intestinal health of pigs. Anim Feed
Sci Technol [Internet]. 2012;173(1-
2):41-53. Available from: http://dx.doi. org/10.1016/j.anifeedsci.2011.12.020
[146] Iqbal A, Qudoos A, Çetingül IS,
Rizwan S, Shah A. Importance of dietary fiber in poultry nutrition Importance of Dietary Fiber in Poultry Nutrition. J
Anim Sci Prod. 2019;(January):21-9.
[147] Jiménez-Moreno E,
González-Alvarado JM,
González-Serrano A, Lázaro R,
Mateos GG. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult Sci.
2009;88(12):2562-2574.
[148] Jiménez-Moreno E,
Chamorro S, Frikha M, Safaa HM,
Lázaro R, Mateos GG. Effects of increasing levels of pea hulls in the diet on productive performance, development of the gastrointestinal tract, and nutrient retention of broilers from one to eighteen days of age. Anim Feed Sci Technol.
2011;168(1-2):100-112.
[149] Sacranie A, Svihus B, Denstadli V,
Moen B, Iji PA, Choct M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens.
Poult Sci [Internet]. 2012;91(3):693-
700. Available from: http://dx.doi. org/10.3382/ps.2011-01790
[150] Roberts SA, Xin H, Kerr BJ,
Russell JR, Bregendahl K. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poult Sci [Internet].
2007;86(8):1625-1632. Available from: http://dx.doi.org/10.1093/ps/86.8.1625
[151] van Krimpen MM, Kwakkel RP, van der Peet-Schwering CMC, den
Hartog LA, Verstegen MWA. Effects of nutrient dilution and nonstarch polysaccharide concentration in rearing and laying diets on eating behavior and feather damage of rearing and laying hens. Poult Sci [Internet].
2009;88(4):759-773. Available from: http://dx.doi.org/10.3382/ ps.2008-00194
[152] Hartini S, Choct M, Hinch G,
Kocher A, Nolan J V. Effects of light intensity during rearing and beak trimming and dietary fiber sources on mortality, egg production, and performance of ISA Brown laying hens. J Appl Poult Res [Internet].
2002;11(1):104-10. Available from: http://dx.doi.org/10.1093/japr/11.1.104
[153] De Maesschalck C,
Eeckhaut V, Maertens L, De Lange L,
Marchal L, Nezer C, et al. Effects of
Xylo-oligosaccharides on broiler chicken performance and microbiota.
Appl Environ Microbiol.
2015;81(17):5880-5888.
[154] Zhao PY, Li HL, Mohammadi M,
Kim IH. Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers. Poult Sci.
2016;95(1):84-89.
[155] Meijer K, De Vos P, Priebe MG.
Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr Opin Clin
Nutr Metab Care. 2010;13(6):715-721.
[156] Li B, Leblois J, Taminiau B,
Schroyen M, Beckers Y, Bindelle J, et al. The effect of inulin and wheat bran on intestinal health and microbiota in the early life of broiler chickens.
Poult Sci [Internet]. 2018;97(9):3156-
3165. Available from: http://dx.doi. org/10.3382/ps/pey195
[157] Hutsko SL, Meizlisch K,
Wick M, Lilburn MS. Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. Poult Sci [Internet].
2016;95(5):1173-1178. Available from: http://dx.doi.org/10.3382/ps/pew019
[158] Totton SC, Farrar AM, Wilkins W,
Bucher O, Waddell LA, Wilhelm BJ, et al. The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: A systematic review, meta-analysis, and metaregression approach. Prev Vet Med.
2012;106(3-4):197-213.
[159] Kollanoor JA, Venkitanarayanan K.
Use of fatty acids in controlling enteric pathogens. In: Cherian G, Poureslami R, editors. Fats and fatty acids in poultry nutrition and health. Nottingham
University Press; 2013.
[160] Gill PA, van Zelm MC, Muir JG,
Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment
Pharmacol Ther. 2018;48(1):15-34.
[161] Vinolo MAR, Rodrigues HG,
Nachbar RT, Curi R. Regulation of
Inflammation by Short Chain Fatty
Acids. Nutrients. 2011;(3):858-876.
[162] Guilloteau P, Martin L,
Eeckhaut V, Ducatelle R, Zabielski R,
Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr Res Rev.
2010;23(2):366-384.
[163] Van Immerseel F, Russell JB,
Flythe MD, Gantois I, Timbermont L,
Pasmans F, et al. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy.
Avian Pathol. 2006;35(3):182-188.
[164] Huyghebaert G,
Ducatelle R, Immerseel F Van. An update on alternatives to antimicrobial growth promoters for broilers.
Vet J [Internet]. 2011;187(2):182-
188. Available from: http://dx.doi. org/10.1016/j.tvjl.2010.03.003
[165] Song B, Li H, Wu Y,
Zhen W, Wang Z, Xia Z, et al. Effect of microencapsulated sodium butyrate dietary supplementation on growth performance and intestinal barrier function of broiler chickens infected with necrotic enteritis. Anim Feed
Sci Technol [Internet]. 2017;232:6-
15. Available from: http://dx.doi. org/10.1016/j.anifeedsci.2017.07.009
[166] Van Immerseel F, Boyen F,
Gantois I, Timbermont L, Bohez L,
Pasmans F, et al. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult
Sci [Internet]. 2005;84(12):1851-
1856. Available from: http://dx.doi. org/10.1093/ps/84.12.1851
[167] Van
Immerseel F, Fievez V, De Buck J,
Pasmans F, Martel A, Haesebrouck F, et al. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult Sci [Internet].
2004;83(1):69-74. Available from: http://dx.doi.org/10.1093/ps/83.1.69
[168] Byrd JA, Hargis BM, Caldwell DJ,
Bailey RH, Herron KL, McReynolds JL, et al. Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on
Salmonella and Campylobacter contamination of broilers. Poult
Sci [Internet]. 2001;80(3):278-
283. Available from: http://dx.doi. org/10.1093/ps/80.3.278
[169] Lawhon SD, Maurer R,
Suyemoto M, Altier C. Intestinal shortchain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol
Microbiol. 2002;46(5):1451-1464.
[170] Sunkara LT, Jiang W, Zhang G.
Modulation of Antimicrobial Host
Defense Peptide Gene Expression by Free Fatty Acids. PLoS One.
2012;7(11).
[171] Hinton M, Linton AH. Control of salmonella infections in broiler chickens by the acid treatment of their feed. Vet
Rec. 1988;123:416-421.
[172] McHan F, Shotts EB. Effect of feeding selected short-chain fatty acids on the in vivo attachment of Salmonella typhimurium in chick ceca. Avian Dis.
1992;36:139-142.
[173] Skånseng B, Kaldhusdal M,
Moen B, Gjevre AG, Johannessen GS,
Sekelja M, et al. Prevention of intestinal
Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids. J Appl Microbiol.
2010;109(4):1265-1273.
[174] Baltić B, Starčević M, Dordević J,
Mrdović B, Marković R. Importance of medium chain fatty acids in animal nutrition. IOP Conf Ser Earth Environ
Sci. 2017;85:012048.
[175] Vandeplas S, Dubois
Dauphin R, Beckers Y, Thonart P,
Théwis A. Salmonella in chicken:
Current and developing strategies to reduce contamination at farm level. J
Food Prot. 2010;73(4):774-785.
[176] Vasudevan P, Marek P, Nair MKM,
Annamalai T, Darre M, Khan M, et al. In vitro inactivation of Salmonella enteritidis in autoclaved chicken cecal contents by caprylic acid. J Appl
Poult Res [Internet]. 2005;14(1):122-
125. Available from: http://dx.doi. org/10.1093/japr/14.1.122
[177] Van Immerseel F, De Buck J,
Boyen F, Bohez L, Pasmans F, Volf J, et al. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar enteritidis. Appl Environ
Microbiol. 2004;70(6):3582-3587.
[178] Kollanoor-Johny A, Mattson T,
Baskaran SA, Amalaradjou MAR,
Hoagland TA, Darre MJ, et al. Caprylic acid reduces salmonella Enteritidis populations in various segments of digestive tract and internal organs of
3-and 6-week-old broiler chickens, therapeutically. Poult Sci [Internet].
2012;91(7):1686-1694. Available from: http://dx.doi.org/10.3382/ps.2011-01716
[179] Johny AK, Baskaran SA, Charles AS,
Amalaradjou MAR, Darre MJ, Khan MI, et al. Prophylactic supplementation of caprylic acid in feed reduces salmonella enteritidis colonization in commercial broiler chickst. J Food Prot.
2009;72(4):722-727.
[180] Solis de los Santos F, Hume M,
Venkitanarayanan K, Donoghue AM,
Hanning I, Slavik MF, et al. Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations. J Food Prot.
2010;73(2):251-257.