Early growth and development of the gastrointestinal tract are of critical importance to enhance nutrients’ utilization and optimize the growth of poultry. In the current production system, chicks do not have access to feed for about 48–72 h during transportation between hatchery and production farms. This lag time affects early nutrient intake, natural exposure to the microbiome, and the initiation of beneficial stimulation of the immune system of chicks. In ovo feeding can provide early nutrients and additives to embryos, stimulate gut microflora, and mitigate the adverse effects of starvation during pre-and post-hatch periods. Depending on the interests, the compounds are delivered to the embryo either around day 12 or 17 to 18 of incubation and via air sac or amnion. In ovo applications of bioactive compounds like vaccines, nutrients, antibiotics, prebiotics, probiotics, synbiotics, creatine, follistatin, L-carnitine, CpG oligodeoxynucleotide, growth hormone, polyclonal antimyostatin antibody, peptide YY, and insulin-like growth factor-1 have been studied. These compounds affect hatchability, body weight at hatch, physiological functions, immune responses, gut morphology, gut microbiome, production performance, and overall health of birds. However, the route, dose, method, and time of in ovo injection and host factors can cause variation, and thereby inconsistencies in results. Studies using this method have manifested the benefits of injection of different single bioactive compounds. But for excelling in poultry production, researchers should precisely know the proper route and time of injection, optimum dose, and effective combination of different compounds. This review paper will provide an insight into current practices and available findings related to in ovo feeding on performance and health parameters of poultry, along with challenges and future perspectives of this technique.
Keywords: chicken, embryo, gut health, in ovo technology, growth performance.
1. Adams AE, Bull AL. The effect of antithyroid drugs on chick embryos. Anat Rec. (1949) 104:421–43. doi: 10.1002/ar.1091040404
2. Balaban M, Hill J. Effects of thyroxine level and temperature manipulations upon the hatching of chick embryos callus domesticus). Dev Psychobiol. (1971) 4:17–35. doi: 10.1002/dev.420040103
3. Sharma JM, Burmester BR. Resistance of marek’s disease at hatching in chickens vaccinated as embryos with the turkey herpesvirus. Avian Dis. (1982) 26:134. doi: 10.2307/1590032
4. Uni Z, Ferket PR, Tako E, Kedar O. In ovo feeding improves energy status of late-term chicken embryos. Poult Sci. (2005) 84:764–70. doi: 10.1093/ps/84.5.764
5. Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. Dietary fiber and intestinal health of monogastric animals. Front Vet Sci. (2019) 6:48. doi: 10.3389/fvets.2019.00048
6. Schijns VE, van de Zande S, Lupiani B, Reddy SM. Practical aspects of poultry vaccination. In: Kaspers B, Schat K, editors. Avian Immunology. Cambridge, MA: Elsevier (2014). p. 345–62. doi: 10.1016/B978-0-12-396965-1.00020-0
7. Bednarczyk M, Dunislawska A, Stadnicka K, Grochowska E. Chicken embryo as a model in epigenetic research. Poult Sci. (2021) 100:101164. doi: 10.1016/j.psj.2021.101164
8. Siwek M, Slawinska A, Stadnicka K, Bogucka J, Dunislawska A, Bednarczyk M. Prebiotics and synbiotics - in ovo delivery for improved lifespan condition in chicken. BMC Vet Res. (2018) 14:402. doi: 10.1186/s12917-018-1738-z
9. Lilburn MS, Loeffler S. Early intestinal growth and development in poultry. Poult Sci. (2015) 94:1569–76. doi: 10.3382/ps/pev104
10. Givisiez PEN, Moreira Filho ALB, Santos MRB, Oliveira HB, Ferket PR, Oliveira CJB, et al. Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poult Sci. (2020) 99:6774– 82. doi: 10.1016/j.psj.2020.09.074
11. Moran ET. Nutrition of the developing embryo and hatchling. Poult Sci. (2007) 86:1043–9. doi: 10.1093/ps/86.5.1043
12. De Oliveira JE, Uni Z, Ferket PR. Important metabolic pathways in poultry embryos prior to hatch. Worlds Poult Sci J. (2008) 64:488–99. doi: 10.1017/S0043933908000160
13. Joanna KG, Emilia K, Michalina D. In ovo feeding - technology of the future - a review. Ann Anim Sci. (2017) 17:797–992. doi: 10.1515/aoas-2017-0004
14. Hajati H, Hassanabadi A, Golian A, Nassiri Moghaddam H, Nassiri M. The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac weight, performance and ileal micro flora of broiler chickens. Res Opin Anim Vet Sci. (2014) 4:633–8.
15. Soltani T, Salarmoini M, Afsharmanesh M, Tasharrofi S. The effects of in ovo injection of ascorbic acid on hatchability, growth performance, intestinal morphology, and Tibia breaking strength in 36h post hatch fasted broiler chickens. Poult Sci J. (2019) 7:43–9. doi: 10.22069/PSJ.2019.15929.1382
16. Zhu YF, Bodinga MB, Zhou JH, Zhu LQ, Cao YL, Ren ZZ, et al. Effects of in ovo injection of vitamin C on heat shock protein and metabolic genes expression. Animal. (2019) 14:360–7. doi: 10.1017/S17517311190 02088
17. Zhang H, Elliott KEC, Durojaye OA, Fatemi SA, Schilling MW, Peebles ED. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens. Poult Sci. (2019) 98:3617–25. doi: 10.3382/ps/pez173
18. Zhu Y, Li S, Duan Y, Ren Z, Yang X, Yang X. Effects of in ovo feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. Br J Nutr. (2020) 124:903–11. doi: 10.1017/S000711452000210X
19. Santos ET, Sgavioli S, Castiblanco DMC, Borges LL, De Quadros TCO, De Laurentiz AC, et al. Glycosaminoglycans and vitamin C affect broiler bone parameters. Poult Sci. (2019) 98:4694–704. doi: 10.3382/ps/ pez177
20. El-Senousey HK, Chen B, Wang JY, Atta AM, Mohamed FR, Nie QH. In ovo injection of ascorbic acid modulates antioxidant defense system and immune gene expression in newly hatched local Chinese yellow broiler chicks. Poult Sci. (2018) 97:425–9. doi: 10.3382/ps/pex310
21. Sgavioli S, Borges LL, de Almeida VR, Thimotheo M, de Oliveira JA, Boleli IC. Egg injection of ascorbic acid stimulates leucocytosis and cell proliferation in the bursa of fabricius. Int J Poult Sci. (2013) 12:464–72. doi: 10.3923/ijps.2013.464.472
22. Sgavioli S, De Almeida VR, Matos Júnior JB, Zanirato GL, Borges LL, Boleli IC. In ovo injection of ascorbic acid and higher incubation temperature modulate blood parameters in response to heat exposure in broilers. Br Poult Sci. (2019) 60:279–87. doi: 10.1080/00071668.2019.1593946
23. Sgavioli S, Domingues CHF, Santos ET, de Quadros TCO, Borges LL, Garcia RG, et al. Effect of in-ovo ascorbic acid injection on the bone development of broiler chickens submitted to heat stress during incubation and rearing. Rev Bras Cienc Avic. (2016) 18:153–62. doi: 10.1590/18069061-2015-0075
24. Fatemi SA, Elliott KEC, Bello A, Durojaye OA, Zhang H, Peebles ED. Effects of source and level of in ovo-injected vitamin D3 on the hatchability and serum 25-hydroxycholecalciferol concentrations of ross 708 broilers. Poult Sci. (2020) 99:3877–84. doi: 10.1016/j.psj.2020.04.030
25. Bello A, Hester PY, Gerard PD, Zhai W, Peebles ED. Effects of commercial in ovo injection of 25-hydroxycholecalciferol on bone development and mineralization in male and female broilers 1, 2. Poult Sci. (2014) 93:2734–9. doi: 10.3382/ps.2014-03981
26. Gonzales E, Cruz CP, Leandro NSM, Stringhini JH, Brito AB. In ovo supplementation of 25(OH)D3 to broiler embryos. Rev Bras Cienc Avic. (2013) 15:199–202. doi: 10.1590/S1516-635X2013000300005
27. Yair R, Shahar R, Uni Z. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers. Poult Sci. (2015) 94:2695–707. doi: 10.3382/ps/pev252
28. Elnesr SS, Elwan HAM, Xu QQ, Xie C, Dong XY, Zou XT. Effects of in ovo injection of sulfur-containing amino acids on heat shock protein 70, corticosterone hormone, antioxidant indices, and lipid profile of newly hatched broiler chicks exposed to heat stress during incubation. Poult Sci. (2019) 98:2290–8. doi: 10.3382/ps/pey609
29. Ma YB, Zhang FD, Wang J, Wu SG, Qi GH, Zhang HJ. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. J Sci Food Agric. (2020) 100:755–63. doi: 10.1002/jsfa.10080
30. Foye OT, Ferket PR, Uni Z. The effects of in ovo feeding arginine, -hydroxy- -methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal the effects of in ovo feeding arginine, β -hydroxy- β -methyl-butyrate, and protein on jejunal diges. Poult Sci. (2007) 86:2343–9. doi: 10.3382/ps.2007-00110
31. Tako E, Ferket PR, Uni Z. Effects of in ovo feeding of carbohydrates and β - hydroxy- β -methylbutyrate on the development of chicken intestine 1. Poult Sci. (2004) 83:2023–8. doi: 10.1093/ps/83.12.2023
32. Kornasio R, Halevy O, Kedar O, Uni Z. Effect of in ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poult Sci. (2011) 90:1467–77. doi: 10.3382/ps.2010-01080
33. Hu Y, Sun Q, Zong Y, Liu J, Idriss AA, Omer NA, et al. Prenatal betaine exposure alleviates corticosterone-induced inhibition of CYP27A1 expression in the liver of juvenile chickens associated with its promoter DNA methylation. Gen Comp Endocrinol. (2017) 246:241–8. doi: 10.1016/j.ygcen.2016.12.014
34. Gholami J, Qotbi AAA, Seidavi A, Meluzzi A, Tavaniello S, Maiorano G. Effects of in ovo administration of betaine and choline on hatchability results, growth and carcass characteristics and immune response of broiler chickens. Ital J Anim Sci. (2015) 14:187–92. doi: 10.4081/ijas.2015.3694
35. Bhanja SK, Goel A, Pandey N, Mehra M, Majumdar S, Mandal AB. In ovo carbohydrate supplementation modulates growth and immunity-related genes in broiler chickens. J Anim Physiol Anim Nutr. (2015) 99:163–73. doi: 10.1111/jpn.12193
36. Bhattacharyya AM, Majumdar S, Bhanja SK, Mandal AB, Dash BB, Agarwal SK. Effect of in ovo injection of glucose on growth, immunocompetence and development of digestive organs in turkey poults. In: 6th European Symposium on Poultry Nutrition, WPSA France. Strasbourg (2007). p. 147– 50.
37. Zhai W, Rowe DE, Peebles ED. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poult Sci. (2011) 90:1295–301. doi: 10.3382/ps.2010-01130
38. Dong XY, Jiang YJ, Wang MQ, Wang YM, Zou XT. Effects of in ovo feeding of carbohydrates on hatchability, body weight, and energy status in domestic pigeons (Columba livia). Poult Sci. (2013) 92:2118–23. doi: 10.3382/ps.2013-03091
39. Ding Z, Zhou H, McCauly N, Ko G, Zhang KK, Xie L. In ovo hyperglycemia causes congenital limb defects in chicken embryos via disruption of cell proliferation and apoptosis. Biochim Biophys Acta Mol Basis Dis. (2020) 1866:165955. doi: 10.1016/j.bbadis.2020.165955
40. Zhang J, Cai K, Mishra R, Jha R. In ovo supplementation of chitooligosaccharide and chlorella polysaccharide affects cecal microbial community, metabolic pathways, and fermentation metabolites in broiler chickens. Poult Sci. (2020) 99:4776–85. doi: 10.1016/j.psj.202 0.06.061
41. Slawinska A, Dunislawska A, Plowiec A, Radomska M, Lachmanska J, Siwek M, et al. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery in ovo. PLoS ONE. (2019) 14:e0212318. doi: 10.1371/journal.pone.0212318
42. Pietrzak E, Dunislawska A, Siwek M, Zampiga M, Sirri F, Meluzzi A, et al. Splenic gene expression signatures in slow-growing chickens stimulated in ovo with galactooligosaccharides and challenged with heat. Animals. (2020) 10:474. doi: 10.3390/ani10030474
43. Slawinska A, Zampiga M, Sirri F, Meluzzi A, Bertocchi M, Tavaniello S, et al. Impact of galactooligosaccharides delivered in ovo on mitigating negative effects of heat stress on performance and welfare of broilers. Poult Sci. (2020) 99:407–15. doi: 10.3382/ps/pez512
44. Bednarczyk M, Urbanowski M, Gulewicz P, Kasperczyk K, Maiorano G, Szwaczkowski T. Field and in vitro study on prebiotic effect of raffinose family oligosaccharides in chickens. Bull Vet Inst Pulawy. (2011) 55:465–9.
45. Berrocoso JD, Kida R, Singh AK, Kim YS, Jha R. Effect of in ovo injection of raffinose on growth performance and gut health parameters of broiler chicken. Poult Sci. (2017) 96:1573–80. doi: 10.3382/ps/pew430
46. Stadnicka K, Bogucka J, Stanek M, Graczyk R, Krajewski K, Maiorano G, et al. Injection of raffinose family oligosaccharides at 12 days of egg incubation modulates the gut development and resistance to opportunistic pathogens in broiler chickens. Animals. (2020) 10:592. doi: 10.3390/ani10040592
47. El-Moneim AEEA, El-Wardany I, Abu-Taleb AM, Wakwak MM, Ebeid TA, Saleh AA. Assessment of in ovo administration of Bifidobacterium bifidum and Bifidobacterium longum on performance, ileal histomorphometry, blood hematological, and biochemical parameters of broilers. Probiotics Antimicrob Proteins. (2020) 12:439–50. doi: 10.1007/s12602-019-09549-2
48. Arreguin-Nava MA, Graham BD, Adhikari B, Agnello M, Selby CM, Hernandez-Velasco X, et al. In ovo administration of defined lactic acid bacteria previously isolated from adult hens induced variations in the cecae microbiota structure and enterobacteriaceae colonization on a virulent escherichia coli horizontal infection model in broiler chicken. Front Vet Sci. (2020) 7:489. doi: 10.3389/fvets.2020.00489
49. Teague KD, Graham LE, Dunn JR, Cheng HH, Anthony N, Latorre JD, et al. In ovo evaluation of FloraMax R -B11 on marek’s disease HVT vaccine protective efficacy, hatchability, microbiota composition, morphometric analysis, and Salmonella enteritidis infection in broiler chickens. Poult Sci. (2017) 96:2074–82. doi: 10.3382/ps/pew494
50. Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bottje WG, et al. Impact of in ovo administered pioneer colonizers on intestinal proteome on day of hatch. Poult Sci. (2020) 99:1254–66. doi: 10.1016/j.psj.2019.10.017
51. Rodrigues DR, Wilson KM, Trombetta M, Briggs WN, Duff AF, Chasser KM, et al. A proteomic view of the cross-talk between early intestinal microbiota and poultry immune system. Front Physiol. (2020) 11:20. doi: 10.3389/fphys.2020.00020
52. Arreguin-Nava MA, Graham BD, Adhikari B, Agnello M, Selby CM, Hernandez-Velasco X, et al. Evaluation of in ovo Bacillus spp. based probiotic administration on horizontal transmission of virulent Escherichia coli in neonatal broiler chickens. Poult Sci. (2019) 98:6483–91. doi: 10.3382/ps/pez544
53. De Oliveira JE, Van Der Hoeven-Hangoor E, Van De Linde IB, Montijn RC, Van Der Vossen JMBM. In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch salmonella susceptibility. Poult Sci. (2014) 93:818–29. doi: 10.3382/ps.2013-03409
54. Alizadeh M, Shojadoost B, Astill J, Taha-Abdelaziz K, Karimi SH, Bavananthasivam J, et al. Effects of in ovo inoculation of multi-strain lactobacilli on cytokine gene expression and antibodymediated immune responses in chickens. Front Vet Sci. (2020) 7:105. doi: 10.3389/fvets.2020.00105
55. Beck CN, McDaniel CD, Wamsley KGS, Kiess AS. The potential for inoculating Lactobacillus animalis and Enterococcus faecium alone or in combination using commercial in ovo technology without negatively impacting hatch and post-hatch performance. Poult Sci. (2019) 98:7050–62. doi: 10.3382/ps/pez441
56. Triplett MD, Zhai W, Peebles ED, McDaniel CD, Kiess AS. Investigating commercial in ovo technology as a strategy for introducing probiotic bacteria to broiler embryos. Poult Sci. (2018) 97:658–66. doi: 10.3382/ps/ pex317
57. Dunislawska A, Slawinska A, Siwek M. Hepatic dna methylation in response to early stimulation of microbiota with lactobacillus synbiotics in broiler chickens. Genes. (2020) 11:579. doi: 10.3390/genes11050579
58. Watanabe Y, Grommen SVH, Groef B. Effect of in ovo injection of corticotropin-releasing hormone on the timing of hatching in broiler chickens. Poult Sci. (2017) 96:3452–6. doi: 10.3382/ps/pex162
59. Christensen VL, Phelps P. Injection of thyrotrophin-releasing hormone in turkey embryos elevates plasma thyroxine concentrations 1. Poult Sci. (2001) 80:643–6. doi: 10.1093/ps/80.5.643
60. Ahmed AA, Ma W, Ni Y, Zhou Q, Zhao R. Hormones and behavior embryonic exposure to corticosterone modi fi es aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken. Horm Behav. (2014) 65:97–105. doi: 10.1016/j.yhbeh.2013.12.002
61. Afsarian O, Shahir MH, Lourens A, Akhlaghi A, Lotfolahian H, Hoseini A, et al. Eggshell temperature manipulations during incubation and in ovo injection of thyroxine are associated with a decreased incidence of cold-induced ascites in broiler chickens. Poult Sci. (2018) 97:328–36. doi: 10.3382/ps/pex302
62. Allan B, Wheler C, Köster W, Sarfraz M, Potter A, Gerdts V, et al. In ovo administration of innate immune stimulants and protection from early chick mortalities due to yolk sac infection. Avian Dis. (2018) 62:316–21. doi: 10.1637/11840-041218-Reg.1
63. Gunawardana T, Foldvari M, Zachar T, Popowich S, Chow-Lockerbie B, Ivanova MV, et al. Protection of neonatal broiler chickens following in ovo delivery of oligodeoxynucleotides containing CpG motifs (CpG-ODN) formulated with carbon nanotubes or liposomes. Avian Dis. (2015) 59:31–7. doi: 10.1637/10832-032814-Reg
64. Dar A, Potter A, Tikoo S, Gerdts V, Lai K, Babiuk LA, et al. CpG oligodeoxynucleotides activate innate immune response that suppresses infectious bronchitis virus replication in chicken embryos. Avian Dis Dig. (2009) 4:e13. doi: 10.1637/8890.1
65. MacKinnon KM, He H, Swaggerty CL, McReynolds JL, Genovese KJ, Duke SE, et al. In ovo treatment with CpG oligodeoxynucleotides decreases colonization of Salmonella enteriditis in broiler chickens. Vet Immunol Immunopathol. (2009) 127:371–5. doi: 10.1016/j.vetimm.2008.10.001
66. Taghavi A, Allan B, Mutwiri G, Van Kessel A, Willson P, Babiuk L, et al. Protection of neonatal broiler chicks against Salmonella typhimurium septicemia by DNA containing CpG motifs. Avian Dis. (2008) 52:398–406. doi: 10.1637/8196-121907-Reg
67. Taghavi A, Allan B, Mutwiri G, Foldvari M, Kessel A, Willson P, et al. Enhancement of immunoprotective effect of CpG-ODN by formulation with polyphosphazenes against E. coli septicemia in neonatal chickens. Curr Drug Deliv. (2009) 6:76–82. doi: 10.2174/156720109787048221
68. Bavananthasivam J, Read L, Astill J, Yitbarek A, Alkie TN, Abdul-Careem MF, et al. The effects of in ovo administration of encapsulated toll-like receptor 21 ligand as an adjuvant with marek’s disease vaccine. Sci Rep. (2018) 8:16370. doi: 10.1038/s41598-018-34760-6
69. Gunawardana T, Ahmed KA, Goonewardene K, Popowich S, Kurukulasuriya S, Karunarathna R, et al. Synthetic CpG-ODN rapidly enriches immune compartments in neonatal chicks to induce protective immunity against bacterial infections. Sci Rep. (2019) 9:341. doi: 10.1038/s41598-018-36588-6
70. Knepper P, O’hayer MJ, Hoopes A, Gabbai E. System and Method for in ovo Sexing of Avian Embryos. Novatrans Gr Sa Isr assignee Google Patents US Patent 16/321,261 (2019). Available online at: https://patentscope.wipo.int/ search/en/detail.jsf?docId=WO2018023105
71. Steiner G, Bartels T, Stelling A, Krautwald-Junghanns ME, Fuhrmann H, Sablinskas V, et al. Gender determination of fertilized unincubated chicken eggs by infrared spectroscopic imaging. Anal Bioanal Chem. (2011) 400:2775–82. doi: 10.1007/s00216-011-4941-3
72. Weissmann A, Reitemeier S, Hahn A, Gottschalk J, Einspanier A. Sexing domestic chicken before hatch: a new method for in ovo gender identification. Theriogenology. (2013) 80:199–205. doi: 10.1016/j.theriogenology.2013.04.014
73. Fioranelli M, Sepehri A, Roccia MG, Rossi C, Vojvodic P, Lotti J, et al. In ovo sexing of chicken eggs by virus spectroscopy. Open Access Maced J Med Sci. (2019) 7:3106–9. doi: 10.3889/oamjms.2019.768
74. Galli R, Preusse G, Uckermann O, Bartels T, Krautwald-Junghanns ME, Koch E, et al. In ovo sexing of chicken eggs by fluorescence spectroscopy. Anal Bioanal Chem. (2017) 409:1185–94. doi: 10.1007/s00216-016-0116-6
75. Göhler D, Fischer B, Meissner S. In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): a non-destructive method for layer lines with gender-specific down feather color. Poult Sci. (2017) 96:2790–9. doi: 10.3382/ps/pew282
76. Peixoto MRLV, Karrow NA, Widowski TM. Effects of prenatal stress and genetics on embryonic survival and offspring growth of laying hens. Poult Sci. (2020) 99:1618–27. doi: 10.1016/j.psj.2019.10.018
77. Stern CD. The chick. Dev Cell. (2005) 8:9–17. doi: 10.1016/j.devcel.2004.11.018
78. Sauka-Spengler T, Barembaum M. Chapter 12 gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol. (2008) 87:237–56. doi: 10.1016/S0091-679X(08)00212-4
79. Secinti IE. Retinal teratogenicity of pregabalin in chick embryo model. Cutan Ocul Toxicol. (2020) 39:304–10. doi: 10.1080/15569527.2020.1802739
80. Celik M, Goktas S, Karakaya C, Cakiroglu AI, Karahuseyinoglu S, Lashkarinia SS, et al. Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release. Am J Physiol Hear Circ Physiol. (2020) 318:H1208–18. doi: 10.1152/ajpheart.00495.2019
81. Le Douarin NM. The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev. (2004) 121:1089– 102. doi: 10.1016/j.mod.2004.06.003
82. Moghadasi Boroujeni S, Koontz A, Tseropoulos G, Kerosuo L, Mehrotra P, Bajpai VK, et al. Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep. (2019) 9:9750. doi: 10.1038/s41598-019-46140-9
83. Urban JD, Wikoff DS, Chappell GA, Harris C, Haws LC. Systematic evaluation of mechanistic data in assessing in utero exposures to trichloroethylene and development of congenital heart defects. Toxicology. (2020) 436:152427. doi: 10.1016/j.tox.2020.152427
84. Ohta Y, Kidd MT. Optimum site for in ovo amino acid injection in broiler breeder eggs 1, 2. Poult Sci. (2001) 80:1425–9. doi: 10.1093/ps/80.10.1425
85. Bednarczyk M, Stadnicka K, Kozłowska I, Abiuso C, Tavaniello S, Dankowiakowska A, et al. Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal. (2016) 10:1271–9. doi: 10.1017/S1751731116000173
86. Hashemzadeh Z, Torshizi MAK, Rahimi S, Razban V, Salehi TZ. Prevention of salmonella colonization in neonatal broiler chicks by using different routes of probiotic administration in hatchery evaluated by culture and PCR techniques. J Agric Sci Technol. (2010) 12:425–432.
87. Castañeda CD, McDaniel CD, Abdelhamed H, Karsi A, Kiess AS. Evaluating bacterial colonization of a developing broiler embryo after in ovo injection with a bioluminescent bacteria. Poult Sci. (2019) 98:2997–3006. doi: 10.3382/ps/pez053
88. Zhu Y, Zhao J, Wang C, Zhang F, Huang X, Ren Z, et al. Exploring the effectiveness of in ovo feeding of vitamin C based on the embryonic vitamin C synthesis and absorption in broiler chickens. J Anim Sci Biotechnol. (2021) 12:86. doi: 10.1186/s40104-021-00607-w
89. Peebles ED. In ovo applications in poultry: a review. Poult Sci. (2018) 97:2322–38. doi: 10.3382/ps/pey081
90. Whitehead CC, Keller T. An update on ascorbic acid in poultry. Worlds Poult Sci J. (2003) 59:161–84. doi: 10.1079/WPS20030010
91. Nowaczewski S, Kontecka H, Krystianiak S. Effect of in ovo injection of vitamin C during incubation on hatchability of chickens and ducks. Folia Biol. (2012) 60:93–7. doi: 10.3409/fb60_1-2.93-97
92. Tuan RS, Suyama E. Developmental expression and vitamin D regulation of calbindin-D28K in chick embryonic yolk sac endoderm. J Nutr. (1996) 126:1308S−16S. doi: 10.1093/jn/126.suppl_4.1308S
93. Torres CA, Korver DR. Influences of trace mineral nutrition and maternal flock age on broiler embryo bone development. Poult Sci. (2018) 97:2996– 3003. doi: 10.3382/ps/pey136
94. Elaroussi MA, DeLuca HF. Calcium uptake by chorioallantoic membrane: effects of vitamins D and K. Am J Physiol Metab. (1994) 267:E837–41. doi: 10.1152/ajpendo.1994.267.6.E837
95. Peebles ED, Brake J. Relationship of eggshell porosity to stage of embryonic development in broiler breeders. Poult Sci. (1985) 64:2388–91. doi: 10.3382/ps.0642388
96. Fatemi SA, Alqhtani AH, Elliott KEC, Bello A, Levy AW, Peebles ED. Improvement in the performance and inflammatory reaction of Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3. Poult Sci. (2021) 100:138–46. doi: 10.1016/j.psj.2020.10.010
97. Smith JE, Goodman DS. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. (1971) 50:2159–67. doi: 10.1172/JCI106710
98. Haddad JG, Matsuoka LY, Hollis BW, Hu YZ, Wortsman J. Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest. (1993) 91:2552–5. doi: 10.1172/JCI116492
99. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. (2004) 142:231–55. doi: 10.1038/sj.bjp.0705776
100. Mishra B, Jha R. oxidative stress in the poultry gut: potential challenges and interventions. Front Vet Sci. (2019) 6:60. doi: 10.3389/fvets.2019.00060
101. Bin P, Huang R, Zhou X. Oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed Res Int. (2017) 2017:9584932. doi: 10.1155/2017/9584932
102. Elwan HAM, Elnesr SS, Xu Q, Xie C, Dong X, Zou X. Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, IGF-I and TLR4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incubation. Animals. (2019) 9:25. doi: 10.3390/ani9010025
103. Nissen SL, Abumrad N. Nutritional role of the leucine metabolite p=hydroxy p-methylbutyrate (HMB). Nutr Biochem. (1997) 8:300–11. doi: 10.1016/S0955-2863(97)00048-X
104. Nissen S, Fuller JC, Sell J, Ferket PR, Rives D V. The effect of Î2 -hydroxyÎ 2 -methylbutyrate on growth, mortality, and carcass qualities of broiler chickens1. Poult Sci. (1994) 73:137–55. doi: 10.3382/ps.0730137
105. Zhao G, He F, Wu C, Li P, Li N, Deng J, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol. (2018) 9:70. doi: 10.3389/fimmu.2018.01070
106. Yang W, Huang L, Gao J, Wen S, Tai Y, Chen M, et al. Betaine attenuates chronic alcohol-induced fatty liver by broadly regulating hepatic lipid metabolism. Mol Med Rep. (2017) 16:5225–34. doi: 10.3892/mmr.2017.7295
107. Hu Y, Feng Y, Ding Z, Lv L, Sui Y, Sun Q, et al. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poult Sci. (2020) 99:3111–20. doi: 10.1016/j.psj.2019.12.058
108. Uni Z, Ferket RP. Methods for early nutrition and their potential. Worlds Poult Sci J. (2004) 60:101–11. doi: 10.1079/WPS20040009
109. Smirnov A, Tako E, Ferket PR, Uni Z. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates. Poult Sci. (2006) 85:669–73. doi: 10.1093/ps/85.4.669
110. Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol. (2021) 12:51. doi: 10.1186/s40104-021-0 0576-0
111. Jha R, Berrocoso JD. Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal. (2015) 9:1441–52. doi: 10.1017/S1751731115000919
112. Jha R, Das R, Oak S, Mishra P. Probiotics (Direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals. (2020) 10:1863. doi: 10.3390/ani10101863
113. Stefaniak T, Madej JP, Graczyk S, Siwek M, Łukaszewicz E, Kowalczyk A, Sienczyk M, et al. Selected prebiotics and synbiotics administered ´ in ovo can modify innate immunity in chicken broilers. BMC Vet Res. (2019) 15:105. doi: 10.1186/s12917-019-1850-8
114. Stefaniak T, Madej JP, Graczyk S, Siwek M, Łukaszewicz E, Kowalczyk A, Sienczyk M, et al. Impact of prebiotics and synbiotics administered ´ in ovo on the immune response against experimental antigens in chicken broilers. Animals. (2020) 10:643. doi: 10.3390/ani10040643
115. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. (2020) 65:723–40. doi: 10.1007/s10620-020-06112-w
116. Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. (2016) 3:2. doi: 10.3389/fvets.2016.00002
117. Casas-Perez IA, Edens FW. In ovo Method for Delivering Lactobacillus reuteri to the Gastrointestinal Tract of Poultry. Patent number 5,458,875 (1995). Available online at: https://patentimages.storage.googleapis.com/5d/a9/10/ a2429c726768e9/US5458875.pdf
118. Beski SSM, Al-Sardary SYT. Effects of dietary supplementation of probiotic and synbiotic on broiler chickens hematology and intestinal integrity. Int J Poult Sci. (2015) 14:31–6. doi: 10.3923/ijps.2015.31.36
119. Li T, Castañeda CD, Miotto J, McDaniel C, Kiess AS, Zhang L. Effects of in ovo probiotic administration on the incidence of avian pathogenic Escherichia coli in broilers and an evaluation on its virulence and antimicrobial resistance properties. Poult Sci. (2021) 100:100903. doi: 10.1016/j.psj.2020.11.072
120. Gutierrez-Fuentes CE, Zuñiga-Orozco LA, Vicente JL, Hernandez-Velasco X, Menconi A, Ayamchirakkunnel Kuttappan V, et al. Effect of a lactic acid bacteria based probiotic, FloraMax-B11 R , on performance, bone qualities and morphometric analysis of broiler chickens: an economic analysis. Int J Poult Sci. (2013) 12:322–7. doi: 10.3923/ijps.2013.32 2.327
121. Castañeda CD, Gamble JN, Wamsley KGS, McDaniel CD, Kiess AS. In ovo administration of Bacillus subtilis serotypes effect hatchability, 21-day performance, and intestinal microflora. Poult Sci. (2021) 100:101125. doi: 10.1016/j.psj.2021.101125
122. Duan AY, Ju AQ, Zhang YN, Qin YJ, Xue LG, Ma X, et al. The effects of in ovo injection of synbiotics on the early growth performance and intestinal health of chicks. Front Vet Sci. (2021) 8:658301. doi: 10.3389/fvets.2021.658301
123. Dunislawska A, Herosimczyk A, Lepczynski A, Slama P, Slawinska A, Bednarczyk M, et al. Molecular response in intestinal and immune tissues to in ovo administration of inulin and the combination of inulin and Lactobacillus lactis subsp. cremoris. Front Vet Sci. (2021) 7:632476. doi: 10.3389/fvets.2020.632476
124. Geris KL, Hondt ED, Kuhn ER, Darras VM. Thyrotropin-releasing hormone concentrations in different regions of the chicken brain and pituitary : an ontogenetic study. Brain Res. (1999) 818:260–6. doi: 10.1016/S0006-8993(98)01281-5
125. Cuperus T, van Dijk A, Dwars RM, Haagsman HP. Localization and developmental expression of two chicken host defense peptides: cathelicidin2 and avian β-defensin 9. Dev Comp Immunol. (2016) 61:48–59. doi: 10.1016/j.dci.2016.03.008
126. Gomis S, Babiuk L, Allan B, Willson P, Waters E, Ambrose N, et al. Protection of neonatal chicks against a lethal challenge of escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Dis. (2004) 48:813–22. doi: 10.1637/7194-041204R
127. Ouattara DA, Remolue L, Becker J, Perret M, Bunescu A, Hennig K, et al. An integrated transcriptomics and metabolomics study of the immune response of newly hatched chicks to the cytosine-phosphate-guanine oligonucleotide stimulation. Poult Sci. (2020) 99:4360–72. doi: 10.1016/j.psj.2020.06.017
128. Ncho CM, Goel A, Jeong CM, Youssouf M, Choi YH. In ovo injection of gaba can help body weight gain at hatch, increase chick weight to egg weight ratio, and improve broiler heat resistance. Animals. (2021) 11:1364. doi: 10.3390/ani11051364
129. Oliveira TFB, Bertechini AG, Bricka RM, Kim EJ, Gerard PD, Peebles ED. Effects of in ovo injection of organic zinc, manganese, and copper on the hatchability and bone parameters of broiler hatchlings. Poult Sci. (2015) 94:2488–94. doi: 10.3382/ps/pev248
130. Matuszewski A, Łukasiewicz M, Niemiec J, Kamaszewski M, Jaworski S, Domino M, Jasinski T, et al. Calcium carbonate nanoparticles— ´ toxicity and effect of in ovo inoculation on chicken embryo development, broiler performance and bone status. Animals. (2021) 11:932. doi: 10.3390/ani11040932
131. Saleh AA, Alhotan RA, Alharthi AS, Nassef E, Kassab MA, Farrag FA, et al. Insight view on the role of in ovo feeding of clenbuterol on hatched chicks: hatchability, growth efficiency, serum metabolic profile, muscle, and lipid-related markers. Animals. (2021) 11:2429. doi: 10.3390/ani11082429
132. Kogut MH, Klasing K. An immunologist’s perspective on nutrition, immunity, and infectious diseases: introduction and overview. J Appl Poult Res. (2009) 18:103–10. doi: 10.3382/japr.2008-00080
133. Oladokun S, Adewole DI. In ovo delivery of bioactive substances: an alternative to the use of antibiotic growth promoters in poultry production— a review. J Appl Poult Res. (2020) 29:744–63. doi: 10.1016/j.japr.2020.06.002