Guanidinoacetic acid (GAA) is the biochemical precursor of creatine, which, in its phosphorylated form, is an essential high-energy carrier in the muscle. Although creatine has limited stability in feed processing, GAA is well established as a source of creatine in the animal feed industry. Published data demonstrate beneficial effects of GAA supplementation on muscle creatine, energy compounds, and antioxidant status, leading to improvements in broiler body weight gain, feed conversion ratio, and breast meat yield. Although increases in weight gain and meat yield are often associated with wooden breast (WB) and other myopathies, recent reports have suggested the potential of GAA supplementation to reduce the occurrence and severity of WB while improving breast meat yield. This disorder increases the hardness of the Pectoralis major muscle and has emerged as a current challenge to the broiler industry worldwide by impacting meat quality. Genetic selection, fast-growth rates, and environmental stressors have been identified to be the main factors related to this myopathy, but the actual cause of this disorder is still unknown. Creatine supplementation has been used as a nutritional prescription in the treatment of several muscular myopathies in humans and other animals. Because GAA is a common feed additive in poultry production, the potential of GAA supplementation to reduce broiler myopathies has been investigated in experimental and commercial scenarios. In addition, a few studies have evaluated the potential of creatine in plasma and blood enzymes related to creatine to be used as potential markers for WB. The evidence indicates that GAA could potentially minimize the incidence of WB. More data are warranted to understand the factors affecting the potential efficacy of GAA to reduce the occurrence and severity of myopathies.
Keywords: guanidino acetic acid, myopathy, wooden breast, white striping, broiler chicken, meat yield, meat quality.
Abasht, B., Mutryn, M. F., Michalek, R. D., and Lee, W. R. (2016). Oxidative stress and metabolic perturbations in wooden breast disorder in chickens. PLoS One
4:e0153750. doi: 10.1371/journal.pone.0153750
Abudabos, A. M., Saleh, F., Lemme, A., and Zakaria, H. A. H. (2014). The relationship between guanidino acetic acid and metabolisable energy level of diets on performance of broiler chickens. Italian J. Anim. Sci. 13:3269. doi:
10.4081/ijas.2014.3269
Ahmadipour, B., Naeini, S. Z., Sharifi, M., and Khajali, F. (2018a).
Growth performance and right ventricular hypertrophy responses of broiler chickens to guanidinoacetic acid supplementation under hypobaric hypoxia. J. Poult. Sci. 55, 60–64. doi: 10.2141/jpsa.017
0044
Ahmadipour, B., Khajali, F., and Sharifi, M. (2018b). Effect of guanidinoacetic acid supplementation on growth performance and gut morphology in broiler chickens. J. Poult. Sci. 6, 19–24.
Ahmadipour, B., Sharifi, M., and Khajali, F. (2018c). Pulmonary hypertensive response of broiler chickens to arginine and guanidinoacetic acid under highaltitude hypoxia. Acta Vet. Hung. 66, 114–124.
Ale Saheb Fosoul, S. S., Azarfar, A., Gheisari, A., and Khosravinia, H. (2018).
Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br. J. Nutr. 120, 131–
140. doi: 10.1017/S0007114517003701
Amaral, P. C., Zimermann, C., Santos, L. R., Noro, M., Prá, M. D., Pilotto, F., et al. (2017). Evaluation of physiological parameters of broilers with dorsal cranial myopathy. Braz. J. Poultry Sci. 19, 69–74. doi: 10.1590/1806-9061-2016-0377
Amiri, M., Ghasemi, H. A., Hajkhodadadi, I., and Khaltabadi Farahani, A. H. (2019). Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress. Anim. Feed Sci.
Technol. 254:114208. doi: 10.1016/j.anifeedsci.2019.114208
Aviagen (2019). Breast Muscle Myopathies. Available online at: http:
//en.aviagen.com/assets/Tech_Center/Broiler_Breeder_Tech_Articles/English/
Breast-Muscle-Myopathies-2019-EN.pdf (accessed January 15, 2020).
Bailey, R. A., Watson, K. A., Bilgili, S. F., and Avendano, S. (2015). The genetic basis of pectoralis major myopathies in modern broiler chicken lines. Poult. Sci. 94,
2870–2879. doi: 10.3382/ps/pev304
Baker, D. H. (2009). Advances in protein-amino acid nutrition of poultry. Amino
Acids 37, 29–41. doi: 10.1007/s00726-008-0198-3
Baldi, G., Soglia, F., Mazzoni, M., Sirri, F., Canonico, L., Babini, E., et al. (2018).
Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal 12, 164–173. doi: 10.1017/
S1751731117001069
Baldi, G., Yen, C.-N., Daughtry, M. R., Bodmer, J., Bowker, B. C., Zhuang, H., et al. (2020). Exploring the factors contributing to the high ultimate pH of broiler
Pectoralis major muscles affected by wooden beast condition. Front. Physiol.
11:343. doi: 10.3389/fphys.2020.00343
Balsom, P. D., Soderlund, K., and Ekblom, B. (1994). Creatine in humans with special reference to creatine supplementation. Sport. Med. 18, 268–280. doi:
10.2165/00007256-199418040-00005
Beard, H. H., and Barnes, B. O. (1931). The influence of feeding proteins, amino acids, and related substances upon creatine–creatinine metabolism. J. Biol.
Chem. 94, 49–69.
Boney, J. W., Patterson, P. H., and Solis, F. (2019). The effect of dietary inclusions of guanidinoacetic acid on D1-42 broiler performance and processing yields.
J. Appl. Poult. Res. 29, 220–228. doi: 10.1016/j.japr.2019.10.008
Borsook, M. E., and Borsook, H. (1951). Treatment of cardiac decompensation with betaine and glycocyamine. Ann. West Med. Surg. 5, 830–855.
Brothers, B., Zhuo, Z., Papah, M. B., and Abasht, B. (2019). RNA-Sep analysis reveals spatial and sex differences in Pectoralis major muscle of broiler chickens contributing to difference in susceptibility to wooden breast disease. Front.
Physiol. 10:764. doi: 10.3389/fphys.2019.00764
Carvalho, C. M. C., Fernandes, E. A., Carvalho, A. P., Maciel, M. P., Cairess,
R. M., and Fagundes, N. S. (2013). Effect of creatine addition in feeds containing animal meals on the performance and carcass yield of broilers. Braz. J. Poultry
Sci. 15, 269–275. doi: 10.1590/S1516-635X2013000300015
Chen, L. R., Suyemoto, M. M., Sarsour, A. H., Cordova, H. A., Oviedo-Rondoìn,
E. O., Wineland, M., et al. (2019). Temporal characterization of broiler breast myopathy (“Woody Breast”) severity and correlation with growth rate and lymphocytic phlebitis in three commercial broiler strains and a random-bred broiler strain. Avian Pathol. 48, 319–328. doi: 10.1080/03079457.2019.1598541
Córdova-Noboa, H. A. (2015). Effects of Guanidinoacetic Acid in Broilers. dissertation, North Carolina State University, Raleigh, NC.
Córdova-Noboa, H. A., Oviedo-Rondón, E. O., Sarsour, A. H., Barnes, J., Ferzola,
P., Rademacher-Heilshorn, M., et al. (2018a). Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid. Poult. Sci. 97, 2479–2493. doi: 10.
3382/ps/pey096
Córdova-Noboa, H. A., Oviedo-Rondón, E. O., Sarsour, A. H., Barnes, J., Sapcota,
D., López, D., et al. (2018b). Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult.
Sci. 97, 2494–2505. doi: 10.3382/ps/pey097
Cruz, R. F. A., Vieira, S. L., Kindlein, L., Kipper, M., Cemin, H. S., and Rauber,
S. M. (2017). Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels. Poult. Sci. 96, 501–510. doi: 10.3382/ps/pew310
De Groot, A. A., Braun, U., and Dilger, R. N. (2018). Efficacy of guanidinoacetic acid on growth and muscle energy metabolism in broiler chicks receiving arginine-deficient diets. Poult. Sci. 97, 890–900. doi: 10.3382/ps/pex378
De Groot, A. A., Braun, U., and Dilger, R. N. (2019). Guanidinoacetic acid is efficacious in improving growth performance and muscle energy homeostasis in broiler chicks fed arginine-deficient or arginine-adequate diets. Poult. Sci. 98,
2896–2905. doi: 10.3382/ps/pez036
Deldicque, L., Louis, M., Theisen, D., Nielens, H., Dehoux, H., Thissen, J. P., et al. (2005). Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med. Sci. Sports Exerc. 37, 731–736. doi: 10.1249/01.MSS.
0000162690.39830.27
Derave, W., Marescau, B., Eede, E. V., Eijnde, B. O., De Deyn, P. P., and
Hespel, P. (2004). Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans. J. Appl. Physiol. 97, 852–857. doi: 10.1152/ japplphysiol.00206.2004
Dilger, R. N., Bryant-Angeloni, K., Payne, R. L., Lemme, A., and Parsons, C. M. (2013). Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult. Sci. 92, 171–177. doi: 10.3382/ps.2012-02425
Dobenecker, B., and Braun, U. (2015). Creatine and creatinine contents in different diet types for dogs –effects of source and processing. J. Anim. Physiol. An. N. 99,
1017–1024. doi: 10.1111/jpn.12383
D’Souza, D. M., Al-Sajee, D., and Hawke, T. J. (2013). Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front. Physiol. 4:379. doi: 10.3389/fphys.2013.00379
European Food Safety Authority [EFSA] (2009). Safety and efficiency of guanidino acetic acid as feed additive for chickens for fattening. EFSA J. 988,
1–30.
European Food Safety Authority [EFSA] (2016). Scientific opinion on the safety and efficacy of guanidinoacetic acid for chickens for fattening, breeder hens and roosters, and pigs. EFSA J. 14:4394. doi: 10.2903/j.efsa.2016.4394
FDA US Food and Drug Administration (2016). Code of Federal Regulations Title
21. Available online at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/ cfcfr/CFRSearch.cfm?fr=573.496 (accessed June 1, 2020).
Fitch, C. D. (1977). “Significance of abnormalities of creatine metabolism,” in
Pathogenesis of Human Muscular Dystrophies, ed. L. P. Rowland (Amsterdam:
Excerpta Medica), 328–340.
Gábor, E., Gáspar, O., and Vámos, E. (1984). Quantitative determination of muscle protein in meat products by measuring creatine content. Acta Aliment. Hung.
13, 13–22.
Griffin, J. R., Moraes, L., Wick, M., and Lilburn, M. S. (2018). Onset of white striping and progression into wooden breast as defined by myopathic changes underlying Pectoralis major growth. Estimation of growth parameters as predictors for stage of myopathy progression. Avian Pathol. 47, 2–13. doi:
10.1080/03079457.2017.1356908
Guimarães-Ferreira, L. (2014). Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein 12, 126–131. doi: 10.1590/
S1679-45082014RB2741
Guimbal, C., and Kilimann, M. W. (1993). A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268, 8418–8421.
Harris, R. C., Lowe, J. A., Warnes, K., and Orme, C. E. (1997). The concentration of creatine in meat, offal and commercial dog food. Res. Vet. Sci. 62, 58–62. doi: 10.1016/s0034-5288(97)90181-8
Harris, R. C., Soderlund, K., and Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci.
83, 367–374. doi: 10.1042/cs0830367
Hathout, Y., Seol, H., Han, M. H. J., Zhang, A., Brown, K. A., and Hoffman, E. P. (2016). Clinical utility of serum biomarkers in Duchenne muscular dystrophy.
Clin. Proteom. 13:9. doi: 10.1186/s12014-016-9109-x
Havenstein, G. B., Ferket, P. R., and Qureshi, M. A. (2003a). Carcass composition and yield of 1957 vs 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82, 1509–1518. doi: 10.1093/ps/82.10.1509
Havenstein, G. B., Ferket, P. R., and Qureshi, M. A. (2003b). Growth, livability, and feed conversion of 1957 vs. 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82, 1500–1508. doi: 10.1093/ps/82.10.1500
Heger, J., Zelenka, J., Machander, V., De La Cruz, C., Lešták, M., and Hampel, D. (2014). Effects of guanidinoacetic acid supplementation to broiler diets with varying energy content. Acta Univ. Agric. Silvic. Mendelianae Brun. 62, 477–485. doi: 10.11118/actaun201462030477
Hultman, E., Soderlund, K., Timmons, J. A., Cederblad, G., and Greenhaff, P. L. (1996). Muscle creatine loading in men. J. Appl. Physiol. 81, 232–237. doi:
10.1152/jappl.1996.81.1.232
Hunter, A. (1928). Creatine and Creatinine. London: Longmans Green and Co.
Ibrahim, D., El Sayeda, R., Abdelfattah-Hassan, A., and Morshedy, A. M. (2019).
Creatine or guanidinoacetic acid? Which is more effective at enhancing growth, tissue creatine stores, quality of meat, and genes controlling growth/myogenesis in Mulard ducks. J. Appl. Animal Res. 47, 159–166. doi: 10.1080/09712119.2019.
1590205
Jiao, S., Ren, H., Li, Y., Zhou, J., Duan, C., and Lu, L. (2013). Differential regulation of IGF-I and IGF-II gene expression in skeletal muscle cells. Mol. Cell Biochem.
373, 107–113. doi: 10.1007/s11010-012-1479-4
Kawasaki, T., Iwasaki, T., Yamada, M., Yoshida, T., and Watanabe, T. (2018).
Rapid growth rate results in remarkably hardened breast in broilers during the middle stage of rearing?: a biochemical and histopathological study. PLoS One
13:e0193307. doi: 10.1371/journal.pone.0193307
Khajali, F., Lemme, A., and Rademacher-Heilshorn, M. (2020). Guanidinoacetic acid as a feed supplement for poultry. Worlds Poult. Sci. J. 1–2.
Khajali, F., and Wideman, R. F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. Worlds Poult. Sci. J. 66,
751–766. doi: 10.1017/s0043933910000711
Khan, A. W., and Cowen, D. C. (1977). Rapid estimation of muscle proteins in beef-vegetable protein mixtures. J. Agric. Food Chem. 25, 236–238. doi:
10.1021/jf60210a029
Kley, R. A., Tarnopolsky, M. A., and Vorgerd, M. (2013). Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 6:CD004760.
Krueger, K., Damme, K., and Lemme, A. (2010). Bessere mast mit CreAmino. DGS
Magazin 26, 10–14.
Kuttappan, V. A., Huff, G. R., Huff, W. E., Hargis, B. M., Apple, J. K., Coon, C., et al. (2013a). Comparison of hematologic and serologic profiles of broiler birds with normal and severe degrees of white striping in breast fillets. Poult. Sci. 92,
339–345. doi: 10.3382/ps.2012-02647
Kuttappan, V. A., Shivaprasad, H. L., Shaw, D. P., Valentine, B. A., Hargis, B. M.,
Clark, F. D., et al. (2013b). Pathological changes associated with white striping in broiler breast muscles. Poult. Sci. 92, 331–338. doi: 10.3382/ps.2012-02646
Lake, J. A., and Abasht, B. (2020). Glucolipotoxicity: a proposed etiology for wooden breast and related myopathies in commercial broiler chickens. Front.
Physiol. 11:169. doi: 10.3389/fphys.2020.00169
Majdeddin, M., Golian, A., Kermanshahi, H., De Smet, S., and Michiels, J. (2018).
Guanidinoacetic acid supplementation in broiler chickens fed on corn-soybean diets affects performance in the finisher period and energy metabolites in breast muscle independent of diet nutrient density. Br. Poult. Sci. 59, 443–451. doi:
10.1080/00071668.2018.1476678
Majdeddin, M., Golian, A., Kermanshahi, H., Michiels, J., and De Smet, S. (2019).
Effects of methionine and guanidoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed cornsoybean diets. Br. Poult. Sci. 60, 554–563. doi: 10.1080/00071668.2019.1631447
Malila, Y., Thanatsang, K., Arayamethakorn, S., Uengwetwanit, T., Srimarut, Y.,
Petracci, M., et al. (2019). Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. PLoS One 14:e0220904. doi: 10.1371/journal.pone.0220904
Michiels, J., Maertens, L., Buyse, J., Lemme, A., Rademacher, M., Dierick, N. A., et al. (2012). Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism.
Poult. Sci. 91, 402–412. doi: 10.3382/ps.2011-01585
Montagna, F. S., Garcia, G., Nääs, I. A., Lima, N. D. S., and Caldara, F. R. (2019).
Practical assessment of spaghetti breast in diverse genetic strain broilers reared under different environments. Braz. J. Poultry Sci. 21:eRBCA-2019-0759. doi:
10.1590/1806-9061-2018-0759
Mousavi, S. N., Afsar, A., and Lotfollahian, H. (2013). Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. J. Appl.
Poult. Res. 22, 47–54. doi: 10.3382/japr.2012-00575
Mudalal, S., Lorenzi, M., Soglia, F., Cavani, C., and Petracci, M. (2015).
Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal 9, 728–734. doi: 10.1017/ s175173111400295x
Mutryn, M. F., Brannick, E. M., Fu, W., Lee, W. R., and Abasht, B. (2015).
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics
16:399. doi: 10.1186/s12864-015-1623-0
Nabuurs, C. I., Choe, C. U., Veltien, A., Kan, H. E., van Loon, L. J., Rodenburg,
R. J., et al. (2013). Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J. Physiol. 591,
571–592. doi: 10.1113/jphysiol.2012.241760
Nasiroleslami, M., Torki, M., Saki, A. A., and Abdolmohammadi, A. R. (2018).
Effects of dietary guanidinoacetic acid and betaine supplementation on performance, blood biochemical parameters and antioxidant status of broilers subjected to cold stress. J. Appl. Anim. Res. 46, 1016–1022. doi: 10.1080/
09712119.2018.1450751
Ostojic, S. M. (2015a). Advanced physiological roles of guanidinoacetic acid. Eur.
J. Nutr. 54, 1211–1215. doi: 10.1007/s00394-015-1050-7
Ostojic, S. M. (2015b). Cellular bioenergetics of guanidinoacetic acid?: the role of mitochondria. J. Bioenerg. Biomembr. 47, 369–372. doi: 10.1007/s10863-015-
9619-7
Ostojic, S. M. (2016). Guanidinoacetic acid as a performance-enhancing agent.
Amino Acids 48, 1867–1875. doi: 10.1007/s00726-015-2106-y
Ostojic, S. M. (2017). Tackling guanidinoacetic acid for advanced cellular bioenergetics. Nutrition 34, 55–57. doi: 10.1016/j.nut.2016.09.010
Owens, C. M., Alvarado, C. Z., and Sams, A. R. (2009). Research developments in pale, soft, and exudative turkey meat in North America. Poult. Sci. 88,
1513–1517. doi: 10.3382/ps.2009-00008
Papah, M. B., Brannick, E. M., Schmidt, C. J., and Abasht, B. (2017). Evidence and role of phlebitis and lipid infiltration in the onset and pathogenesis of
Wooden Breast Disease in modern broiler chickens. Avian Pathol. 46, 623–643. doi: 10.1080/03079457.2017.1339346
Parise, G., Mihic, S., MacLennan, D., Yarasheski, K. E., and Tarnopolsky, M. A. (2001). Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J. Appl. Physiol. 91, 1041–1047. doi: 10.1152/jappl.2001.91.3.1041
Pearlman, J. P., and Fielding, R. A. (2006). Creatine monohydrate as a therapeutic aid in muscular dystrophy. Nutr. Rev. 64, 80–88. doi: 10.1111/j.1753-4887.2006. tb00191.x
Petracci, M., and Cavani, C. (2012). Muscle growth and poultry meat quality issues.
Nutrients 4, 1–12. doi: 10.3390/nu4010001
Petracci, M., Mudalal, S., Soglia, F., and Cavani, C. (2015). Meat quality in fastgrowing broiler chickens. Worlds Poult. Sci. J. 71, 363–374. doi: 10.1017/ s0043933915000367
Petracci, M., Soglia, F., Madruga, M., Carvalho, L., Ida, E., and Estévez, M. (2019).
Wooden-breast, white striping, and spaghetti meat: causes, consequences and consumer perception of emerging broiler meat abnormalities. Compr. Rev. Food
Sci. F. 18, 565–583. doi: 10.1111/1541-4337.12431
Post, A., Tsikas, D., and Bakker, S. J. L. (2019). Creatine is a conditionally essential nutrient in chronic kidney disease: a hypothesis and narrative literature review.
Nutrients 11:1044. doi: 10.3390/nu11051044
Russo, E., Drigo, M., Longoni, C., Pezzotti, R., Fasoli, P., and Recordati, C. (2015).
Evaluation of white striping prevalence and predisposing factors in broilers at slaughter. Poult. Sci. 94, 1843–1848. doi: 10.3382/ps/pev172
Sadra, S., Saheb, A., Azarfar, A., Gheisari, A., and Khosravinia, H. (2018).
Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br. J. Nutr. 308, 131–
140. doi: 10.1017/S0007114517003701
Sihvo, H. K. (2019). Pathology of Wooden Breast Myopathy in Broiler Chickens.
Master’s thesis, University of Helsinki, Helsinki.
Sihvo, H.-K., Airas, N., Lindén, J., and Puolanne, E. (2018). Pectoral vessel density and early ultrastructural changes in broiler chicken wooden breast myopathy.
J. Comp. Pathol. 161, 1–10. doi: 10.1016/j.jcpa.2018.04.002
Sihvo, H.-K., Lindén, J., Airas, N., Immonen, K., Valaja, J., and Puolanne, E. (2017).
Wooden breast myodegeneration of Pectoralis major muscle over the growth period in broilers. Vet. Pathol. 54, 119–128. doi: 10.1177/0300985816658099
Söderqvist, E., Svanholm, C., Olsen, S. N., and Leifsson, P. S. (2013). Equine polysaccharide storage myopathy. Dansk Veterinaertidsskrift 2, 26–31.
Stead, L. M., Au, K. P., Jacobs, R. L., Brosnan, M. E., and Brosnan, J. T. (2001).
Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am. J. Physiol. Endoc. M 281, E1095–E1100.
Tabatabaei Yazdi, F., Golian, A., Zarghi, H., and Varidi, M. (2017). Effect of wheat-soy diet nutrient density and guanidine acetic acid supplementation on performance and energy metabolism in broiler chickens. Ital. J. Anim. Sci. 16,
593–600. doi: 10.1080/1828051X.2017.1305260
Tarnopolsky, M., Parshad, A., Walzel, B., Schlattner, U., and Wallimann, T. (2001).
Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 24, 682–688. doi: 10.1002/mus.1055
Tarnopolsky, M. A. (2007). “Clinical use of creatine in neuromuscular and neurometabolic disorders,” in Creatine and Creatine Kinase in Health and
Disease. Subcellular Biochemistry, Vol. 46, eds G. S. Salomons and M. Wyss (Dordrecht: Springer).
Tijare, V. V., Yang, F. L., Kuttappan, V. A., Alvarado, C. Z., Coon, C. N., and Owens,
C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poult. Sci. 95, 2167–2173. doi: 10.3382/ps/pew129
Tossenberger, J., Rademacher, M., Nemeth, K., Halas, V., and Lemme, A. (2016).
Digestibility and metabolism of dietary guanidino acetic acid fed to broilers.
Poult. Sci. 95, 2058–2067. doi: 10.3382/ps/pew083
Trocino, A., Piccirillo, A., Birolo, M., Radaelli, G., Bertotto, D., Filiou, E., et al. (2015). Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens.
Poult. Sci. 94, 2996–3004. doi: 10.3382/ps/pev296
Tvarijonaviciute, A., Barranco, T., and Rubio, M. (2017). Measurement of creatine kinase and aspartate aminotransferase in saliva of dogs: a pilot study. BMC Vet.
Res. 13:168. doi: 10.1186/s12917-017-1080-x
Van der Poel, A. F. B., Braun, U., Hendriks, W. H., and Bosch, G. (2018). Stability of creatine monohydrate and guanidinoacetic acid during manufacture (retorting and extrusion) and storage of dog foods. J. Anim. Physiol. Anim. Nutr. 103,
1242–1250. doi: 10.1111/jpn.13103
Van Pilsum, J. F., Stephens, G. C., and Taylor, D. (1972). Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom.
Biochem. J. 126, 325–345.
Vargas, L. F. (2019). Efeito Da Adição De Diferentes Nutrientes Na Dieta Sobre a
Qualidade Das Carcaças e Prevenção de Peito Madeira e Estrias Brancas em
Frangos De Corte. master’s thesis, Universidade Tecnologica Federal do Parana,
Medianera.
Vignale, K., Caldas, J. V., England, J. A., Boonsinchai, N., Magnuson, A., Pollock,
E. D., et al. (2017). Effect of white striping myopathy on breast muscle (Pectoralis major) protein turnover and gene expression in broilers. Poult. Sci.
96, 886–893. doi: 10.3382/ps/pew315
Vranes, M., Ostojic, S., Tot, A., Papovic, S., and Gadzuric, S. (2017).
Experimental and computational study of guanidinoacetic acid self-aggregation in aqueous solution. Food Chem. 237, 53–57. doi: 10.1016/j.foodchem.2017.
05.088
Wallimann, T., Tokarska-Schlattner, M., and Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40,
1271–1296.
Wang, Y., Ma, J., Qiu, W., Zhang, J., Feng, S., Zhou, X., et al. (2018).
Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p co-mediated Akt/mTOR/S6K signaling pathway. Int. J. Mol. Sci. 19:E2837. doi: 10.3390/ijms19092837
Wyss, M., and Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism.
Physiol. Rev. 80, 1107–1213.
Zampiga, M., Laghi, L., Petracci, M., Zhu, C., Meluzzi, A., Dridi, S., et al. (2018). Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotechnol. 9:79. doi: 10.1186/s40104-018-0294-5
Zampiga, M., Soglia, F., Petracci, M., Meluzzi, A., and Sirri, F. (2019). Effect of different arginine to lysine ratios in broiler chicken diets on the occurrence of breast myopathies. Poult. Sci. 9:79. doi: 10.3382/ps/pey284
Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., and Robinson, F. E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93, 1–13. doi: 10.3382/ps.2014-04291