Author details:
Most grains and vegetable feedstuffs used in commercial poultry feed contain phytates and polysaccharides—non-starchy chemical structures that are not degraded by digestive tract enzymes. Exogenous enzymes optimize the use of dietary ingredients. This study aimed to determine whether combining β-mannanases (400 g/ton) and phytases in broiler sorghum–soybean diets could improve performance and immunity in broilers. Four diets were randomized in a 2 × 2 factorial design, with two phytase levels (500 or 1500 FTU/kg) and β-mannanase supplementation (0–400 g/ton; 158 million units/kg minimum enzyme activity). Six replicate battery cages of 10 chicks were fed each diet ad libitum. To assess cellular and humoral immune responses, 10 birds per treatment were euthanized on day 21. Supplementation with β-mannanase enzymes led to increased body weight and a higher feed conversion index (FCI) (p < 0.05). The phytase factor improved the FCI at 1500 FTU/kg (p < 0.05). Supplementation with β-mannanases improved the immune response by increasing the IgA concentration in the duodenum (95%) and total serum immunoglobulins (p < 0.05). The morphometric index increased in all organs (p < 0.05), and the heterophile/lymphocyte ratio (HLR) decreased by 50% (p < 0.05). Supplementing broilers with β-mannanases in sorghum–soybean meal diets with phytases improved their performance and immunity.
Keywords: exogenous enzymes; broilers; gut; sorghum–soybean meal diet
1. Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-dosing effects of phytase in poultry and other monogastrics. World Poult. Sci. J. 2011, 67, 225–235. [CrossRef]
2. Shi, H.; Wang, J.; Teng, P.Y.; Tompkins, Y.H.; Jordan, B.; Kim, W.K. Effects of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone mineralization, and intestinal gene expression of broilers. Poult. Sci. 2022, 101, 102124. [CrossRef]
3. Esteve-Garcia, E.; Perez-Vendrell, A.M.; Broz, J. Phosphorus equivalence of a phytase produced by in diets for young turkeys. Arch. Anim. Nutr. 2005, 59, 53–59. [CrossRef]
4. Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poult. Sci. 2018, 97, 1155–1162. [CrossRef]
5. Leyva-Jimenez, H.; Alsadwi, A.M.; Gardner, K.; Voltura, E.; Bailey, C.A. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult. Sci. 2019, 98, 811–819. [CrossRef]
6. Gomez-Verduzco, G.; Cortes-Cuevas, A.; Lopez-Coello, C.; Avila-Gonzalez, E.; Nava, G.M. Dietary supplementation of mannanoligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp. Acta Vet. Scand. 2009, 51, 11. [CrossRef]
7. Saeed, M.; Ahmad, F.; Arain, M.A.; El-Hack, A.; Emam, M.; Bhutto, Z.A.; Moshaveri, A. Use of mannan-oligosaccharides (MOS) as a feed additive in poultry nutrition. J. World’s Poult. Res. 2017, 7, 94–103.
8. Zanu, H.; Keerqin, C.; Kheravii, S.; Morgan, N.; Wu, S.-B.; Bedford, M.; Swick, R. Influence of meat and bone meal, phytase, and antibiotics on broiler chickens challenged with subclinical necrotic enteritis: 2. intestinal permeability, organ weights, hematology, intestinal morphology, and jejunal gene expression. Poult. Sci. 2020, 99, 2581–2594. [CrossRef] [PubMed]
9. Künzel, S.; Borda-Molina, D.; Zuber, T.; Hartung, J.; Siegert, W.; Feuerstein, D.; Camarinha-Silva, A.; Rodehutscord, M. Relative phytase efficacy values as affected by response traits, including ileal microbiota composition. Poult. Sci. 2021, 100, 101133. [CrossRef] [PubMed]
10. Dhawan, S.; Kaur, J. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 2007, 27, 197–216. [CrossRef] [PubMed]
11. Malgas, S.; van Dyk, J.S.; Pletschke, B.I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J. Microbiol. Biotechnol. 2015, 31, 1167–1175. [CrossRef] [PubMed]
12. Manual, R.B. 2022. Available online: www.Aviagen.com (accessed on 26 May 2022). 13. Thayer, S. Serologic procedures. Isol. Identif. Avian Pathog. 1998, 1, 176–198.
14. Gomez-Verduzco, G.; Cortes-Cuevas, A.; Lopez-Coello, C.; Arce-Menocal, J.; Vasquez-Pelaez, C.; Avila-González, E. Productive performance and immune response in broilers fed a sorghum plus soy diet supplemented with yeast (Saccharomyces cerevisiae) cell walls, in the presence or absence of aflotoxin B1. Tec. Pecu. Mex. 2009, 47, 285–297.
15. Campbell, T.W. Avian Hematology and Cytology; Iowa State University Press: Ames, IA, USA, 1995.
16. Ding, X.; Yang, C.; Wang, P.; Yang, Z.; Ren, X. Effects of star anise (Illicium verum Hook. f) and its extractions on carcass traits, relative organ weight, intestinal development, and meat quality of broiler chickens. Poult. Sci. 2020, 99, 5673–5680. [CrossRef] [PubMed]
17. Belote, B.L.; Soares, I.; Sanches, A.W.D.; de Souza, C.; Scott-Delaunay, R.; Lahaye, L.; Kogut, M.H.; Santin, E. Applying different morphometric intestinal mucosa methods and the correlation with broilers performance under Eimeria challenge. Poult. Sci. 2023, 102, 102849. [CrossRef] [PubMed]
18. Novotny, M.; Sommerfeld, V.; Krieg, J.; Kühn, I.; Huber, K.; Rodehutscord, M. Comparison of mucosal phosphatase activity, phytate degradation, and nutrient digestibility in 3-week-old turkeys and broilers at different dietary levels of phosphorus and phytase. Poult. Sci. 2023, 102, 102457. [CrossRef] [PubMed]
19. Rouissi, A.; Alfonso-Avila, A.; Guay, F.; Boulianne, M.; Létourneau-Montminy, M. Effects of Bacillus subtilis, butyrate, mannanoligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poult. Sci. 2021, 100, 101506. [CrossRef]
20. Jackson, M.E.; Geronian, K.; Knox, A.; McNab, J.; McCartney, E. A dose-response study with the feed enzyme β-mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poult. Sci. 2004, 83, 1992–1996. [CrossRef]
21. Zou, X.T.; Qiao, X.J.; Xu, Z.R. Effect of beta-mannanase (Hemicell) on growth performance and immunity of broilers. Poult. Sci. 2006, 85, 2176–2179. [CrossRef]
22. Cho, J.H.; Kim, I.H. Effects of beta-mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest Sci. 2013, 154, 137–143. [CrossRef]
23. Daskiran, M.; Teeter, R.; Fodge, D.; Hsiao, H. An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poult. Sci. 2004, 83, 662–668. [CrossRef] [PubMed]
24. Shashidhara, R.G.; Devegowda, G. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 2003, 82, 1319–1325. [CrossRef] [PubMed]
25. Ferreira Jr, H.; Hannas, M.; Albino, L.; Rostagno, H.; Neme, R.; Faria, B.; Xavier Jr, M.; Rennó, L. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poult. Sci. 2016, 95, 1848–1857. [CrossRef] [PubMed]
26. Zhang, H.; Hunt, H.; Kulkarni, G.; Palmquist, D.; Bacon, L. Lymphoid organ size varies among inbred lines 63 and 72 and their thirteen recombinant congenic strains of chickens with the same major histocompatibility complex. Poult. Sci. 2006, 85, 844–853. [CrossRef]
27. Zangiabadi, H.; Torki, M. The effect of a beta-mannanase-based enzyme on growth performance and humoral immune response of broiler chickens fed diets containing graded levels of whole dates. Trop. Anim. Health Prod. 2010, 42, 1209–1217. [CrossRef]
28. Mehri, M.; Adibmoradi, M.; Samie, A.; Shivazad, M. Effects of β-Mannanase on broiler performance, gut morphology and immune system. Afr. J. Biotechnol. 2010, 9, 6221–6228.
29. Muhammad, S.L.; Sheikh, I.S.; Bajwa, M.A.; Mehmood, K.; Rashid, N.; Akhter, M.A.; Ullah Jan, S.; Rafeeq, M.; Babar, W.; Hameed, S. Effect of Mannan Oligosaccharide (MOS) on growth, physiological and immune performance parameters of broiler chickens. Pak-Euro J. Med. Life Sci. 2020, 3, 76–85.
30. Halas, V.; Nochta, I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action. Animals 2012, 2, 261–274. [CrossRef]
31. de Souza, M.; Eeckhaut, V.; Goossens, E.; Ducatelle, R.; Van Nieuwerburgh, F.; Poulsen, K.; Baptista, A.A.S.; Bracarense, A.P.F.R.L.; Van Immerseel, F. Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary β-mannanase restores the gut homeostasis. Poult. Sci. 2023, 102, 102810. [CrossRef] [PubMed]
32. Yang, H.; Wang, W.; Wang, Z.; Wang, J.; Cao, Y.; Chen, Y. Comparative study of intestine length, weight and digestibility on different body weight chickens. Afr. J. Biotechnol. 2013, 12, 5097–5100.