Abedon, S. (2011). Chapter 1 – Phage therapy pharmacology: calculating phage dosing. Adv. Appl. Microbiol. 77, 1–40. doi: 10.1016/B978-0-12-387044-5.
00001-7
Abedon, S. T., Kuhl, S. J., Blasdel, B. G., and Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage 1, 66–85. doi: 10.4161/bact.1.2.15845
Ackermann, H. W. (2009). Basic phage electron microscopy. Methods Mol. Biol.
501, 113–126. doi: 10.1007/978-1-60327-164-6_12
Adams, M. (1959). Bacteriophages. New York, NY: Wiley Interscience.
Alisky, J., Iczkowski, K., Rapoport, A., and Troitsky, N. (1998). Bacteriophages show promise as antimicrobial agents. J. Infect. 36, 5–15. doi: 10.1016/s0163-
4453(98)92874-2
Alphen, L. B., Wenzel, C. Q., Richards, M. R., Fodor, C., Ashmus, R. A., Stahl,
M., et al. (2014). Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. PLoS One 9:e87051. doi: 10.1371/journal. pone.0087051
An, J. U., Ho, H., Kim, J., Kim, W. H., Kim, J., Lee, S., et al. (2018). Dairy cattle, a potential reservoir of human campylobacteriosis: epidemiological and molecular characterization of Campylobacter jejuni from cattle farms. Front.
Microbiol. 9:3136. doi: 10.3389/fmicb.2018.03136
Arnold, J. W., and Silvers, S. (2000). Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poult.
Sci. 79, 1215–1221. doi: 10.1093/ps/79.8.1215
Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E., and
Connerton, I. F. (2003b). Isolation and characterization of
Campylobacter bacteriophages from retail poultry. Appl. Environ.
Microbiol. 69, 4511–4518. doi: 10.1128/aem.69.8.4511-4518.
2003
Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E., and Connerton, I. F. (2003a). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl. Environ.
Microbiol. 69, 6302–6306. doi: 10.1128/AEM.69.10.6302-6306.2003
Atterbury, R. J., Dillon, E., Swift, C., Connerton, P. L., Frost, J. A., Dodd, C. E., et al. (2005). Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol. 71, 4885–4887. doi:
10.1128/AEM.71.8.4885-4887.2005
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P.,
Moineau, S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712. doi: 10.1126/science.113
8140
Barrow, P. A. (2001). The use of bacteriophages for treatment and prevention of bacterial disease in animals and animal models of human infection. J. Chem.
Technol. Biotechnol. 76, 677–682. doi: 10.1002/jctb.436
Barrow, P. A., and Soothill, S. (1997). Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Genet. 5, 268–271. doi: 10.1016/S0966-842X(97)01054-8
Bastías, R., Higuera, G., Sierralta, W., and Espejo, R. T. (2010). A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environt. Microbiol. 12, 990–1000. doi: 10.1111/j.
1462-2920.2010.02143.x
Berrang, M. E., Buhr, R. J., and Cason, J. A. (2000). Campylobacter recovery from external and internal organs of commercial broiler carcass prior to scalding.
Poult. Sci. 79, 286–290. doi: 10.1093/ps/79.2.286
Bigwood, T., Hudson, J. A., and Billington, C. (2009). Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol. Lett. 291, 59–64. doi: 10.1111/j.1574-
6968.2008.01435.x
Bigwood, T., Hudson, J. A., Billington, C., Carey-Smith, G. V., and Heinemann,
J. A. (2008). Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 25, 400–406. doi: 10.1016/j.fm.2007.11.003
Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P., and Blaser, M. J. (1988). Experimental Campylobacter jejuni infection in humans. J. Infect. Dis.
157, 472–479. doi: 10.1093/infdis/157.3.472
Bogovazova, G. G., Voroshilova, N. N., Bondarenko, V. M., Gorbatkova, G. A.,
Afanas’eva, E. V., Kazakova, T. B., et al. (1992). Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages. Zh.
Mikrobiol. Epidemiol. Immunobiol. 3, 30–33.
Bradde, S., Vucelja, M., Te¸sileanu, T., and Balasubramanian, V. (2017). Dynamics of adaptive immunity against phage in bacterial populations. PLoS Comput.
Biol. 13:e1005486. doi: 10.1371/journal.pcbi.1005486
Brathwaite, K. J., Siringan, P., Moreton, J., Wilson, R., and Connerton, I. F. (2013). Complete genome sequence of universal bacteriophage host strain
Campylobacter jejuni subsp. jejuni PT14. Genome Announc. 1:e00969-13. doi:
10.1128/genomeA.00969-13
Brown, C. M., and Bidle, K. D. (2014). Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens. Virol. J. 466, 71–81. doi: 10.1016/j.virol.2014.07.023
Brown, H. L., Hanman, K., Reuter, M., Betts, R. P., and van Vliet, A. H. (2015).
Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to
DNase I treatment. Front. Microbiol. 6:699. doi: 10.3389/fmicb.2015.00699
Brussow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.
Microbiol. Mol. Biol. Rev. 68, 560–602. doi: 10.1128/MMBR.68.3.560-602.2004
Burmeister, A. R., Fortier, A., Roush, C., Lessing, A. J., Bender, R. G., Barahman,
R., et al. (2020). Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl. Acad. Sci. U.S.A. 117, 11207–11216. doi:
10.1073/pnas.1919888117
Cairns, B. J., Timms, A. R., Jansen, V. A., Connerton, I. F., and Payne, R. J. (2009). Quantitative models of in vitro bacteriophage–host dynamics and their application to phage therapy. PLoS Pathog. 5:e1000253. doi: 10.1371/journal. ppat.1000253
Callaway, T. R., Anderson, R. C., Edrington, T. S., Genovese, K. J., Harvey, R. B.,
Poole, T. L., et al. (2004). Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev. 5, 35–47. doi: 10.1079/ahr200462
Capparelli, R., Nocerino, N., Iannaccone, M., Ercolini, D., Parlato, M., Chiara, M., et al. (2010). Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis. 201, 52–61. doi: 10.1086/648478
Carvalho, C. M., Gannon, B. W., Halfhide, D. E., Santos, S. B., Hayes, C. M., Roe,
J. M., et al. (2010). The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 10:232. doi: 10.1186/1471-2180-10-232
Carvalho, C. M., Santos, S. B., Kropinski, A. M., Ferreira, E. C., and Azeredo,
J. (2012). Phages as Therapeutic Tools to Control Major Foodborne Pathogens:
Campylobacter and Salmonella, Bacteriophages, Ipek Kurtboke. London:
IntechOpen.
Centers for Disease Control and Prevention [CDC] (2019). Campylobacteriosis.
Information for Health Professionals. Atlanta: CDC.
Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., and Buret, A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776. doi: 10.1128/JCM.37.6.1771-1776.1999
Chapman, B., Otten, A., Fazil, A., Ernst, N., and Smith, B. A. (2016). A review of quantitative microbial risk assessment and consumer process models for
Campylobacter in broiler chickens. Microb. Risk Anal. 2, 3–15. doi: 10.1016/j. mran.2016.07.001
Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L., and Brüssow, H. (2004).
Phage-host interaction: an ecological perspective. J. Bacteriol. Res. 186, 3677–
3686. doi: 10.1128/JB.186.12.3677-3686.2004
Clark, C. G., Grant, C. C., Pollari, F., Marshall, B., Moses, J., Tracz, D. M., et al. (2012). Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection.
BMC Microbiol. 12:269. doi: 10.1186/1471-2180-12-269
Connerton, I. F., Connerton, P. L., Barrow, P., Seal, B. S., and Atterbury, R. J. (2008). “Bacteriophage therapy and Campylobacter,” in Campylobacter, 3rd
Edn, eds I. Nachamkin, C. M. Szymanski, and M. J. Blaser (Washington, DC:
ASM Press), 679–693. doi: 10.1128/9781555815554.ch38
Connerton, P. L., Loc Carrillo, C. M., Swift, C., Dillon, E., Scott, A., Rees, C. E., et al. (2004). Longitudinal study of Campylobacter jejuni bacteriophages and their hosts from broiler chickens. Appl. Environ. Microbiol. 70, 3877–3883. doi: 10.1128/AEM.70.7.3877-3883.2004
Connerton, P. L., Richards, P. J., Lafontaine, G. M., O’Kane, P. M., Ghaffar,
N., Cummings, N. J., et al. (2018). The effect of the timing of exposure to
Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome 6:88. doi: 10.1186/s40168-018-0477-475
Connerton, P. L., Timms, A. R., and Connerton, I. F. (2011). Campylobacter bacteriophages and bacteriophage therapy. J. Appl. Microbiol. 111, 255–265. doi: 10.1111/j.1365-2672.2011.05012.x
Coward, C., Grant, A. J., Swift, C., Philp, J., Towler, R., Heydarian, M., et al. (2006).
Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl. Environ. Microbiol. 72, 4638–4647. doi: 10.1128/
AEM.00184-06
Deborde, M., and Von Gunten, U. R. S. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res. 42, 13–51. doi: 10.1016/j.watres.2007.07.025
Deng, W., Dittoe, D. K., Pavilidis, H. O., Chaney, W. E., Yang, Y., and Ricke,
S. C. (2020). Current perspectives and potential of probiotics to limit foodborne
Campylobacter in poultry. Front. Microbiol. 11:583429. doi: 10.3389/fmicb.
2020.583429
Dufrenne, J., Ritmeester, W., Asch, E. D. V., Van Leusden Frans, A., and De
Jonge, R. (2001). Quantification of the contamination of chicken and chicken products in the Netherlands with Salmonella and Campylobacter. J. Food Prot.
64, 538–541. doi: 10.4315/0362-028x-64.4.538
Dugar, G., Herbig, A., Förstner, K. U., Heidrich, N., Reinhardt, R., Nieselt, K., et al. (2013). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet. 9:e1003495. doi: 10.1371/journal.pgen.1003495
El-Shibiny, A., Connerton, P. L., and Connerton, I. F. (2005). Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol. 71, 1259–
1266. doi: 10.1128/aem.71.3.1259-1266.2005
El-Shibiny, A., Scott, A., Timms, A., Metawea, Y., Connerton, P., and Connerton, I. (2009). Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens.
J. Food Prot. 72, 733–740. doi: 10.4315/0362-028x-72.4.733
Elvers, K. T., Morris, V. K., Newell, D. G., and Allen, V. M. (2011). Molecular tracking, through processing, of Campylobacter strains colonizing broiler flocks. Appl. Environ. Microbiol. 77, 5722–5729. doi: 10.1128/AEM.02419-2410
European Food Safety Authority [EFSA] (2011). The European Union summary report on trends and sources of zoonoses, Zoonotic agents and food-borne outbreaks in 2009. EFSA J. 9:2090.
European Food Safety Authority [EFSA] (2020). Update and review of control options for Campylobacter in broilers at primary production. EFSA J. 18:6090. doi: 10.2903/j.efsa.2020.6090
Fischer, S., Kittler, S., Klein, G., and Glünder, G. (2013). Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS One 8:e78543. doi: 10.1371/journal. pone.0078543
Flemming, H. C. (2008). Biofilms. The Encyclopedia of Life Sciences. Chichester:
John Wiley and Sons.
Fletcher, R. D. (1968). Activity and morphology of Vibrio coli phage. Am. J. Vet.
Res. 26, 361–364.
Fletcher, R. D., and Bertschinger, H. U. (1964). A method of isolation of Vibrio coli from swine fecal material by selective filtration. Zentralbl. Veterinärmed. Reihe
B 11, 469–474. doi: 10.1111/j.1439-0450.1964.tb01075.x
Frost, J. A., Kramer, J. M., and Gillanders, S. A. (1999). Phage typing of
Campylobacter jejuni and Campylobacter coli and its use as an adjunct to serotyping. Epidemiol. Infect. 123, 47–55. doi: 10.1017/s095026889900254x
Gaasbeek, E. J., Wagenaar, J. A., Guilhabert, M. R., van Putten, J. P., Parker,
C. T., and van der Wal, F. J. (2010). Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J. Bacteriol. 192, 936–941. doi: 10.1128/JB.00867-09
Gaasbeek, E. J., Wagenaar, J. A., Guilhabert, M. R., Wosten, M. M., van Putten,
J. P., van der Graaf-van Bloois, L., et al. (2009). A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J. Bacteriol. 191, 2296–2306. doi: 10.1128/JB.01430-08
García-Sánchez, L., Melero, B., Jaime, I., Hänninen, M.-L., Rossi, M., and
Rovira, J. (2017). Campylobacter jejuni survival in a poultry processing plant environment. Food Microbiol. 65, 185–192. doi: 10.1016/j.fm.2017.
02.009
Gencay, Y. E., Birk, T., Sørensen, M. C. H., and Brøndsted, L. (2017). “Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni,” in Campylobacter jejuni Methods in Molecular Biology, Vol. 1512, eds
J. Butcher and A. Stintzi (New York, NY: Humana Press). doi: 10.1007/978-1-
4939-6536-6_3
Gencay, Y. E., Sørensen, M. C., Wenzel, C. Q., Szymanski, C. M., and Brøndsted, L. (2018). Phase variable expression of a single phage receptor in Campylobacter jejuni NCTC12662 influences sensitivity toward several diverse CPS-dependent phages. Front. Microbiol. 9:82. doi: 10.3389/fmicb.2018.00082
Gilbert, S. E., Whyte, R., Bayne, G., Paulin, S. M., Lake, R. J., and van der Logt, P. (2007). Survey of domestic food handling practices in New Zealand. Int. J. Food
Microbiol. 117, 306–311. doi: 10.1016/j.ijfoodmicro.2007.05.004
Goode, D., Allen, V. M., and Barrow, P. A. (2003). Reduction of experimental
Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69, 5032–5036. doi: 10.1128/
AEM.69.8.5032-5036.2003
Goodridge, L. D., and Bisha, B. (2011). Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1, 130–137. doi: 10.4161/bact.1.3.
17629
Grajewski, B. A., Kusek, J. W., and Gelfand, H. M. (1985). Development of a bacteriophage typing system for Campylobacter jejuni and Campylobacter coli.
J. Clin. Microbiol. 22, 13–18. doi: 10.1128/jcm.22.1.13-18.1985
Green, M. R., and Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual,
Fourth Edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Greer, G. G. (1986). Homologous bacteriophage control of Pseudomonas growth and beef spoilage. J. Food Prot. 49, 104–109. doi: 10.4315/0362-028x-49.2.104
Greer, G. G. (2005). Bacteriophage control of foodborne bacteria. J. Food Prot. 68,
1102–1111. doi: 10.4315/0362-028x-68.5.1102
Grissa, I., Vergnaud, G., and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids
Res. 35, W52–W57. doi: 10.1093/nar/gkm360
Gunther, N. W., and Chen, C. Y. (2009). The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 26, 44–51. doi: 10.1016/j. fm.2008.07.012
Gutiérrez, D., and Briers, Y. (2021). Lysins breaking down the walls of Gram negative bacteria, no longer a no-go. Curr. Opin. Biotechnol. 68, 15–22. doi:
10.1016/j.copbio.2020.08.014
Hald, B., Rattenborg, E., and Madsen, M. (2001). Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks. Lett. Appl.
Microbiol. 32, 253–256. doi: 10.1046/j.1472-765x.2001.00896.x
Hammerl, J. A., Jäckel, C., Alter, T., Janzcyk, P., Stingl, K., Knüver, M. T., et al. (2014). Reduction of Campylobacter jejuni in broiler chicken by successive application of group II and group III phages. PLoS One 9:e114785. doi: 10.1371/ journal.pone.0114785
Hammerl, J. A., Jäckel, C., Reetz, J., Beck, S., Alter, T., Lurz, R., et al. (2011).
Campylobacter jejuni group III phage CP81 contains many T4-like genes without belonging to the T4-type phage group: implications for the evolution of T4 phages. J. Virol. 85, 8597–8605. doi: 10.1128/JVI.00395-11
Hanning, I., Biswas, D., Herrera, P., Roesler, M., and Ricke, S. C. (2010). Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry. J. Food Sci. 75, M496–M502. doi: 10.1111/j.1750-3841.2010.01747.x
Hansen, V. M., Rosenquist, H., Baggesen, D. L., Brown, S., and Christensen, B. B. (2007). Characterization of Campylobacter phages including analysis of host range by selected Campylobacter Penner serotypes. BMC Microbiol. 7:90. doi:
10.1186/1471-2180-7-90
Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dabrowska, K., et al. (2018). Biotechnological applications of bacteriophages: state of the art.
Microbiol. Res. 212-213, 38–58. doi: 10.1016/j.micres.2018.04.007
Harper, D. R., Parracho, H. M. R. T., Walker, J., Sharp, R., Hughes, G., Werthen,
M., et al. (2014). Bacteriophages and biofilms. Antibiotics 3, 270–284. doi:
10.3390/antibiotics3030270
Havelaar, A. H., Haagsma, J. A., Mangen, M. J., Kemmeren, J. M., Verhoef,
L. P., and Vijgen, S. M. (2012). Disease burden of foodborne pathogens in the
Netherlands. Int. J. Food Microbiol. 156, 231–238. doi: 10.1016/j.ijfoodmicro.
2012.03.029
Havelaar, A. H., Mangen, M. J. J., De Koeijer, A. A., Bogaardt, M.-J., Evers, E. G.,
Jacobs- Reitsma, W. F., et al. (2007). Effectiveness and efficiency of controlling
Campylobacter on broiler chicken meat. Risk Anal. 27, 831–844. doi: 10.1111/j.
1539-6924.2007.00926.x
Hermans, D., Van Deun, K., Messens, W., Martel, A., Van Immerseel, F.,
Haesebrouck, F., et al. (2011). Campylobacter control in poultry by current intervention measures ineffective: urgent need for intensified fundamental research. Vet. Microbiol. 152, 219–228. doi: 10.1016/j.vetmic.2011.03.010
Heselpoth, R. D., Euler, C. W., and Schuch, R. (2019). Lysocins: bioengineered antimicrobials that deliver lysins across the outer membrane of Gram-negative bacteria. Antimicrob. Agents Chemother. 63:e00342-19. doi: 10.1128/aac.00
342-19
Hooton, S., and Connerton, I. F. (2015). Campylobacter jejuni acquire new hostderived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Front. Microbiol. 5:744. doi: 10.3389/fmicb.2014.
00744
Hooton, S., D’Angelantonio, D., Hu, Y., Connerton, P. L., Aprea, G., and
Connerton, I. F. (2020). Campylobacter bacteriophage DA10: an excised temperate bacteriophage targeted by CRISPR-cas. BMC Genomics 21:400. doi:
10.1186/s12864-020-06808-3
Huang, H. H., Hoang, M. D., Masuda, Y., Honjoh, K., and Miyamoto, T. (2020).
Characterization and utilization of phages specific to Campylobacter coli. Access
Microbiol. 2:18. doi: 10.1099/acmi.fis2019.po0112
Hughes, K. A., Sutherland, I. W., and Jones, M. V. (1998). Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase.
Microbiology 144, 3039–3047. doi: 10.1099/00221287-144-11-3039
Humphrey, T. J., Henley, A., and Lanning, D. G. (1993). The colonization of broiler chickens with Campylobacter jejuni: some epidemiological investigations.
Epidemiol. Infect. 110, 601–607. doi: 10.1017/s0950268800051025
Humphrey, T. J., and Lanning, D. G. (1987). Salmonella and Campylobacter contamination of broiler chicken carcasses and scald tank water: the influence of water pH. J. Appl. Bacteriol. 63, 21–25. doi: 10.1111/j.1365-2672.1987. tb02413.x
Hwang, S., Yun, J., Kim, K. P., Heu, S., Lee, S., and Ryu, S. (2009). Isolation and characterization of bacteriophages specific for Campylobacter jejuni. Microbiol.
Immun. 53, 559–566. doi: 10.1111/j.1348-0421.2009.00163.x
Indikova, I., Humphrey, T. J., and Hilbert, F. (2015). Survival with a helping hand:
Campylobacter and microbiota. Front. Microbiol. 6:1266. doi: 10.3389/fmicb.
2015.01266
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987).
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433. doi: 10.1128/jb.169.12.5429-5433.
1987
Jäckel, C., Hammerl, J. A., and Hertwig, S. (2019). Campylobacter phage isolation and characterization: what we have learned so far. Methods Protoc. 2:18. doi:
10.3390/mps2010018
Jäckel, C., Hammerl, J. A., Rau, J., and Hertwig, S. (2017). A multiplex real-time
PCR for the detection and differentiation of Campylobacter phages. PLoS One
12:e0190240. doi: 10.1371/journal.pone.0190240
Jäckel, C., Hammerl, J. A., Reetz, J., Kropinski, A. M., and Hertwig, S. (2015).
Campylobacter group II phage CP21 is the prototype of a new subgroup revealing a distinct modular genome organization and host specificity. BMC
Genom. 16:629. doi: 10.1186/s12864-015-1837-1
Janež, N., Kokošin, A., Zaletel, E., Vranac, T., Kovac, J., Vu ˇ ckovi ˇ c, D., et al. (2014). ´
Identification and characterisation of new Campylobacter group III phages of animal origin. FEMS Microbiol. Lett. 359, 64–71. doi: 10.1111/1574-6968.12556
Janez, N., and Loc-Carillo, C. (2013). Use of phages to control Campylobacter spp.
J. Microbiol. Method 95, 68–75. doi: 10.1016/j.mimet.2013.06.024
Jarling, M., Bartkowiak, K., Robenek, H., Pape, H., and Meinhardt, F. (2004).
Isolation of phages infecting Actinoplanes SN223 and characterization of two of these viruses. Appl. Microbiol. Biotechnol. 64, 250–254. doi: 10.1007/s00253-
003-1473-6
Jauk, V., Neubauer, C., Szölgyényi, W., and Vasicek, L. (2003). Phenotypic and genotypic differentiation of Campylobacter spp. isolated from Austrian broiler farms: a comparison. Avian Pathol. 32, 33–37. doi: 10.1080/
0307945021000070697
Javed, M. A., Ackermann, H. W., Azeredo, J., Carvalho, C. M., Connerton,
I., Evoy, S., et al. (2014). A suggested classification for two groups of
Campylobacter myoviruses. Arch. Virol. 159, 181–190. doi: 10.1007/s00705-013-
1788-2
Jiang, F., and Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms.
Annu. Rev. Biophys. 46, 505–529. doi: 10.1146/annurev-biophys-062215-
010822
Jones, L. M., Mcduff, C. R., and Wilson, J. B. (1962). Phenotypic alterations in the colonial morphology of Brucella abortus due to a bacteriophage carrier state.
J. Bacteriol. 83, 860–866. doi: 10.1128/jb.83.4.860-866.1962
Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G., and Norris,
J. S. (2002). Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol. 76, 5557–5564. doi: 10.1128/jvi.76.
11.5557-5564.2002
Kiljunen, S., Hakala, K., Pinta, E., Huttunen, S., Pluta, P., Gador, A., et al. (2005).
Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology 151, 4093–4102. doi:
10.1099/mic.0.28265-0
Kim, S. A., Jang, M. J., Kim, S. Y., Yang, Y., Pavlidis, H. O., and Ricke, S. C. (2019).
Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front. Microbiol. 10:91. doi:
10.3389/fmicb.2019.00091
Kittler, S., Fischer, S., Abdulmawjood, A., Glünder, G., and Klein, G. (2013). Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl. Environ. Microbiol. 79, 7525–7533. doi: 10.1128/AEM.
02703-13
Korczak, B. M., Stieber, R., Emler, S., Burnens, A. P., Frey, J., and Kuhnert, P. (2006). Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945. doi: 10.1099/ijs.0.64109-
64100
Kutateladze, M., and Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 28, 591–
595. doi: 10.1016/j.tibtech.2010.08.001
Labrie, S. J., Samson, J. E., and Moineau, S. (2010). Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317. doi: 10.1038/nrmicro2315
Lake, R., Hudson, A., Cressey, P., and Bayne, G. (2007). Quantitative Risk Model:
Campylobacter spp. in the Poultry Food Chain. Christchurch: Institute of
Environmental Science and Research Limited, 1–91.
Levin, B. R., and Bull, J. J. (2004). Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2, 166–173. doi: 10.1038/nrmicro822
Li, K., Barksdale, L., and Garmise, L. (1961). Phenotypic alterations associated with the bacteriophage carrier state of Shigella dysenteriae. J. Gen. Microbiol. 24,
355–367. doi: 10.1099/00221287-24-3-355
Lis, L., and Connerton, I. F. (2016). The minor flagellin of Campylobacter jejuni (FlaB) confers defensive properties against bacteriophage infection. Front.
Microbiol. 7:1908. doi: 10.3389/fmicb.2016.01908
Loc Carrillo, C., and Abedon, S. T. (2011). Pros and cons of phage therapy.
Bacteriophage 1, 111–114. doi: 10.4161/bact.1.2.14590
Loc Carrillo, C. L., Atterbury, R. J., El-Shibiny, A., Connerton, P. L., Dillon, E.,
Scott, A., et al. (2005). Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71, 6554–6563. doi:
10.1128/AEM.71.11.6554-6563.2005
Loc Carrillo, C. M., Connerton, P. L., Pearson, T., and Connerton, I. F. (2007).
Free-range layer chickens as a source of Campylobacter bacteriophage. Antonie
Van Leeuwenhoek 92, 275–284. doi: 10.1007/s10482-007-9156-9154
Lu, T. K., and Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proc. NatL. Acad. Sci. U.S.A. 104, 11197–11202. doi: 10.1073/ pnas.0704624104
Lukacik, P., Barnard, T. J., Keller, P. W., Chaturvedi, K. S., Seddiki, N., Fairman,
J. W., et al. (2012). Structural engineering of a phage lysin that targets Gram negative pathogens. Proc. Natl. Acad. Sci. U.S.A. 109, 9857–9862. doi: 10.1073/ pnas.1203472109
Lwoff, A. (1953). Lysogeny. Bacteriol. Rev. 17, 269–337.
Mannapperuma, J. D., and Santos, M. R. (2004). Reconditioning of poultry chiller overflow by ultrafiltration. J. Food Process Eng. 27, 497–516. doi: 10.1111/j.1745-
4530.2004.00474.x
McNally, D. J., Lamoureux, M. P., Karlyshev, A. V., Fiori, L. M., Li, J., Thacker, G., et al. (2007). Commonality and biosynthesis of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. J. Biol. Chem. 282, 28566–28576. doi: 10.1074/jbc.M704413200
Meneses, Y. E., Stratton, J., and Flores, R. A. (2017). Water reconditioning and reuse in the food processing industry: current situation and challenges. Trends
Food Sci. Technol. 61, 72–79. doi: 10.1016/j.tifs.2016.12.008
Micciche, A. C., Rubinelli, P. M., and Ricke, S. C. (2018). Source of water and potential sanitizers and biological antimicrobials for alternative poultry processing food safety applications. Front. Sustain. Food Syst. 2:82. doi: 10.3389/ fsufs.2018.00082
Mills, S. D., Kuzniar, B., Shames, B., Kurjanczyk, L. A., and Penner, J. L. (1992).
Variation of the O antigen of Campylobacetr jejuni in vivo. J. Med. Microbiol.
36, 215–219. doi: 10.1099/00222615-36-3-215
Nauta, M., Hill, A., Rosenquist, H., Brynestad, S., Fetsch, A., van der Logt, P., et al. (2009). A comparison of risk assessments on Campylobacter in broiler meat.
Int. J. Food Microbiol. 129, 107–123. doi: 10.1016/j.ijfoodmicro.2008.12.001
Nauta, M. J., and Havelaar, A. H. (2008). Risk-based standards for Campylobacter in the broiler meat chain. Food Control. 19, 372–381. doi: 10.1016/j.foodcont.
2007.04.016
Owens, J., Barton, M. D., and Heuzenroeder, M. W. (2013). The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet. Microbiol. 162, 144–150. doi: 10.1016/j.vetmic.2012.08.017
Parker, C. T., Quinones, B., Miller, W. G., Horn, S. T., and Mandrell, R. E. (2006).
Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221.
J. Clin. Microbiol. 44, 4125–4135. doi: 10.1128/JCM.01231-06
Parkhill, J., Wren, B., Mungall, K., Ketley, J., Churcher, C., Basham, D., et al. (2000).
The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665. doi: 10.1038/35001088
Petty, N. K., Foulds, I. J., Pradel, E., Ewbank, J. J., and Salmobnd, G. P. C. (2007). A generalized transducing phage for the murine pathogen Citrobacter rodentium.
Microbiology 153, 2984–2988. doi: 10.1099/mic.0.2007/008888-0
Pinon, A., and Vialette, M. (2018). Survival of viruses in water. Intervirology 61,
214–222. doi: 10.1159/000484899
Rabinovitch, A., Aviram, I., and Zaritsky, A. (2003). Bacterial debris – an ecological mechanism for coexistence of bacteria and their viruses. J. Theor. Biol. 224,
377–383. doi: 10.1016/s0022-5193(03)00174-177
Rakhuba, D. V., Kolomiets, E. I., Szwajcer Dey, E., and Novik, G. I. (2010).
Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 59, 145–155. doi: 10.33073/pjm-2010-023
Rath, D., Amlinger, L., Rath, A., and Lundgren, M. (2015). The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117, 119–
128. doi: 10.1016/j.biochi.2015.03.025
Richards, P. J., Connerton, P. L., and Connerton, I. F. (2019). Phage biocontrol of
Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol. 10:476. doi: 10.3389/fmicb.2019.00476
Rizzo, H., Gregory, L., Beraldi, F., Carvalho, A. F., and Pinheiro, E. S. (2015).
Campylobacter isolation from the feces of sheep with a history of reproductive disorders bred in the state of Sao Paulo, Brazil. Semina Ciências Agrárias 36,
4207–4214. doi: 10.5433/1679-0359.2015v36n6Supl2p4207
Roach, D. R., and Debarbieux, L. (2017). Phage therapy: awakening a sleeping giant.
Emerg. Top. Life Sci. 1, 93–103. doi: 10.1042/ETLS20170002
Rosenquist, H., Nielsen, N. L., Sommer, H. M., Norrung, B., and Christensen, B. B. (2003). Quantitative risk assessment of human Campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 83,
87–103. doi: 10.1016/s0168-1605(02)00317-313
Rudi, K., Hoidal, H. K., Katla, T., Johansen, B. K., Nordal, J., and Jakobsen, K. S. (2004). Direct real-time PCR quantification of Campylobacter jejuni in chicken fecal and cecal samples by integrated cell concentration and DNA purification.
Appl. Environ. Microbiol. 70, 790–797. doi: 10.1128/aem.70.2.790-797.
2004
Sails, A. D., Wareing, D. R. A., Bolton, F. J., Fox, A. J., and Curry, A. (1998).
Characterisation of 16 Campylobacter jejuni and C. coli typing bacteriophages.
J. Med. Microbiol. 47, 123–128. doi: 10.1099/00222615-47-2-123
Salama, S., Bolton, F. J., and Hutchinson, D. N. (1989). Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett. Appl. Microbiol. 8, 5–7. doi: 10.1111/j.1472-765x.1989.tb0
0211.x
Sambrook, J., and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual,
3rd Edn, Vol. 1. New York, NY: Cold Spring Harbor Laboratory Press.
Sandhu, S. K., Bayliss, C. D., and Morozov, A. Y. (2021). How does feedback from phage infections influence evolution of phase variation in
Campylobacter? PLoS Comput. Biol. 17:e1009067. doi: 10.1371/journal.pcbi.100
9067
Scherer, K., Bartelt, E., Sommerfeld, C., and Hildebrandt, G. (2006). Comparison of different sampling techniques and enumeration methods for the isolation and quantification of Campylobacter spp. in raw retail chicken legs. Int. J. Food
Microbiol. 108, 115–119. doi: 10.1016/j.ijfoodmicro.2005.08.031
Scott, A. E., Timms, A. R., Connerton, P. L., El-Shibiny, A., and Connerton,
I. F. (2007a). Bacteriophage influence Campylobacter jejuni types populating broiler chickens. Environ. Microbiol. 9, 2341–2353. doi: 10.1111/j.1462-2920.
2007.01351.x
Scott, A. E., Timms, A. R., Connerton, P. L., Loc Carrillo, C., Radzum, K. A., and Connerton, I. F. (2007b). Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 3:119. doi: 10.1371/journal. ppat.0030119
Shah, S. A., Erdmann, S., Mojica, F. J., and Garrett, R. A. (2013). Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10,
891–899. doi: 10.4161/rna.23764
Sharma, M., Ryu, J. H., and Beuchat, L. R. (2005). Inactivation of Escherichia coli
O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J. Appl. Microbiol. 99, 449–459. doi: 10.1111/j.1365-2672.2005.
02659.x
Sharp, R. (2001). Bacteriophages: biology, history. J. Chem. Technol. Biotechnol. 76,
667–672.
Sheppard, S. K., and Maiden, M. C. (2015). The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb. Perspect. Biol. 7:a018119. doi: 10.
1101/cshperspect.a018119
Sillankorva, S., Neubauer, P., and Azaredo, J. (2011). Use of Bacteriophages to
Control Biofilms. Saarbrücken: LAP Lambert Academic Publishing.
Siringan, P., Connerton, P. L., Cummings, N. J., and Connerton, I. F. (2014).
Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.
Open Biol. 4:130200. doi: 10.1098/rsob.130200
Siringan, P., Connerton, P. L., Payne, R. J., and Connerton, I. F. (2011).
Bacteriophage mediated dispersal of Campylobacter jejuni biofilms. Appl.
Environ. Microbiol. 77, 3320–3326. doi: 10.1128/AEM.02704-10
Skarp, C. P. A., Akinrinade, O., Kaden, R., Johansson, C., and Rautelin, H. (2017).
Accessory genetic content in Campylobacter jejuni ST21CC isolates from feces and blood. Int. J. Med. Microbiol. 307, 233–240. doi: 10.1016/j.ijmm.2017.04.001
Skurnik, M., Pajunen, M., and Kiljunen, S. (2007). Biotechnological challenges of phage therapy. Biotechnol. Lett. 29, 995–1003. doi: 10.1007/s10529-007-9346-1
Skurnik, M., and Strauch, E. (2006). Phage therapy: facts and fiction. Int. J. Med.
Microbiol. 296, 5–14. doi: 10.1016/j.ijmm.2005.09.002
Sorensen, M. C., Gencay, Y. E., and Brondsted, L. (2017). Methods for initial characterization of Campylobacter jejuni bacteriophages. Methods Mol. Biol.
1512, 91–105. doi: 10.1007/978-1-4939-6536-6_9
Sørensen, M. C. H., Gencay, Y. E., Birk, T., Baldvinsson, S. B., Jäckel, C., Hammerl,
J. A., et al. (2015). Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages. PLoS One
10:e0116287. doi: 10.1371/journal.pone.0116287
Sørensen, M. C. H., Van Alphen, L. B., Frodor, C., Crowley, S., Christensen,
B. B., Szymanski, C. M., et al. (2012). Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Front. Cell. Infect. Microbiol. 2:11. doi:
10.3389/fcimb.2012.00011
Sørensen, M. C. H., van Alphen, L. B., Harboe, A., Li, J., Christensen, B. B.,
Szymanski, C. M., et al. (2011). The F336 bacteriophage recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168.
J. Bacteriol. 193, 6742–6749. doi: 10.1128/JB.05276-11
Sorensen, M. C. H., Vitt, A., Neve, H., Soverini, M., Ahern, S. J., Klumpp, J., et al. (2021). Campylobacter phages use hypermutabkle polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep. 35:109214. doi:
10.1016/j.celrep.2021.109214
Stenutz, R., Weintraub, A., and Widmalm, G. (2006). The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev. 30, 382–403.
Sulakvelidze, A., Alavidze, Z., and Morris, J. G. (2001). Bacteriophage therapy.
Antimicrob. Agents and Chemother. 45, 649–659. doi: 10.1128/AAC.45.3.649-
659.2001
Torsvik, T., and Dundas, I. D. (1980). Persisting phage infection in Halobacterium salinarium str. 1. J. Gen. Virol. 47, 29–36. doi: 10.1099/0022-1317-47-1-29
Totten, P. A., Patton, C. M., Tenover, F. C., Barrett, T. J., Stamm, W. E., Steigerwalt,
A. G., et al. (1987). Prevalence and characterization of hippurate-negative
Campylobacter jejuni in King County, Washington. J. Clin. Microbiol. 25,
1747–1752.
Tsuei, A. C., Carey-Smith, G. V., Hudson, J. A., Billington, C., and Heinemann,
J. A. (2007). Prevalence and numbers of coliphages and Campylobacter jejuni bacteriophages in New Zealand foods. Int. J. Food Microbiol. 116, 121–125. doi: 10.1016/j.ijfoodmicro.2006.12.028
Umaraw, P., Prajapati, A., Verma, A. K., Pathak, V., and Singh, V. P. (2017).
Control of Campylobacter in poultry industry from farm to poultry processing unit: a review. Crit. Rev. Food Sci. Nutr. 57, 659–665. doi: 10.1080/10408398.
2014.935847
Ushanov, L., Lasareishvili, B., Janashia, I., and Zautner, A. E. (2020). Application of Campylobacter jejuni phages: challenges and perspectives. Animals 10:279. doi: 10.3390/ani10020279
Van der Veen, S., and Abee, T. (2011). Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int. J. Food Microbiol. 144, 421–431. doi: 10.1016/j.ijfoodmicro.2010.10.029
Vose, D. (2008). Risk Analysis: A Quantitative Guide, Third ed. West Sussex: John
Wiley & Sons Ltd.
Wagenaar, J. A., Van Bergen, M. A., Mueller, M. A., Wassenaar, T. M., and Carlton,
R. M. (2005). Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. 109, 275–283. doi: 10.1016/j.vetmic.2005.06.002
Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28,
127–181. doi: 10.1016/j.femsre.2003.08.001
Wheeler, T. L., Kalchayanand, N., and Bosilevac, J. M. (2014). Pre-and post-harvest interventions to reduce pathogen contamination in the US beef industry. Meat
Sci. 98, 372–382. doi: 10.1016/j.meatsci.2014.06.026
Whyte, P., Collins, J. D., McGill, K., Monahan, C., and O’Mahony, H. (2001). Quantitative investigation of the effects of chemical decontamination procedures on the microbiological status of broiler carcasses during processing.
J. Food Protect. 64, 179–183. doi: 10.4315/0362-028x-64.2.179
World Health Organization [WHO] (2018). Campylobacter. Geneva: WHO.
Xiong, X., Wu, G., Wei, Y., Liu, L., Zhang, Y., Su, R., et al. (2020). SspABCD–
SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928. doi: 10.1038/s41564-020-
0700-6
Yamamoto, S., Iyoda, S., and Ohnishi, M. (2021). Stabilizing genetically unstable simple sequence repeats in the Campylobacter jejuni genome by multiplex genome editing: a reliable approach for delineating multiple phase-variable genes. bioRxiv [Preprint]. doi: 10.1101/2021.05.14.444138
Yan, G., Liu, J., Ma, Q., Zhu, R., Guo, Z., Gao, C., et al. (2017). The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie Van Leeuwenhoek 110, 1627–1635. doi: 10.1007/ s10482-017-0912-9
Zampara, A., Sorensen, M. C. H., Elsser-Gravesn, A., and Brondsted, L. (2017).
Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control 73(Part B), 1169–1175. doi: 10.1016/j.foodcont.2016.10.
033
Zampara, A., Sorensen, M. C. H., Gencay, Y. E., Grimon, D., Kristiansen,
S. H., Jorgenses, L. S., et al. (2021). Developing innolysins against
Campylobacter jejuni using a novel prophage receptor-binding protein. Front. Microbiol. 12:619028. doi: 10.3389/fmicb.2021.61
9028
Zampara, A., Sørensen, M. C. H., Grimon, D., Antenucci, F., Vitt, A. R., Bortolaia,
V., et al. (2020). Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci. Rep. 10:12087. doi: 10.1038/s41598-020-
68983-3