The landscape of commercial poultry production is changing due to increasing trends in consumer preference for organic sources of poultry products. This is in part due to perceptions regarding food safety and environmental issues, along with concerns for livestock animal welfare. Consequently, alternative poultry production systems such as small-scale farming and mobile poultry processing units (MPPUs) have achieved a certain level of popularity. However, these alternative production systems, like conventional poultry processing systems, face food safety concerns, due to potential of Campylobacter and Salmonella prevalence. Unlike stationary processing systems, MPPUs may have limited access to sanitation products as they often attempt to comply with organic processing regulations. They may also have limited access to a consistent, high quality water supply which may pose additional food safety and microbial contamination concerns. Due to these food safety concerns and potential limitations on traditional sanitizers, botanicals, organic acids, dry acids, bacteriocins, and phages may offer alternative potential solutions to ensure poultry product safety. The objective of this review is to discuss food safety concerns within alternative poultry processing systems, particularly MPPUs, and describe potential sanitizer strategies.
Keywords: reuse water, mobile poultry-processing unit, organic, poultry processing, bacteriocins, botanicals, organic acids, bacteriophage.
Abdollahzadeh, E., Rezaei, M., and Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: the role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 35, 177–183. doi: 10.1016/j.foodcont.2013.07.004
Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A., and Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Appl. Environ. Microbiol. 74, 6230–6238. doi: 10.1128/.01465-08
Atkinson, N. (1970). Colicin-like antibiotics and bacteriophages of Salmonellas. Immunol. Cell Biol. 48:199. doi: 10.1038/icb.1970.19
Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E., and Connerton, I. F. (2003a). Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol. 69, 4511–4518. doi: 10.1128/AEM.69.8.4511-4518.2003
Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E., and Connerton, I. F. (2003b). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl. Environ. Microbiol. 69, 6302–6306. doi: 10.1128/AEM.69.10.6302-6306.2003
Avery, R., Lamb, S., and Kobrin, G. (1998). Effect of chlorine on common materials in fresh water. Mater. Perform. 37, 52–56.
Avrain, L., Humbert, F., L’Hospitalier, R., Sanders, P., Vernozy-Rozand, C., and Kempf, I. (2003). Antimicrobial resistance in Campylobacter from broilers: association with production type and antimicrobial use. Vet. Microbiol. 96, 267–276. doi: 10.1016/j.vetmic.2003.07.001
Bailey, J. S., and Cosby, D. E. (2005). Salmonella prevalence in freerange and certified organic chickens. J. Food Prot. 68, 2451–2453. doi: 10.4315/0362-028X-68.11.2451
Baird-Parker, A. C. (1990). Foodborne salmonellosis. Lancet 336, 1231–1235. doi: 10.1016/0140-6736(90)92844-8
Bajpai, V. K., Baek, K. H., and Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: a review. Food Res. Int. 45, 722–734. doi: 10.1016/j.foodres.2011.04.052
Bauermeister, L. J., Bowers, J. W., Townsend, J. C., and McKee, S. R. (2008). The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment. Poult. Sci. 87, 2390–2398. doi: 10.3382/ps.2008-00087
Beermann, C., Jelinek, J., Reinecker, T., Hauenschild, A., Boehm, G., and Klör, H. U. (2003). Short term effects of dietary medium-chain fatty acids and n-3 longchain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2:10. doi: 10.1186/1476-511X-2-10
Berg, C. (2001). Health and welfare in organic poultry production. Acta Vet. Scand. 43:S37. doi: 10.1186/1751-0147-43-S1-S37
Berlin, L., Lockeretz, W., and Bell, R. (2009). Purchasing foods produced on organic, small and local farms: A mixed method analysis of New England consumers. Renew. Agricult. Food Syst. 24, 267–275. doi: 10.1017/S1742170509990111
Bertelsen, G., and Boegh-Soerensen, L. (1986). “The effect of lighting on color of beef,”in Proceedings of the I.I.R-Meeting (Bristol).
Bhargava, K., Conti, D. S., da Rocha, S. R., and Zhang, Y. (2015). Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 47, 69–73. doi: 10.1016/j.fm.2014.11.007
Billing, J., and Sherman, P. W. (1998). Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49. doi: 10.1086/420058
Bohdziewicz, J., and Sroka, E. (2005). Treatment of wastewater from the meat industry applying integrated membrane systems. Process Biochem. 40, 1339–1346 doi: 10.1016/j.procbio.2004.06.023
Bradshaw, J. (2003). Cationic antimicrobial peptides. BioDrugs 17, 233–240. doi: 10.2165/00063030-200317040-00002
Bruno, M. E., and Montville, T. J. (1993). Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59, 3003–3010.
Calo, J. R., Crandall, P. G., O’Bryan, C. A., and Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food Control 54, 111–119. doi: 10.1016/j.foodcont.2014.12.040
Calvo, M. S., Gerry, A. C., McGarvey, J. A., Armitage, T. L., and Mitloehner, F. M. (2010). Acidification of calf bedding reduces fly development and bacterial abundance. J. Dairy Sci. 93, 1059–1064. doi: 10.3168/jds.2009-2797
Campos, C. A., Castro, M. P., Gliemmo, M. F., and Schelegueda, L. I. (2011). Use of Natural Antimicrobials for the Control of Listeria monocytogenes in Foods. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. (Badajoz: Formatex).
Campos, C. A., Rodríguez, Ó., Calo-Mata, P., Prado, M., and Barros-Velázquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res. Int. 39, 356–364. doi: 10.1016/j.foodres.2005.08.008
Capparelli, R., Nocerino, N., Lannaccone, M., Ercolini, D., Parlato, M., Chiara, M., and Iannelli, D. (2010). Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis. 201, 52–61. doi: 10.1086/648478
Carolissen-Mackay, V., Arendse, G., and Hastings, J. W. (1997). Purification of bacteriocins of lactic acid bacteria: problems and pointers. Int. J. Food Microbiol. 34, 1–16. doi: 10.1016/S0168-1605(96)0 1167-1
Carrasco, E., Morales-Rueda, A., and García-Gimeno, R. M. (2012). Crosscontamination and recontamination by Salmonella in foods: a review. Food Res. Intern. 45, 545–556. doi: 10.1016/j.foodres.2011.11.004
Casani, S., Rouhany, M., and Knøchel, S. (2005). A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res. 39, 1134–1146. doi: 10.1016/j.watres.2004.12.015
Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., et al. and Cavard, D. (2007). Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229. doi: 10.1128/MMBR.00036-06
Center for Disease Control (2013). Facts About Chlorine. Available online at: https://emergency.cdc.gov/agent/chlorine/basics/facts.asp (Accessed on October 26, 2018).
Center for Food Safety and Applied Nutrition (2018). GRAS Substances (SCOGS) Database. Available online at: https://www.fda.gov/food/ ingredientspackaginglabeling/gras/scogs/default.htm (Accessed on September 13, 2018).
Centers for Disease Control and Prevention (2008). “Chapter 8 Rural water supplies and Water-quality issues,” in Healthy Housing Reference Manual (Atlanta, GA: US Department of Health and Human Services), 131–142.
Cherrington, C. A., Hinton, M., Mead, G. C., and Chopra, I. (1991). “Organic acids: chemistry, antibacterial activity and practical applications,” in Advances in Microbial Physiology, Vol. 32, ed A. H. Rose (London, UK: Academic Press), 87–108.
Chouliara, E., Karatapanis, A., Savvaidis, I. N., and Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 C. Food Microbiol. 24, 607–617. doi: 10.1016/j.fm.2006. 12.005
Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1–20. doi: 10.1016/S0168-1605(01)00560-8
Clokie, M. J., and Kropinski, A. M. (2009). Bacteriophages. Methods and Protocols. Isolation, Characterization and Interactions. New York, NY: Humana Press.
Cole, K., Farnell, M. B., Donoghue, A. M., Stern, N. J., Svetoch, E. A., Eruslanov, B. N., et al. (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poult. Sci. 85, 1570–1575. doi: 10.1093/ps/85.9.1570
Colles, F. M., Jones, T. A., McCarthy, N. D., Sheppard, S. K., Cody, A. J., Dingle, K. E., et al. (2008). Campylobacter infection of broiler chickens in a free-range environment. Environ. Microbiol. 10, 2042–2050. doi: 10.1111/j.1462-2920.2008.01623.x
Cui, S., Ge, B., Zheng, J., and Meng, J. (2005). Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl. Environ. Microbiol. 71, 4108–4111. doi: 10.1128/AEM.71.7.4108-4111.2005
Cutter, C. N. (2000). Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium associated with beef. J. Food Prot. 63, 601–607. doi: 10.4315/0362-028X-63.5.601
Davidson, P. M., Sofos, J. N., and Branen, A. L. (eds.) (2005). Antimicrobials in Food. Boca Raton, FL: CRC Press. Davies, E. A., Bevis, H. E., and Delves-Broughton, J. (1997). The use of the bacteriocin, nisin, as a preservative in ricotta-type cheeses to control the foodborne pathogen Listeria monocytogenes. Lett. Appl. Microbiol. 24, 343–346. doi: 10.1046/j.1472-765X.1997.00145.x
Deborde, M., and Von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res. 42, 13–51. doi: 10.1016/j.watres.2007. 07.025
Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E., and Crowe, S. J. (2018). Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surv. Summar. 67:1. doi: 10.15585/mmwr.ss6710a1
Diaz-Sanchez, S., D’Souza, D., Biswas, D., and Hanning, I. (2015). Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 94, 1419–1430. doi: 10.3382/ps/pev014
Dickens, J. A., and Whittemore, A. D. (1994). The effect of acetic acid and air injection on appearance, moisture pick-up, microbiological quality, and Salmonella incidence on processed poultry carcasses. Poult. Sci. 73, 582–586. doi: 10.3382/ps.0730582
Ding, C., and He, J. (2010). Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 87, 925–941. doi: 10.1007/s00253-010-2649-5
Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., and Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 213, 47–55. doi: 10.1007/s11270-010-0366-4
Dittoe, D. K., Atchley, J. A., Feye, K. M., Knueven, C. J., and Ricke, S. C. (2018b). Effect of sodium bisulfate salt on mitigating the presence of an antibiotic resistant strain of Salmonella Enteritidis on chicken drug sticks (Abs. #163). Poultry Science Association Annual Meeting, San Antonio, TX, July 22nd – 26th .
Dittoe, D. K., Ricke, S. C., and Kiess, A. S. (2018a). Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science 5, 216. doi: 10.3389/fvets.2018.00216
Djenane, D., Sánchez-Escalante, A., Beltrán, J. A., and Roncalés, P. (2001). Extension of the retail display life of fresh beef packaged in modified atmosphere by varying lighting conditions. J. Food Sci. 66, 181–186. doi: 10.1111/j.1365-2621.2001.tb15603.x
DoleŽalová, M., Molatov,á, Z., Bunka, F., Brezina, P., and Marounek, M. (2010). Effect of organic acids on growth of chilled chicken skin microflora. J. Food Saf. 30, 353–365. doi: 10.1111/j.1745-4565.2009.00212.x
Doolittle, M. M., Cooney, J. J., and Caldwell, D. E. (1996). Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J. Ind. Microbiol. 16, 331–341. doi: 10.1007/BF01570111
Draughon, F. A. (2004). Use of botanicals as biopreservatives in foods. Food Technol. 58, 20–28.
Dunlop, P. S. M., Byrne, J. A., Manga, N., and Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol. A Chem. 148, 355–363. doi: 10.1016/S1010-6030(02)00063-1
Elliason, D. J., and Tatini, S. R. (1999). Enhanced inactivation of Salmonella typhimurium and verotoxigenic Escherichia coli by nisin at 6 5◦C. Food Microbiol. 16, 257–267. doi: 10.1006/fmic.1998.0226
Emch, A. W., and Waite-Cusic, J. G. (2016). Conventional curing practices reduce generic Escherichia coli and Salmonella spp. on dry bulb onions produced with contaminated irrigation water. Food Microbiol. 53, 41–47. doi: 10.1016/j.fm.2015.08.004
Ernst, M. (2015). Managing Risk: Costs, Regulations and Food Safety for Onfarm Poultry Processing in Tennessee. University of Tennessee Institute of Agriculture.
Esteban, J. I., Oporto, B., Aduriz, G., Juste, R. A., and Hurtado, A. (2008). A survey of food-borne pathogens in free-range poultry farms. Int. J. Food Microbiol. 123, 177–182. doi: 10.1016/j.ijfoodmicro.2007.12.012
Fahim, H. A., Khairalla, A. S., and El-Gendy, A. O. (2016). Nanotechnology: a valuable strategy to improve bacteriocin formulations. Front. Microbiol. 7:1385. doi: 10.3389/fmicb.2016.01385
Fanatico, A. (1998). Sustainable Chicken Production: Livestock Production Guide. Fayetteville, AR: Appropriate Technology Transfer for Rural Areas (ATTRA) Fanatico, A. C. (2003b). Small Scale Poultry Processing. Available online at: https:// attra.ncat.org/attra-pub/summaries/summary. php?pub=235 (Accessed 25 May 2018).
Fanatico, A. C., Cavitt, L. C., Pillai, P. B., Emmert, J. L., and Owens, C. M. (2005). Evaluation of slower-growing broiler genotypes grown with and without outdoor access: meat quality. Poult. Sci. 84, 1785–1790. doi: 10.1093/ps/84.11.1785
Fanatico. (2003a). Small-Scale Poultry Processing Processing. Available online at: https://sd.appstate.edu/sites/sd.appstate.edu/files/poultryprocess.pdf (Accessed September 30, 2018)
Farokhzad, O. C., and Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20. doi: 10.1021/nn90 0002m
Food Processing Staff. (2012). How the Food Industry Defines Botanicals. Available online at: https://www.foodprocessing.com/articles/2012/defining-botanicals/ (Accessed September 21, 2018).
Fredericq, P. (1953). Recherches sur les caractères et la distribution des souches productrices de diverses colicines dans les selles normales et pathologiques. Bull. Acad. R. Med. Belg. 18, 126–139.
Friedman, M., Henika, P. R., and Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65, 1545–1560. doi: 10.4315/0362-028X-65.10.1545
Gannon, V. P., Graham, T. A., Read, S., Ziebell, K., Muckle, A., Mori, J., et al. (2004). Bacterial pathogens in rural water supplies in southern Alberta, Canada. J. Toxicol. Environ. Health Part A 67, 1643–1653. doi: 10.1080/15287390490492421
Geornaras, I., Skandamis, P. N., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., and Sofos, J. N. (2006). Post-processing application of chemical solutions for control of Listeria monocytogenes, cultured under different conditions, on commercial smoked sausage formulated with and without potassium lactate– sodium diacetate. Food Microbiol. 23, 762–771. doi: 10.1016/j.fm.2006.01.008
Glatz, P. C., Ru, Y. J., Miao, Z. H., Wyatt, S. K., and Rodda, B. J. (2005). Integrating poultry into a crop and pasture farming system. Int. J. Poult. Sci. 4, 187–191. doi: 10.3923/ijps.2005.187.191
Gong, H. S., Meng, X. C., and Wang, H. (2010a). Mode of action of plantaricin MG, a bacteriocin active against Salmonella Typhimurium. J. Basic Microbiol. 50, S37–S45. doi: 10.1002/jobm.201000130
Gong, H. S., Meng, X. C., and Wang, H. (2010b). Plantaricin MG active against Gram-negative bacteria produced by Lactobacillius plantarum KLDS1. 0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control 21, 89–96. doi: 10.1016/j.foodcont.2009.04.005
Goode, D., Allen, V. M., and Barrow, P. A. (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69, 5032–5036. doi: 10.1128/AEM.69.8.5032-5036.2003
Goodridge, L. D. (2010). Designing phage therapeutics. Curr. Pharmaceut. Biotechnol. 11, 15–27. doi: 10.2174/138920110790725348
Górski, A., Miedzybrodzki, R., Łobocka, M., Głowacka-Rutkowska, A., Bednarek, A., Borysowski, J., et al. (2018). Phage therapy: what have we learned?. Viruses 10, 288–316. doi: 10.3390/v10060288
Graham, A. C., and Stocker, B. A. D. (1977). Genetics of sensitivity of Salmonella species to colicin M and bacteriophages T5, T1, and ES18. J. Bacteriol. 130, 1214–1223.
Gratia, A. (1925). Sur un remarquable exemple d’antagonisme entre deux souches de coilbacille. CR Seances Soc. Biol. Fil. 93, 1040–1041.
Greene, S. K., Daly, E. R., Talbot, E. A., Demma, L. J., Holzbauer, S., Patel, N. J., et al. (2008). Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 136, 157–165. doi: 10.1017/S095026880700859X
Greenway, D. L., and Dyke, K. G. (1979). Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. Microbiology 115, 233–245.
Greer, G. G. (1988). Effect of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J. Food Sci. 53, 1226–1227. doi: 10.1111/j.1365-2621.1988.tb13570.x
Greer, G. G. (2005). Bacteriophage control of foodborne bacteria. J. Food Prot. 68, 1102–1111. doi: 10.4315/0362-028X-68.5.1102
Gutierrez, J., Bourke, P., Lonchamp, J., and Barry-Ryan, C. (2009). Impact of plant essential oils on microbiological, organoleptic and quality markers of minimally processed vegetables. Innov. Food Sci. Emerg. Technol. 10, 195–202. doi: 10.1016/j.ifset.2008.10.005
Gwin, L. (2008). Mobile Slaughter and Processing. Available online at: http// www.nichemeatprocessing.org/mobile-unit-overview (Accessed September 30, 2018).
Haley, B. J., Cole, D. J., and Lipp, E. K. (2009). Distribution, diversity, and seasonality of waterborne Salmonellae in a rural watershed. Appl. Environ. Microbiol. 75, 1248–1255. doi: 10.1128/AEM.01648-08
Hanning, I., Biswas, D., Herrera, P., Roesler, M., and Ricke, S. C. (2010). Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry. J. Food Sci. 75, M496–M502. doi: 10.1111/j.1750-3841.2010.01747.x
Hardin, M. D., Acuff, G. R., Lucia, L. M., Oman, J. S., and Savell, J. W. (1995). Comparison of methods for decontamination from beef carcass surfaces. J. Food Prot. 58, 368–374. doi: 10.4315/0362-028X-58.4.368
Higgins, J. P., Higgins, S. E., Guenther, K. L., Huff, W. E., and Hargis, B. M. (2002). Evaluation of bacteriophage treatment as a method to reduce culturable Salmonella in poultry carcass rinse water. Poult. Sci. 81(Suppl. 1):130.
Hilimire, K. (2012). The grass is greener: Farmers’ experiences with pastured poultry. Renew. Agricult. Food Syst. 27, 173–179. doi: 10.1017/S1742170511000287
Hood, D. E. (1980). Factors affecting the rate of metmyoglobin accumulation in prepackaged beef. Meat Sci. 4, 247–265. doi: 10.1016/0309-1740(80)90026-1
Hoppe, R. A. (2010). Structure and Finances of US Farms: Family Farm Report (2010 ed.). Diane Publishing Darby, PA. Available online at: https://www. nytimes.com/2010/03/28/us/28slaughter.html (Accessed May 2018).
Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M., and Donoghue, A. M. (2005). Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci. 84, 655–659. doi: 10.1093/ps/84.4.655
Hughes, K. A., Sutherland, I. W., and Jones, M. V. (1998). Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144, 3039–3047. doi: 10.1099/00221287-144-11-3039
Izat, A. L., Colberg, M., Adams, M. H., Reiber, M. A., and Waldroup, P. W. (1989). Production and processing studies to reduce the incidence of salmonellae on commercial broilers. J. Food Prot. 52, 670–673. doi: 10.4315/0362-028X-52.9.670
Jacob, M. E., Fox, J. T., Reinstein, S. L., and Nagaraja, T. G. (2008). Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview. Foodborne Pathog. Dis. 5, 721–730. doi: 10.1089/fpd.2008.0095
James, C., Goksoy, E. O., Corry, J. E. L., and James, S. J. (2000). Surface pasteurization of poultry meat using steam at atmospheric pressure. J. Food Eng. 45, 111–117. doi: 10.,1016/S0260-8774(00)00048-0
Joerger, R. D. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82, 640–647. doi: 10.1093/ps/82.4.640
Jones-Hamilton. (2018). Specialty Products of Jones Hamilton. Available online at: http://www.jones-hamilton.com/spd/specialty-products-of-jones-hamilton. html (Accessed on May 26, 2018).
Jung, D. S., Bodyfelt, F. W., and Daeschel, M. A. (1992). Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J. Dairy Sci. 75, 387–393. doi: 10.3168/jds.S0022-0302(92)77773-X
Kabara, J. J., Swieczkowski, D. M., Conley, A. J., and Truant, J. P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2, 23–28. doi: 10.1128/AAC.2.1.23
Kassem, I. I., Sanad, Y., Stonerock, R., and Rajashekara, G. (2012). An evaluation of the effect of sodium bisulfate as a feed additive on Salmonella enterica serotype Enteritidis in experimentally infected broilers. Poult. Sci. 91, 1032–1037. doi: 10.3382/ps.2011-01935
Kelkar, V. M., Geils, B. W., Becker, D. R., Overby, S. T., and Neary, D. G. (2006). How to recover more value from small pine trees: essential oils and resins. Biomass Bioenergy 30:316e320. doi: 10.1016/j.biombioe.2005.07.009
Kiepper, B. H., Merka, W. C., and Fletcher, D. L. (2008). Proximate composition of poultry processing wastewater particulate matter from broiler slaughter plants. Poult. Sci. 87, 1633–1636. doi: 10.3382/ps.2007-00331
Kijlstra, A., Meerburg, B. G., and Bos, A. P. (2009). Food safety in free-range and organic livestock systems: Risk management and responsibility. J. Food Prot. 72, 2629–2637. doi: 10.4315/0362-028X-72.12.2629
Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25, 541–545. doi: 10.1023/A:1022891231369
Kim, S. A., Park, S. H., Knueven, C., Basel, R., and Ricke, S. C. (2018). A decontamination approach using a combination of bisulfate of soda and peracetic acid against Listeria innocua inoculated on whole apples. Food Control 84, 106–110. doi: 10.1016/j.foodcont.2017.07.036
Kim, S. A., Park, S. H., Lee, S. I., Owens, C. M., and Ricke, S. C. (2017). Assessment of chicken carcass microbiome responses during processing in the presence of commercial antimicrobials using a next generation sequencing approach. Sci. Rep. 7:43354. doi: 10.1038/srep43354
Kim, T., Silva, J. L., and Chen, T. C. (2002). Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. J. Food Prot. 65, 1142–1145. doi: 10.4315/0362-028X-65.7.1142
Kimura, K., and Itoh, Y. (2003). Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Appl. Environ. Microbiol. 69, 2491–2497. doi: 10.1128/AEM.69.5.2491- 2497.2003
Kitis, M. (2004). Disinfection of wastewater with peracetic acid: a review. Environ. Int. 30, 47–55. doi: 10.1016/S0160-4120(03)00147-8
Kostaki, M., Giatrakou, V., Savvaidis, I. N., and Kontominas, M. G. (2009). Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food Microbiol. 26, 475–482. doi: 10.1016/j.fm.2009.02.008
Koutchma, T. (2008). UV light for processing foods. Ozone Sci Eng. 30, 93–98. doi: 10.1080/01919510701816346 Krylov, V. N. (2001). Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika 37, 869–887. doi: 10.1023/A:1016716606135
Kutateladze, M., and Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 28, 591–595. doi: 10.1016/j.tibtech.2010.08.001
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., and Abedon, S. T. (2010). Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol. 11, 69–86. doi: 10.2174/138920110790725401
Lo, Y. M., Yang, S. T., and Min, D. B. (1996). Kinetic and feasibility studies of ultrafiltration of viscous xanthan gum fermentation broth. J. Membr. Sci. 117, 237–249. doi: 10.1016/0376-7388(96)00067-1
Locatelli, A., Lewis, M. A., and Rothrock M. J. Jr. (2017). The distribution of Listeria in pasture-raised broiler farm soils is potentially related to university of Vermont medium enrichment bias toward Listeria innocua over Listeria monocytogenes. Front. Vet. Sci. 4:227. doi: 10.3389/fvets.2017.00227
Loc-Carrillo, C., and Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage 1, 111–114 doi: 10.4161/bact.1.2.14590
Luján-Rhenals, D., Morawicki, R., Van Loo, E., and Ricke, S. C. (2017). “Energy and water use in poultry processing,” in Achieving Sustainable Production of Poultry Meat, Vol 1, Safety, Quality and Sustainability, ed S. C. Ricke (Cambridge: Burleigh Dodds Science Publishing Limited).
Mahadeo, M., and Tatini, S. R. (1994). The potential use of nisin to control Listeria monocytogenes in poultry. Lett. Appl. Microbiol. 18, 323–326. doi: 10.1111/j.1472-765X.1994.tb00879.x
Mahapatra, A. K., Muthukumarappan, K., and Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: a review. Crit. Rev. Food Sci. Nutr. 45, 447–461 doi: 10.1080/10408390591034454
Mani-Lopez, E., García, H. S., and López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 45, 713–721. doi: 10.1016/j.foodres.2011.04.043
Maurer, J. J., Martin, G., Hernandez, S., Cheng, Y., Gerner-Smidt, P., Hise, K. B., et al. (2015). Diversity and persistence of Salmonella enterica strains in rural landscapes in the Southeastern United States. PLoS ONE 10:e0128937. doi: 10.1371/journal.pone.0128937
Melendez, S. N., Hanning, I., Han, J., Nayak, R., Clement, A. R., Wooming, A., et al. (2010). Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons. J. Appl. Microbiol. 109, 1957–1966. doi: 10.1111/j.1365-2672.2010.04825.x
Mendoza, J. L., Bard, D. E., Mumford, M. D., and Ang, S. C. (2004). Criterionrelated validity in multiple-hurdle designs: estimation and bias. Organization. Res. Methods 7, 418–441. doi: 10.1177/1094428104268752
Meneses, Y. E., Stratton, J., and Flores, R. A. (2017). Water reconditioning and reuse in the food processing industry: current situation and challenges. Trends in Food Sci. Technol. 61, 72–79. doi: 10.1016/j.tifs.2016.12.008
Micciche, A. C., Feye, K. M., Rubinelli, P. M., Wages, J. A., Knueven, C., and Ricke, S. C. (2018a). The implementation and food safety issues associated with poultry processing reuse water for conventional poultry production systems in the United States. Front. Sustain. Food Syst. 2:70. doi: 10.3389/fsufs.2018.00070
Micciche, A. C., Feye, K. M., Wages, J. A., Knueven, C. J. and Ricke, S. C. (2018b). Impact of acid treatments on the microbial populations of commercial poultry processing re-use water microcosms (Abs. 86), in Poultry Science Association Annual Meeting, San Antonio, TX, July 22nd – 26th .
Milillo, S. R., Stout, J. C., Hanning, I. B., Clement, A., Fortes, E. D., Den Bakker, H. C., et al. (2012). Listeria monocytogenes and hemolytic Listeria innocua in poultry. Poult. Sci. 91, 2158–2163. doi: 10.3382/ps.2012-02292
Modi, R., Hirvi, Y., Hill, A., and Griffiths, M. W. (2001). Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64, 927–933. doi: 10.4315/0362-028X-64.7.927
Morsy, M. K., Khalaf, H. H., Sharoba, A. M., El-Tanahi, H. H., and Cutter, C. N. (2014). Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 79, M675–M684. doi: 10.1111/1750-3841.12400
National Organic Program (2018). 7 C.F.R. 205.601-603 National Research Council (2003). “Chapter: 3 municipal wastewater and sludge treatment,” in Use of Reclaimed Water and Sludge in Food Crop Production (Washington, DC: The National Academies Press), 44–55.
Natrajan, N., and Sheldon, B. W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. J. Food Prot. 63, 1189–1196. doi: 10.4315/0362-028X-63.9.1189
New Entry Sustainable Farming Project (2012). Building an On-farm Poultry Processing Facility. Available online at: http://www.sare.org/Learning-Center/ Project-Products/Northeast-SARE-Project-Products/Buildingan-On-FarmPoultry-Processing-Facility (Accessed 18 February 2014).
Niche Meat Processor Assistance Network (2012). State Poultry Processing Regulations. Available online at: www.nichemeatprocessing.org (Accessed 18 December 2014).
Northcutt, J. K., and Jones, D. R. (2004). A survey of water use and common industry practices in commercial broiler processing facilities. J. Appl. Poult. Res. 13, 48–54. doi: 10.1093/japr/13.1.48
Nutt, J. D., Medvedev, K. L., Woodward, C. L., Pillai, S. D., and Ricke, S. C. (2002). Assessment of laboratory media controls for determining Salmonella virulence potential of poultry water sources using a hilA:lacZY fusion strain. J. Rapid Methods Automat. Microbiol. 10, 173–184. doi: 10.1111/j.1745-4581.2002.tb00024.x
Nutt, J. D., Pillai, S. D., Woodward, C. L., Sternes, K. L., Zabala-Dıaz, I. B., Kwon, Y. M., et al. (2003). Use of a Salmonella typhimurium hilA fusion strain to assess effects of environmental fresh water sources on virulence gene expression. Water Res. 37, 3319–3326. doi: 10.1016/S0043-1354(03)00244-6
Nykänen, A., Weckman, K., and Lapveteläinen, A. (2000). Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. Int. J. Food Microbiol. 61, 63–72. doi: 10.1016/S0168-1605(00)00368-8
O’Bryan, C. A., Crandall, P., Jaroni, D., Ricke, S. C., and Gibson, K. E. (2017). Assessment of nitrogen and phosphorus loads present in environments impacted by alternative poultry processing operations utilized in pasture-raised poultry production. Renew. Agricult. Food Syst. 32, 33–42. doi: 10.1017/S1742170515000514
O’Bryan, C. A., Crandall, P. G., Davis, M. L., Kostadini, G., Gibson, K. E., Alali, W. Q., et al. (2014). Mobile poultry processing units: a safe and cost-effective poultry processing option for the small-scale farmer in the United States. World’s Poult. Sci. J. 70, 787–802. doi: 10.1017/S0043933914000853
Occupational Safety and Health Administration. (2017). United States Department of Labor. Available online at: https://www.osha.gov/dts/chemicalsampling/ data/CH_226500.html (Accessed on May 12, 2018).
Okrend, A. J., Johnston, R. W., and Moran, A. B. (1986). Effect of acetic acid on the death rates at 52 C of Salmonella newport, Salmonella typhimurium and Campylobacter jejuni in poultry scald water. J. Food Protect. 49, 500–503. doi: 10.4315/0362-028X-49.7.500
Ollinger, M., MacDonald, J. M., and Madison, M. (2005). Technological change and economies of scale in US poultry processing. Am. J. Agricult. Econom. 87, 116–129. doi: 10.1111/j.0002-9092.2005.00706.x
O’Reilly, C. E., Bowen, A. B., Perez, N. E., Sarisky, J. P., Shepherd, C. A., Miller, M. D., et al. (2007). A waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clin. Infect. Dis. 44, 506–512. doi: 10.1086/511043
Over, K. F., Hettiarachchy, N., Johnson, M. G., and Davis, B. (2009). Effect of organic acids and plant extracts on Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella Typhimurium in broth culture model and chicken meat systems. J. Food Sci. 74, M515–M521. doi: 10.1111/j.1750-3841.2009.01375.x
Oyarzabal, O. A. (2005). Reduction of Campylobacter spp. by commercial antimicrobials applied during the processing of broiler chickens: a review from the United States perspective. J. Food Protect. 68, 1752–1760. doi: 10.4315/0362-028X-68.8.1752
Pao, S., Rolph, S. P., Westbrook, E. W., and Shen, H. (2004). Use of bacteriophages to control Salmonella in experimentally contaminated sprout seeds. J. Food Sci. 69, M127–M130. doi: 10.1111/j.1365-2621.2004.tb10720.x
Park, S. H., Hanning, I., Jarquin, R., Moore, P., Donoghue, D. J., Donoghue, A. M., and Ricke, S. C. (2011). Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157: H7, and Salmonella serotypes in water samples. FEMS Microbiol. Lett. 316, 7–15. doi: 10.1111/j.1574-6968.2010.02188.x
Park, S. H., Lee, S. I., and Ricke, S. C. (2016). Microbial populations in naked neck chicken ceca raised on pasture flock fed with commercial yeast cell wall prebiotics via an Illumina MiSeq platform. PLoS ONE 11:e0151944. doi: 10.1371/journal.pone.0151944
Pellow, D. N. (2004). The politics of illegal dumping: an environmental justice framework. Qualit. Soc. 27, 511–525. doi: 10.1023/B:QUAS.0000049245.55208.4b
Peracetic acid-MSDS (2013). No. SLP5503; Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396 May 12,. Available online at: https://www.sciencelab. com/msds.php?msdsId=9926439 (accessed 5/15/18).
Philips, R. (2017). 2016 Sales of U.S. Certified Organic Agricultural Production Up 23 Percent from Previous Year California continues to lead in certified farms, acres, sales. Available online at: https://www.nass.usda.gov/Newsroom/archive/ 2017/09_20_2017.php (Accessed on August 26, 2018).
Proctor, M. E., Hamacher, M., Tortorello, M. L., Archer, J. R., and Davis, J. P. (2001). Multistate outbreak of Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. J. Clin. Microbiol. 39, 3461–3465. doi: 10.1128/JCM.39.10.3461-3465.2001
Ricke, S., Koo, O., and Keeton, J. (2013). “Fermented meat, poultry, and fish products,” in Food Microbiology, eds M. Doyle and R. Buchanan (Washington, DC: ASM Press), 857–880.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 82, 632–639. doi: 10.1093/ps/82. 4.632
Ricke, S. C., Hererra, P., and Biswas, D. (2012). “Chapter 23: Bacteriophages for potential food safety applications in organic meat production,” in Organic Meat Production and Processing, eds S. C. Ricke, E. J. Van Loo, M. G. Johnson, and C. A. O’Bryan (Hoboken, NJ: John Wiley & Sons), 407–424.
Ricke, S. C., Kundinger, M. M., Miller, D. R., and Keeton, J. T. (2005). Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 84, 667–675. doi: 10.1093/ps/84.4.667
Riley, M. A., and Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137. doi: 10.1146/annurev.micro.56.012302.161024
Rothrock Jr, M. J., Davis, M. L., Locatelli, A., Bodie, A., McIntosh, T. G., Donaldson, J. R., and Ricke, S. C. (2017). Listeria occurrence in poultry flocks: detection and potential implications. Front. Vet. Sci. 4:125. doi: 10.3389/fvets.2017.00125
Ruhr, E., and Sahl, H. G. (1985). Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Chemother. 27, 841–845. doi: 10.1128/AAC.27.5.841
Sanitation Performance Standards Compliance Guide (2016). Available online at: https://www.fsis.usda.gov/wps/portal/fsis/topics/regulatory-compliance/ compliance-guides-index/sanitation-performance-standards/sanitationcompliance-guide
Saravia, H., Houston, J. E., Toledo, R., and Nelson, H. M. (2005). “Economic feasibility of recycling chiller water in poultry processing plants by ultrafiltration,” in Proceedings of the 2005 Georgia Water Resources Conference, held April 25-27, 2005, at the University of Georgia. ed J. Kathryn Hatcher, (Athens: Institute Ecology, The University of Georgia).
Sawyer, C., McCarty, P., and Parkin, G. (2003). “Chapter: 8 water treatment,” in Chemistry for Environmental Engineering and Science, 8th Edn. (New York, NY: McGraw-Hill), 209–239.
Scher, K., Römling, U., and Yaron, S. (2005). Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 71, 1163–1168. doi: 10.1128/AEM.71.3.1163-1168.2005
Schillinger, U., Geisen, R., and Holzapfel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol. 7, 158–164. doi: 10.1016/0924-2244(96)81256-8
Scott, B. R., Yang, X., Geornaras, I., Delmore, R. J., Woerner, D. R., Reagan, J. O., et al. (2015). Antimicrobial efficacy of a sulfuric acid and sodium sulfate blend, peroxyacetic acid, and cetylpyridinium chloride against Salmonella on inoculated chicken wings. J. Food Prot. 78, 1967–1972. doi: 10.4315/0362-028X.JFP-15-170
Selma, M. V., Allende, A., López-Gálvez, F., Conesa, M. A., and Gil, M. I. (2008). Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol. 25, 809–814. doi: 10.1016/j.fm.2008.04.005
Shannon, E. M., Milillo, S. R., Johnson, M. G., and Ricke, S. C. (2011). Efficacy of cold pressed terpeneless valencia oil and its primary components on inhibition of Listeria species by direct contact and exposure to vapors. J. Food Sci. 76, M500–M503. doi: 10.1111/j.1750-3841.2011.02337.x
Sheu, C. W., and Freese, E. (1973). Lipopolysaccharide layer protection of Gramnegative bacteria against inhibition by long-chain fatty acids. J. Bacteriol. 115, 869–875.
Shors, T. (2001). “The best for last: bacteriophages,” in Understanding Viruses ed M. Johnson (Burlington, MA: Jones and Bartlett Publishers), 642–657.
Singh, N., Singh, R. K., Bhunia, A. K., and Stroshine, R. L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT Food Sci. Technol. 35, 720–729. doi: 10.1006/fstl.2002.0933
Sirsat, S. A., Muthaiyan, A., and Ricke, S. C. (2009). Antimicrobials for foodborne pathogen reduction in organic and natural poultry production. J. Appl. Poult. Res. 18, 379–388. doi: 10.3382/japr.2008-00140
Sklar, I. B., and Joerger, R. D. (2001). Attempts to utilize bacteriophage to combat Salmonella enterica serovar Entertidis infection in chickens. J. Food Saf. 21, 15–29. doi: 10.1111/j.1745-4565.2001.tb00305.x
Skrivanová, E., Marounek, M., Benda, V., and Brezina, P. (2006). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med. 51, 81–88. doi: 10.17221/5524-VETMED
Smid, E. J., and Gorris, L. G. M. (1999). “Natural antimicrobials for food preservation,” in Handbook of Food Preservation, ed M. S. Rahman (New York, NY: Marcel Dekker), 285–308.
Spricigo, D. A., Bardina, C., Cortés, P., and Llagostera, M. (2013). Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 165, 169–174. doi: 10.1016/j.ijfoodmicro.2013.05.009
Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J. Food Prot. 68, 1450–1453. doi: 10.4315/0362-028X-68.7.1450
Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991). Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol. 57, 3613–3615.
Sulakvelidze, A. (2011). Safety by nature: potential bacteriophage applicationsbacteriophages offer opportunities for safely managing bacterial infections. Microbe 6:122. doi: 10.1128/microbe.6.122.1
Summers, W. C. (1999). Felix d’Herelle and the Origins of Molecular Biology. New Haven, CT: Yale University Press.
Sun, H., Pan, Y., Zhao, Y., Jackson, W. A., Nuckles, L. M., Malkina, I. L., et al. and Mitloehner, F. M. (2008). Effects of sodium bisulfate on alcohol, amine, and ammonia emissions from dairy slurry. J. Environ. Qual. 37, 608–614. doi: 10.2134/jeq2006.0446
Sutherland, I. W., Hughes, K. A., Skillman, L. C., and Tait, K. (2004). The interaction of phage and biofilms. FEMS Microbiol. Lett. 232, 1–6. doi: 10.1016/S0378-1097(04)00041-2
Tamblyn, K. C., and Conner, D. E. (1997). Bactericidal activity of organic acids against Salmonella typhimurium attached to broiler chicken skin. J. Food Prot. 60, 629–633. doi: 10.4315/0362-028X-60.6.629
Tangkham, W., Janes, M., and Lemieux, F. (2016). Prevalence and distribution of Campylobacter jejuni in small-scale broiler operations. J. Food Prot. 79, 75–81. doi: 10.4315/0362-028X.JFP-15-331
Teixeira, M. L., dos Santos, J., Silveira, N. P., and Brandelli, A. (2008). Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Innov. Food Sci. and Emerg. Technol. 9, 49–53. doi: 10.1016/j.ifset.2007.05.001
Trimble, L. M., Alali, W. Q., Gibson, K. E., Ricke, S. C., Crandall, P., Jaroni, D., and Berrang, M. (2013). Salmonella and Campylobacter prevalence and concentration on pasture-raised broilers processed on-farm, in a mobile processing nit, and at small USDA-inspected facilities. Food Control 34, 177–182. doi: 10.1016/j.foodcont.2013. 04.024
Tsai, L. S., Schade, J. E., and Molyneux, B. T. (1992). Chlorination of poultry chiller water: chlorine demand and disinfection efficiency. Poult. Sci. 71, 188–196. doi: 10.3382/ps.0710188
Turan, N. G. (2009). Nitrogen availability in composted poultry litter using natural amendments. Waste Manage. Res. 27, 19–24. doi: 10.1177/0734242X07087993
United States Department of Agriculture Food Safety and Inspection Service. (2010). Mobile Slaughter Compliance Guide. Available online at: http://www. fsis.usda.gov/PDF/Compliance_Guide_Mobile_Slaughter.pdf (Accessed May 2018).
United States Department of Agriculture. (1995). Petitioned Substances: National Organic Standards Board-Nisin. Available online at: https://www.ams.usda.gov/ rules-regulations/organic/national-list/n (Accessed September 29, 2018).
United States Department of Agriculture. (2015). Sodium Bisulfate - Agricultural Marketing Service. Available online at: https://www.ams.usda.gov/sites/default/ files/media/Sodium%20Bi%20report%202015.pdf (Accessed May 26, 2018).
United States Department of Agriculture. (2016). Serotypes Profile of Salmonella Isolates from Meat and Poultry Products January 1998 through December 2014. Available online at: https://www.fsis.usda.gov/wps/portal/fsis/topics/datacollection-and-reports/microbiology/annual-serotyping-reports (Accessed October 31, 2018)
United States Department of Agriculture. (2017). Cost Estimates of Foodborne Illnesses. Available online at: https://www.ers.usda.gov/data-products/costestimates-of-foodborne-illnesses/. (Accessed September 22, 2018).
United States Department of Agriculture. (2018). Poultry - Production and Value Summary 2017. (Accessed October 31, 2018) Available online at: http://usda. mannlib.cornell.edu/usda/current/PoulProdVa/PoulProdVa-04-27-2018.pdf
United States Environmental Protection Agency (2013). Basic Information About Disinfectants in Drinking Water: Chloramine, Chlorine and Chlorine dioxide. Available online at: https://www.epa.gov/dwstandardsregulations (Accessed September 25, 2018).
United States Environmental Protection Agency (2018), July 30. Safer Chemical Ingredients List. Available online at: https://www.epa.gov/saferchoice/saferingredients (Accessed September 25, 2018).
United States Food and Drug Administration (2018). GRAS Substances (SCOGS) Database. Available online at: https://www.fda.gov/food/ ingredientspackaginglabeling/gras/scogs/default.htm (Accessed August 31, 2018).
Van Immerseel, F., Russell, J. B., Flythe, M. D., Gantois, I., Timbermont, L., Pasmans, F., et al. (2006). The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol. 35, 182–188. doi: 10.1080/03079450600711045
Van Loo, E. J., Alali, W., and Ricke, S. C. (2012). Food safety and organic meats. Annu. Rev. Food Sci. Technol. 3, 203–225. doi: 10.1146/annurev-food-022811-101158
Van Loo, E. J., Alali, W. Q., Welander, S., O’Bryan, C. A., Crandall, P. G., and Ricke, S. C. (2013). Consumers’ interest in locally raised, small-scale poultry in Georgia. Agricult. Food Anal. Bacteriol. 3, 94–102.
Waller, R. (1994). Ground Water and the Rural Homeowner-United States Geological Survey. Available online at: https://pubs.usgs.gov/gip/gw_ ruralhomeowner/ (Accessed October 31, 2018).
Wallner-Pendleton, E. A., Sumner, S. S., Froning, G. W., and Stetson, L. E. (1994). The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poult. Sci. 73, 1327–1333. doi: 10.3382/ps.0731327
Warburton, R. (2014). Peracetic Acid in the Fresh Food Industry. Food Safety Magazine. Available online at: www.foodsafetymagazine.com/signatureseries/peraceticacid-in-the-fresh-food-industry/
Windisch, W., and Kroismayr, A. (2006). “The effects of phytobiotics on performance and gut function in monogastrics,” in World Nutrition Forum: The Future of Animal Nutrition (Vienna), 85–90.
Wong, E., Linton, R. H., and Gerrard, D. E. (1998). Reduction of Escherichia coli and Salmonella senftenbergon pork skin and pork muscle using ultraviolet light. Food Microbiol. 15, 415–423. doi: 10.1006/fmic.1998.0185
Wood, S. R., Kirkham, J., Marsh, P. D., Shore, R. C., Nattress, B., and Robinson, C. (2000). Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79, 21–27. doi: 10.1177/00220345000790010201
Woolthuis, C. H., and Smulders, F. J. (1985). Microbial decontamination of calf carcasses by lactic acid sprays. J. Food Prot. 48, 832–837. doi: 10.4315/0362-028X-48.10.832
Yabin, L.i., Slavik, M. F., Walker, J. T., and Xiong, H. (1997). Pre-chill spray of chicken carcasses to reduce Salmonella typhimurium. J. Food Sci. 62, 605–607. doi: 10.1111/j.1365-2621.1997.tb04441.x
Yang, S. C., Lin, C. H., Sung, C. T., and Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5:241. doi: 10.3389/fmicb.2014.00241
Zezima, K. (2010). Push to Eat Local Food is Hampered by Shortage. New York Times 26. Zoetis (2018). Amplon. Available online at: https://www.zoetisus.com/products/ food-safety/amplon.aspx (Accessed September 28, 2018).
Zohri, M., Alavidjeh, M. S., Haririan, I., Ardestani, M. S., Ebrahimi, S. E. S., Sani, H. T., et al. (2010). A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob. Proteins 2, 258–266. doi: 10.1007/s12602-010-9047-2