The gastrointestinal tract (GIT) is host to a rich and complex microbial ecosystem that has been associated with several host functions including intestinal development, nutrient absorption and energy metabolism.
A widespread used technique to study the microbiota is based on molecular DNA sequencing methods that use genome sequences to identify microbes. This approach has dramatically advanced our understanding of the microbiome. The methods however don’t provide information about the physiological state of the GIT bacteria (are they active, inactive, or dead?) as well as abundance of bacterial waste products.
Bacterial waste products (debris) in the GIT can be quantified by analysis of microbial structural patterns specific to bacteria. One abundant microbial polymer unique to bacteria is the cell wall component peptidoglycan. Peptidoglycan makes up approximately 90% of gram-positive bacteria cell walls and is also a minor component in gram-negative bacterial cell walls. Recent published research has reported a beneficial effect of enzymatic peptidoglycan hydrolysis in the GIT of chickens, thus suggesting that peptidoglycan influence gastrointestinal functionality.
To better understand the peptidoglycan - GIT interplay better, we established a mass spectroscopybased method to quantify soluble and total peptidoglycan concentrations in intestinal content samples by measuring the peptidoglycan building block muramic acid. The method proved capable of quantifying soluble and total peptidoglycan concentrations in digesta samples from chickens. The method was also sensitive enough to measure increased concentrations of soluble peptidoglycan when a peptidoglycan hydrolyzing enzyme was supplemented to the diet.
Akira, S., Uematsu, S. and Takeuchi, O. (2006) 'Pathogen recognition and innate immunity', Cell, 124(4), pp. 783-801.
Bar-On, Y. M., Phillips, R. and Milo, R. (2018) 'The biomass distribution on Earth', Proc Natl Acad Sci U S A, 115(25), pp. 6506-6511.
Ben-Amor, K., Heilig, H., Smidt, H., Vaughan, E. E., Abee, T. and de Vos, W. M. (2005) 'Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis', Appl Environ Microbiol, 71(8), pp. 4679-89.
Cani, P. D., Van Hul, M., Lefort, C., Depommier, C., Rastelli, M. and Everard, A. (2019) 'Microbial regulation of organismal energy homeostasis', Nature Metabolism, 1(1), pp. 34-46.
Choct, M., Kocher, A., Waters, D. L., Pettersson, D. and Ross, G. (2004) 'A comparison of three xylanases on the nutritive value of two wheats for broiler chickens', Br J Nutr, 92(1), pp. 53-61. de Groot, P. F., Frissen, M. N., de Clercq, N. C. and Nieuwdorp, M. (2017) 'Fecal microbiota transplantation in metabolic syndrome: History, present and future', Gut Microbes, 8(3), pp. 253-267.
Fu, X., Zeng, B., Wang, P., Wang, L., Wen, B., Li, Y., Liu, H., Bai, S. and Jia, G. (2018) 'Microbiome of Total Versus Live Bacteria in the Gut of Rex Rabbits', Front Microbiol, 9, pp. 733.
Goodarzi Boroojeni, F., Männer, K., Rieger, J., Pérez Calvo, E. and Zentek, J. (2019) 'Evaluation of a microbial muramidase supplementation on growth performance, apparent ileal digestibility, and intestinal histology of broiler chickens', Poult Sci, 98(5), pp. 2080-2086.
Hatton, J. J., Stevenson, T. J., Buck, C. L. and Duddleston, K. N. (2017) 'Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure', Environ Microbiol, 19(4), pp. 1518-1535.
Joergensen, R. G. (2018) 'Amino sugars as specific indices for fungal and bacterial residues in soil', Biology and Fertility of Soils, 54(5), pp. 559-568.
Jost, D. I., Aschemann, M., Lebzien, P., Joergensen, R. G. and Sundrum, A. (2013) 'Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet', Arch Anim Nutr, 67(2), pp. 104-18.
Kluger and Matthew (2015) Fever: Its Biology, Evolution, and Function. Princeton Legacy Library: Princeton University Press.
Lichtenberg, J., Perez Calvo, E., Madsen, K., Østergaard Lund, T., Kramer Birkved, F., van Cauwenberghe, S., Mourier, M., Wulf-Andersen, L., Jansman, A. J. M. and Lopez-Ulibarri, R. (2017) 'Safety evaluation of a novel muramidase for feed application', Regul Toxicol Pharmacol, 89, pp. 57-69.
Maurice, C. F., Haiser, H. J. and Turnbaugh, P. J. (2013) 'Xenobiotics shape the physiology and gene expression of the active human gut microbiome', Cell, 152(1-2), pp. 39-50.
Rosenthal, R. S. and Dziarski, R. (1994) 'Isolation of peptidoglycan and soluble peptidoglycan fragments', Methods Enzymol, 235, pp. 253-85.
Sais, M., Barroeta, A. C., López-Colom, P., Nofrarías, M., Majó, N., Lopez-Ulibarri, R., Pérez Calvo, E. and Martín-Orúe, S. M. (2019) 'Evaluation of dietary supplementation of a novel microbial muramidase on gastrointestinal functionality and growth performance in broiler chickens', Poult Sci.
Sonoyama, K., Fujiwara, R., Takemura, N., Ogasawara, T., Watanabe, J., Ito, H. and Morita, T. (2009) 'Response of gut microbiota to fasting and hibernation in Syrian hamsters', Appl Environ Microbiol, 75(20), pp. 6451-6.
Stevenson, T. J., Duddleston, K. N. and Buck, C. L. (2014) 'Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota', Appl Environ Microbiol, 80(18), pp. 5611-22.
Stewart-Tull, D. E. (1980) 'The immunological activities of bacterial peptidoglycans', Annu Rev Microbiol, 34, pp. 311-40.
Vollmer, W. (2008) 'Structural variation in the glycan strands of bacterial peptidoglycan', FEMS Microbiol Rev, 32(2), pp. 287-306.
Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998) 'Prokaryotes: the unseen majority', Proc Natl Acad Sci U S A, 95(12), pp. 6578-83.