Fusarium head blight (FHB) is a disease of wheat (Triticum aestivum L.) that causes major yield losses in South America, as well as many other wheat growing regions around the world. FHB results in low quality, contaminated grain due to the production of mycotoxins such as deoxynivalenol (DON). In Brazil, FHB outbreaks are increasing in frequency and are currently controlled by fungicides which are costly and potentially harmful to the wider environment. To identify the genetic basis of resistance to FHB in Brazilian wheat, two mapping populations (Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179) segregating for FHB resistance were phenotyped and quantitative trait loci (QTL) analysis was undertaken to identify genomic regions associated with FHB-related traits. A total of 14 QTL associated with FHB visual symptoms were identified, each of which explained 3.7–17.3% of the phenotypic variance. Two of these QTL were stable across environments. This suggests FHB resistance in Anahuac 75, BR 18-Terena and BRS 179 is controlled by multiple genetic loci that confer relatively minor differences in resistance. A major, novel QTL associated with DON accumulation was also identified on chromosome 4B (17.8% of the phenotypic variance), as well as a major QTL associated with thousand-grain weight on chromosome 6B (16.8% phenotypic variance). These QTL could be useful breeding targets, when pyramided with major sources of resistance such as Fhb1, to improve grain quality and reduce the reliance on fungicides in Brazil and other countries affected by FHB.
1. Ma ZQ, Xie Q, Li GQ, Jia HY, Zhou JY, Kong ZX, et al. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet. 2020; 133(5): 1541–1568. https:// doi.org/10.1007/s00122-019-03525-8 PMID: 31900498
2. Xu XM, Nicholson P. Community ecology of fungal pathogens causing wheat head blight. Annu Rev Phytopathol. 2009; 47: 83–103. https://doi.org/10.1146/annurev-phyto-080508-081737 PMID: 19385728
3. Guenther JC, Trail F. The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia. 2005; 97(1): 229–237. https://doi.org/10.3852/ mycologia.97.1.229 PMID: 16389974
4. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, et al. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease. 2012; 96(12): 1712–1728. https://doi.org/10.1094/PDIS-03-12-0291-FE PMID: 30727259
5. Trail F. For blighted waves of grain: Fusarium graminearum in the Postgenomics era. Plant Physiol. 2009; 149(1): 103–110. https://doi.org/10.1104/pp.108.129684 PMID: 19126701
6. Del Ponte EM, Fernandes JMC, Pavan W, Baethgen WE. A model-based assessment of the impacts of climate variability on Fusarium head blight seasonal risk in Southern Brazil. J Phytopathol. 2009; 157 (11–12): 675–681.
7. Mehta YR. Spike diseases caused by fungi. In: Mehta YR, editor. Wheat Diseases and Their Management. Switzerland: Springer International Publishing; 2014. pp. 65–104.
8. Agência Nacional de Vigilaˆncia Sanita´ria (ANVISA). Limites ma´ximos tolerados (LMT) para micotoxinas. Resoluc¸ão de Diretoria Colegiada–RDC n˚ 07, de 18 de Fevereiro de 2011. ANVISA. 2011 Feb 18 (Cited 2020 Oct 07) Available from: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2011/res0007_ 18_02_2011_rep.html
9. dos Santos JS, Souza TM, Ono EYS, Hashimoto EH, Bassoi MC, de Miranda MZ, et al. Natural occurrence of deoxynivalenol in wheat from Parana State, Brazil and estimated daily intake by wheat products. Food Chem. 2013; 138(1): 90–95. https://doi.org/10.1016/j.foodchem.2012.09.100 PMID: 23265460
10. Mallmann CA, Dilkin P, Mallmann AO, Oliveira MS, Adaniya ZNC, Tonini C. Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: an eight-year (2008 to 2015) summary. Trop Plant Pathol. 2017; 42(3): 146–152.
11. Bai GH, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol. 2004; 42: 135–161. https://doi.org/10.1146/annurev.phyto.42.040803.140340 PMID: 15283663
12. Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2006; 112(8): 1465–1472. https://doi.org/10.1007/s00122-006-0249-7 PMID: 16518614
13. Liu SX, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, et al. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun. 2008; 36: 195–201.
14. Rawat N, Pumphrey MO, Liu SX, Zhang XF, Tiwari VK, Ando K, et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet. 2016; 48(12): 1576–1580. https://doi.org/10.1038/ng.3706 PMID: 27776114
15. Li GQ, Zhou JY, Jia HY, Gao ZX, Fan M, Luo YJ, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet. 2019; 51(7): 1106–1112. https://doi.org/10.1038/s41588-019-0426-7 PMID: 31182810
16. Su ZQ, Bernardo A, Tian B, Chen H, Wang S, Ma HX, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet. 2019; 51(7): 1099–1105. https://doi.org/10. 1038/s41588-019-0425-8 PMID: 31182809
17. Scheeren PL, Fernandes JMC, Caeirão E, Consoli L, Lima MIPM, Santana FM, et al. Characterisation of Brazilian wheat cultivars in relation to the presence of the gene Fhb1 for resistance to Fusarium head blight. Embrapa Trigo. 2016. Available from: https://www.embrapa.br/trigo/busca-de-publicacoes/-/ publicacao/1048439/
18. Mellers G, Aguilera JG, Bird N, Bonato ALV, Bonow S, Caierao E, et al. Genetic characterization of a wheat association mapping panel relevant to Brazilian breeding using a high-density single nucleotide polymorphism array. G3-Genes Genomes Genet. 2020; 10(7): 2229–2239. https://doi.org/10.1534/g3. 120.401234 PMID: 32350030
19. Fradgley N, Gardner KA, Cockram J, Elderfield J, Hickey JM, Howell P, et al. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol. 2019; 17(2). https://doi.org/10.1371/journal.pbio.3000071 PMID: 30818353
20. Zhu ZW, Hao YF, Mergoum M, Bai GH, Humphreys G, Cloutier S, et al. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J. 2019; 7(6): 730–738.
21. Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H. Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet. 2004; 109 (1): 215–224. https://doi.org/10.1007/s00122-004-1620-1 PMID: 14997302
22. Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 2009; 128(1): 1–26.
23. Szabo´-Heve´r A, Lehoczki-Krsjak S, Varga M, Purnhauser L, Pauk J, Lantos C, et al. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population Euphytica. 2014; 200(1): 9–26.
24. Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol. 2017; 42(3): 165–174.
25. Cruz CD, Valent B. Wheat blast disease: danger on the move. Trop Plant Pathol. 2017; 42(3): 210–222.
26. Val-Moraes SP. Diseases of wheat in Brazil and their management. In: Singh DP, editor. Management of wheat and barley diseases. Oakville: Apple Academic Press; 2017. https://doi.org/10.1590/S1984- 29612017069 PMID: 29211135
27. Ha X, Koopmann B, von Tiedemann A. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology. 2016; 106(3): 270– 281. https://doi.org/10.1094/PHYTO-09-15-0202-R PMID: 26574785
28. Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, et al. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Sci. 2016; 56(3): 990–1000. https://doi.org/10.2135/cropsci2015.07.0410 PMID: 27814405
29. Urashima AS LN, Goulart ACP, Mehta YR Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatologia Brasileira. 2004; 29: 511–518.
30. Goddard R, Steed A, Chinoy C, Ferreira JR, Scheeren PL, Maciel JLN, et al. Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC Plant Biol. 2020;20. https://doi.org/10.1186/s12870-019-2227-7 PMID: 31931714
31. Sousa CN, Caeirão E. Cultivares de trigo: Indicadas para cultivo no Brasil e Instituic¸ões criadoras 1922 a 2014. 1st ed. Brazil: Embrapa Trigo; 2014.
32. Zadoks JC, Chang TT, Konzak CF. Decimal code for growth stages of cereals. Weed Res. 1974; 14(6): 415–421.
33. Peraldi A, Beccari G, Steed A, Nicholson P. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 2011;11. https://doi.org/ 10.1186/1471-2229-11-11 PMID: 21226963
34. Lima MIPM.; Fernandes JMC. Avaliac¸ão da resistência à giberela de geno´tipos de cereais de inverno. Fitopatologia Brasileira. 2002; 27(1): 104–105.
35. VSN International Genstat for Windows 20th Edition. VSN International, Hemel Hempstead, UK. 2019.
36. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018; 361(6403): 661. https://doi.org/ 10.1126/science.aar7191 PMID: 30115783
37. Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002; 93(1): 77–78. https://doi.org/10.1093/jhered/93.1.77 PMID: 12011185
38. Buerstmayr M, Buerstmayr H. The Semidwarfing Alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology. 2016; 106(12): 1544–1552. https://doi.org/10.1094/PHYTO-05-16-0200-R PMID: 27452901
39. Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, et al. QTL mapping and successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three European Triticale populations. Theor Appl Genet. 2020; 133(2): 457–477. https://doi.org/10.1007/s00122-019- 03476-0 PMID: 31960090
40. Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics. 2005; 273(1): 54–65. https://doi.org/10.1007/s00438-004-1095-4 PMID: 15690172
41. Liu SY, Christopher MD, Griffey CA, Hall MD, Gundrum PG, Brooks WS. Molecular Characterization of resistance to Fusarium head blight in U.S. soft red winter wheat breeding line VA00W-38. Crop Sci. 2012; 52(5): 2283–2292.
42. Petersen S, Lyerly JH, Maloney PV, Brown-Guedira G, Cowger C, Costa JM, et al. Mapping of Fusarium head blight resistance quantitative trait loci in winter wheat cultivar NC-Neuse. Crop Sci. 2016; 56 (4): 1473–1483.
43. He XY, Dreisigacker S, Singh RP, Singh PK. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. Theor Appl Genet. 2019; 132(8): 2401–2411. https://doi.org/10.1007/s00122-019-03362-9 PMID: 31129715
44. Buerstmayr M, Steiner B, Buerstmayr H. Breeding for Fusarium head blight resistance in wheat- Progress and challenges. Plant Breeding. 2020; 139(3): 429–454.
45. Ruan YF, Comeau A, Langevin F, Hucl P, Clarke JM, Brule-Babel A, et al. Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome. 2012; 55(12): 853– 864. https://doi.org/10.1139/gen-2012-0110 PMID: 23231604
46. Zhang M, Zhang R, Yang JZ, Luo PG. Identification of a new QTL for Fusarium head blight resistance in the wheat genotype "Wang shui-bai". Mol Biol Rep. 2010; 37(2): 1031–1035. https://doi.org/10.1007/ s11033-009-9809-7 PMID: 19757165
47. Zhao MX, Leng YQ, Chao SM, Xu SS, Zhong SB. Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Theor Appl Genet. 2018; 131(9): 1939–1951. https://doi.org/ 10.1007/s00122-018-3124-4 PMID: 29869075
48. Klahr A, Zimmermann G, Wenzel G, Mohler V. Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica. 2007; 154(1–2): 17–28.
49. Schmolke M, Zimmermann G, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, et al. Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breed. 2008; 127(5): 459–464.
50. Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, et al. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet. 2008; 116(8): 1145–1153. https://doi.org/10.1007/s00122-008-0742-2 PMID: 18347773
51. Chandler PM, Marion-Poll A, Ellis M, Gubler F. Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol. 2002; 129(1): 181–190. https://doi.org/10. 1104/pp.010917 PMID: 12011349
52. Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, et al. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet. 2007; 115(5): 617–625. https://doi.org/10.1007/s00122-007-0592-3 PMID: 17607557
53. Flintham JE, Borner A, Worland AJ, Gale MD. Optimizing wheat grain yield: Effects of Rht (gibberellininsensitive) dwarfing genes. J Agric Sci. 1997; 128: 11–25.
54. Srinivasachary, Gosman N, Steed A, Hollins TW, Bayles R, Jennings P, et al. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet. 2009; 118(4): 695–702. https://doi.org/10.1007/s00122-008-0930-0 PMID: 19034409
55. Miedaner T, Voss HH. Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci. 2008; 48(6): 2115–2122.
56. Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, et al. Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS One. 2013; 8(2).
57. Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, et al. QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet. 2004; 109(2): 323–332. https://doi.org/10.1007/s00122-004-1628-6 PMID: 15014875
58. Liu SY, Griffey CA, Hall MD, McKendry AL, Chen JL, Brooks WS, et al. Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet. 2013; 126(10): 2485–2498. https://doi.org/10.1007/s00122-013-2149-y PMID: 23832049
59. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. 2006; 103(51): 19581–19586. https://doi.org/10. 1073/pnas.0607142103 PMID: 17158798
60. Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits L, Brunel D, et al. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet. 2008; 116(3): 383–394. https://doi.org/10.1007/s00122-007-0676-0 PMID: 18040656
61. Tessmann EW, Van Sanford DA. GWAS for Fusarium head blight related traits in winter wheat (Triticum Aestivum L.) in an artificially warmed treatment. Agronomy-Basel. 2018; 8(5).
62. Langevin F, Eudes F, Comeau A. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol. 2004; 110(7): 735–746.
63. Menke J, Weber J, Broz K, Kistler HC. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One. 2013; 8(5). https://doi.org/10.1371/ journal.pone.0063077 PMID: 23667578
64. Somers DJ, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome. 2003; 46(4): 555–564. https:// doi.org/10.1139/g03-033 PMID: 12897863
65. Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant-Microbe Interact. 2005; 18(12): 1318–1324. https://doi.org/10.1094/ MPMI-18-1318 PMID: 16478051
66. Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, et al. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ’Shanghai-3/Catbird’. Theor Appl Genet. 2013; 126(2): 317–334. https://doi.org/10.1007/s00122-012-1981-9 PMID: 23052019
67. He XY, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E. Dwarfing genes Rht-B1b and RhtD1b are associated with both Type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS One. 2016; 11(9). https://doi.org/10.1371/journal.pone.0162499 PMID: 27606928
68. Wang R, Chen JL, Anderson JA, Zhang JL, Zhao WD, Wheeler J, et al. Genome wide association mapping of Fusarium head blight resistance in spring wheat lines developed in the Pacific Northwest and CIMMYT. Phytopathology. 2017; 107(12): 1486–1495. https://doi.org/10.1094/PHYTO-02-17-0073-R PMID: 28703042
69. Abate ZA, Liu S, McKendry AL. Quantitative trait loci associated with deoxynivalenol content and kernel quality in the soft red winter wheat ’Ernie’. Crop Sci. 2008; 48(4): 1408–1418.
70. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 2003; 278(48): 47905–47914. https://doi.org/10.1074/jbc.M307552200 PMID: 12970342
71. Li X, Shin S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, et al. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant-Microbe Interact. 2015; 28(11): 1237–1246. https://doi.org/10.1094/ MPMI-03-15-0062-R PMID: 26214711
72. Gatti M, Choulet F, Macadre´ C, Gue´rard F, Seng J-M, Langin T, et al. Identification, molecular cloning, and functional characterization of a wheat UDP-glucosyltransferase involved in resistance to Fusarium head blight and to mycotoxin accumulation. Front. Plant Sci. 2018; 9(1853).
73. Schweiger W, Pasquet JC, Nussbaumer T, Paris MPK, Wiesenberger G, Macadre C, et al. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. Mol Plant-Microbe Interact. 2013; 26(7): 781–792. https://doi. org/10.1094/MPMI-08-12-0205-R PMID: 23550529
74. He Y, Ahmad D, Zhang X, Zhang Y, Wu L, Jiang P, et al. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.). BMC Plant Biol. 2018;18. https://doi.org/10.1186/s12870-018-1232-6 PMID: 29352810
75. Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, et al. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant-Microbe Interact. 2010; 23(7): 977–986. https://doi.org/10.1094/MPMI-23-7-0977 PMID: 20521959
76. Gunupuru LR, Perochon A, Doohan FM. Deoxynivalenol resistance as a component of FHB resistance. Trop Plant Pathol. 2017; 42(3): 175–183.
77. Jayatilake D, Bai G, Dong Y. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet. 2011; 122(6): 1189–1198. https://doi.org/10.1007/s00122- 010-1523-2 PMID: 21221526
78. Ma HX, Zhang KM, Gao L, Bai GH, Chen HG, Cai ZX, et al. Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol. 2006; 55(6): 739–745.
79. Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL. Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology. 2008; 98(1): 87–94. https://doi.org/10.1094/PHYTO-98-1-0087 PMID: 18943242
80. Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2011; 122(1): 211–223. https://doi.org/10.1007/s00122-010-1437-z PMID: 20838758
81. Cuthbert PA, Somers DJ, Brule-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 114(3): 429–437. https://doi.org/10.1007/s00122-006-0439-3 PMID: 17091262
82. Dhokane D, Karre S, Kushalappa AC, McCartney C. Integrated metabolo-transcriptomics reveals Fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS One. 2016; 11(5). https:// doi.org/10.1371/journal.pone.0155851 PMID: 27232496
83. Ceresini PC, Castroagudin VL, Rodrigues FA, Rios JA, Aucique-Perez CE, Moreira SI, et al. Wheat Blast: Past, Present, and Future. Annu. Rev. Phytopathol. 2018(56): 427–456.
84. Gruner K, Esser T, Acevedo-Garcia J, Freh M, Habig M, Strugala R, et al. Evidence for allele-specific levels of enhanced susceptibility of wheat mlo mutants to the hemibiotrophic fungal pathogen Magnaporthe oryzae pv. Triticum. Genes. 2020; 11(5). https://doi.org/10.3390/genes11050517 PMID: 32392723
85. Ceresini PC, Castroagudin VL, Rodrigues FA, Rios JA, Aucique-Perez CE, Moreira SI, et al. Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology. 2019; 20(2): 155–172. https://doi.org/10.1111/mpp.12747 PMID: 30187616
86. Cruz M, Prestes AM, Maciel JLN, Scheeren PL. Resistência parcial à brusone de geno´tipos de trigo comum e sinte´tico nos esta´dios de planta jovem e de planta adulta. Trop Plant Pathol. 2010; 35: 24–31.