Aflatoxins are hepatotoxic and carcinogenic, and display immunosuppression properties for both humans and animals. This is also why they are the most widely studied and regulated mycotoxins. Strategies to mitigate aflatoxins prevalence includes the use of clays in animal feed as sequestering agents. Innovative approach consists in providing ingredients controlling inflammation and promoting immune. The objective of this study is to evaluate the impact of naturally contaminated diet with aflatoxins (AFB1) on health and performance of commercial broilers, and the efficacy of a mycotoxin deactivator based on clays, inactivated yeast and fermentation extracts. A total of 7200 straight run Vencobb 430 chicks were assigned for 42 d to 1 of 3 treatments in a randomized block design (8 pens per treatment): (1) BD: basal diet with residual mycotoxins; (2) MT: diet with 56 ppb AFB1; and (3) TN: MT + mycotoxin deactivator at 2 kg/t. Performance parameters were recorded on weekly basis, and blood was collected at d21 and d42. MT group shows significant lower BW than BD from 14 to 42 d, resulting in a decreased FCR (+2.6% for the overall period). TN can restore the performance compared with MT (−9.7% FCR) and to BD (−7.1% FCR). AFM1 in plasma, as a biomarker of chronic exposure, showed reduction of AFB1 assimilation (from −42% to −75%, P < 0.01) in the TN treated birds. AFB1 induces inflammation as shown by the increased secretion of pro-inflammatory cytokines such as IL1b, IL6, IL8, TNFa between BD and MT. TN treatment aimed to decrease these parameters relative to MT and to promote the production of anti-inflammatory IL10. Birds receiving TN treatment have higher antioxidant indicators such as superoxide dismutase, glutathione and glutathione peroxidase compared with MT and showed lower lipid peroxidation marker like malondialdehyde. This study highlights the complementary modes of action of this mycotoxin deactivator by inhibiting AFB1 in the intestine and by repairing damage caused at the gut level on inflammation, immune response and redox balance. This leads to sustained broiler resilience and performance.
Key Words: aflatoxin, broiler, immunity, inflammation, antioxidant.
Presented at the 9th Symposium on Gut Health in Production of Food Animals, St. Louis, USA, 2021. For information on the next edition, click here.