Simple Summary: L-Glutamate (Glu) and L-glutamine (Gln) are abundant amino acids in feedstuffs and ruminants. Dietary Gln is extensively utilized by ruminal microbes, but dietary Glu undergoes little catabolism by these microbes because they do not take up extracellular Glu due to the lack of the necessary transporters. Microbial proteins and dietary Glu exit the rumen into the abomasum and then the small intestine, where proteins undergo hydrolysis to release amino acids (including Glu and Gln) and small peptides for transport into enterocytes. Most dietary Gln escapes the underdeveloped rumen of preruminants, instead entering the abomasum and the small intestine. Within the enterocytes, Glu and Gln are extensively oxidized to provide ATP and are actively used to synthesize glutathione and other amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate), whereas Gln and aspartate are essential for purine and pyrimidine syntheses. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extracted by the small intestine and, therefore, do not enter the portal circulation. De novo synthesis plays a crucial role in maintaining the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health in ruminants. Dietary supplementation with Glu or Gln can safely improve the digestive, endocrine, and reproduction functions of ruminants and thus augment health and production parameters.
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.
Keywords: amino acids; glutamate; glutamine; health; metabolism; nutrition; ruminants
1. Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2022.
2. Hugentobler, S.A.; Diskin, M.G.; Leese, H.J.; Humpherson, P.G.; Watson, T.; Sreenan, J.M.; Morris, D.G. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 2007, 74, 445–454. [CrossRef] [PubMed]
3. Ding, L.L.; Matsumura, M.; Obitsu, T.; Sugino, T. Phytol supplementation alters plasma concentrations of formate, amino acids, and lipid metabolites in sheep. Animal 2021, 15, 100174. [CrossRef] [PubMed]
4. Gilbreath, K.R.; Bazer, F.W.; Satterfield, M.C.; Wu, G. Amino acid nutrition and reproductive performance in ruminants. Adv. Exp. Med. Biol. 2021, 1285, 43–61. [PubMed]
5. Wu, G.; Bazer, F.W.; Dai, Z.L.; Li, D.F.; Wang, J.J.; Wu, Z.L. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [CrossRef] [PubMed]
6. Williams, A.P.; Hewitt, D. The amino acid requirements of the preruminant calf. Br. J. Nutr. 1979, 41, 311–319. [CrossRef] [PubMed]
7. Okine, E.K.; Glimm, D.R.; Thompson, J.R.; Kennelly, J.J. Influence of stage of lactation on glucose and glutamine metabolism in isolated enterocytes from dairy cattle. Metabolism 1995, 44, 325–331. [CrossRef] [PubMed]
8. Hou, Y.Q.; Wu, G. L-Glutamate nutrition and metabolism in swine. Amino Acids 2018, 50, 1497–1510. [CrossRef] [PubMed]
9. Runyan, C.A.; Downey-Slinker, E.D.; Ridpath, J.F.; Hairgrove, T.B.; Sawyer, J.E.; Herring, A.D. Feed intake and weight changes in Bos indicus-Bos taurus crossbred steers following bovine viral diarrhea virus type 1b challenge under production conditions. Pathogens 2017, 6, 66. [CrossRef] [PubMed]
10. Dwyer, C.M. The Welfare of Sheep; Springer: New York, NY, USA, 2008.
11. Koeln, L.L.; Schlagheck, T.G.; Webb, K.E., Jr. Amino acid flux across the gastrointestinal tract and liver of calves. J. Dairy Sci. 1993, 76, 2275–2285. [CrossRef]
12. Pelaez, R.; Phillips, D.D.; Walker, D.M. Amino acid supplementation of isolated soybean protein in milk replacers for preruminant lambs. Adv. Exp. Med. Biol. 1978, 105, 443–452. [PubMed]
13. Kepro. Amino Acid Oral. 2017. Available online: https://www.kepro.nl/products/amino-acid-oral-2 (accessed on 5 November 2017).
14. Gilbreath, K.R.; Nawaratna, G.I.; Wickersham, T.A.; Satterfield, M.C.; Bazer, F.W.; Wu, G. Ruminal microbes of adult steers do not degrade extracellular L-citrulline and have a limited ability to metabolize extra-cellular L-glutamate. J. Anim. Sci. 2019, 97, 3611–3616. [CrossRef] [PubMed]
15. Kung, L.M., Jr.; Rode, L.M. Amino acid metabolism in ruminants. Anim. Feed Sci. Technol. 1996, 59, 167–172. [CrossRef]
16. Lewis, T.R.; Emery, R.S. Metabolism of amino acids in the bovine rumen. J. Dairy Sci. 1962, 45, 1487–1492. [CrossRef]
17. Bergen, W.G. Amino acids in beef cattle nutrition and production. Adv. Exp. Med. Biol. 2021, 1285, 29–42. [PubMed]
18. Cao, Y.; Yao, J.; Sun, X.; Liu, S.; Martin, G.B. Amino acids in the nutrition and production of sheep and goats. Adv. Exp. Med. Biol. 2021, 1285, 63–79. [PubMed]
19. Gilbreath, K.R.; Nawaratna, G.I.; Wickersham, T.A.; Satterfield, M.C.; Bazer, F.W.; Wu, G. Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J. Anim. Sci. 2020, 98, skz370. [CrossRef] [PubMed]
20. Gilbreath, K.R.; Bazer, F.W.; Satterfield, M.C.; Cleere, J.J.; Wu, G. Ruminal microbes of adult sheep do not degrade extracellular L-citrulline. J. Anim. Sci. 2020, 98, skaa164. [CrossRef] [PubMed]
21. Tagari, H.; Bergman, E.N. Intestinal disappearance and portal blood appearance of amino acids in sheep. J. Nutr. 1978, 108, 790–803. [CrossRef]
22. El-Kadi, S.W.; Baldwin, R.L., 6th; McLeod, K.R.; Sunny, N.E.; Bequette, B.J. Glutamate is the major anaplerotic substrate in the tricarboxylic acid cycle of isolated rumen epithelial and duodenal mucosal cells from beef cattle. J. Nutr. 2009, 139, 869–875. [CrossRef]
23. Lapierre, H.; Bernier, J.F.; Dubreuil, P.; Reynolds, C.K.; Farmer, C.; Ouellet, D.R.; Lobley, G.E. The effect of feed intake level on splanchnic metabolism in growing beef steers. J. Anim. Sci. 2000, 78, 1084–1099. [CrossRef]
24. Wu, G.; Li, P. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [CrossRef] [PubMed]
25. Davis, T.A.; Fiorotto, M.L.; Reeds, P.J. Amino acid compositions of body and milk protein change during the suckling period in rats. J. Nutr. 1993, 123, 947–956. [CrossRef] [PubMed]
26. Li, P.; Wu, G. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 2020, 52, 523–542. [CrossRef] [PubMed]
27. Alumot, E.; Bruckental, I.; Tadmor, A.; Kennit, C.; Holstein, P. Effect of proline on arginine uptake and nitrogen metabolism of lactating goats. J. Dairy. Sci. 1983, 66, 1243–1247. [CrossRef] [PubMed]
28. Davis, T.A.; Nguyen, H.V.; Garciaa-Bravo, R.; Fiorotto, M.L.; Jackson, E.M.; Lewis, D.S.; Lee, D.R.; Reeds, P.J. Amino acid composition of human milk is not unique. J. Nutr. 1994, 124, 1126–1132. [CrossRef] [PubMed]
29. Mepham, T.B. Amino acid utilization by lactating mammary gland. J. Dairy Sci. 1982, 65, 287–298. [CrossRef] [PubMed]
30. Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2018.
31. Baetz, A.L.; Hubbert, W.T.; Graham, C.K. Developmental changes of free amino acids in bovine fetal fluids with gestational age and the interrelationships between the amino acid concentrations in the fluid compartments. J. Reprod. Fertil. 1975, 44, 437–444. [CrossRef] [PubMed]
32. Kwon, H.; Spencer, T.E.; Bazer, F.W.; Wu, G. Developmental changes of amino acids in ovine fetal fluids. Biol. Reprod. 2003, 68, 1813–1820. [CrossRef] [PubMed]
33. Kwon, H.; Wu, G.; Bazer, F.W.; Spencer, T.E. Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol. Reprod. 2003, 69, 1626–1634. [CrossRef] [PubMed]
34. Satterfield, M.C.; Gao, H.J.; Li, X.L.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol. Reprod. 2010, 82, 224–231. [CrossRef]
35. Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 2012, 43, 1593–1603. [CrossRef] [PubMed]
36. Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2013, 45, 489–499. [CrossRef] [PubMed]
37. Suh, J.-K.; Nejad, J.G.; Lee, Y.-S.; Kong, H.-S. Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro. Anim Biosci. 2021, 35, 422–433. [CrossRef] [PubMed]
38. Malheiros, J.M.; Correia, B.S.B.; Ceribeli, C.; Cardoso, D.R.; Colnago, L.A.; Junior, S.B.; Reecy, J.M.; Mourão, G.B.; Coutinho, L.L.; Palhares, J.C.P.; et al. Comparative untargeted metabolome analysis of ruminal fuid and feces of Nelore steers (Bos indicus). Sci. Rep. 2021, 11, 12752. [CrossRef] [PubMed]
39. Huang, J.; Jia, Y.; Li, Q.; Burris, W.R.; Bridges, P.J.; Matthews, J.C. Hepatic glutamate transport and glutamine synthesis capacities are decreased in finished vs. growing beef steers, concomitant with increased GTRAP3-18 content. Amino Acids 2018, 50, 513–525. [CrossRef]
40. Miles, E.D.; McBride, B.W.; Jia, Y.; Liao, S.F.; Boling, J.A.; Bridges, P.J.; Matthews, J.C. Glutamine synthetase and alanine transaminase expression are decreased in livers of aged vs. young beef cows and GS can be upregulated by 17β-estradiol implants. J. Anim. Sci. 2015, 93, 4500–4509. [CrossRef] [PubMed]
41. Santos, M.M.; Costa, T.C.; Mendes, T.A.O.; Dutra, L.L.; Silva, D.N.L.; Araújo, R.D.; Serão, N.V.L.; Rennó, L.N.; Silva, Y.F.R.S.; Detmann, E.; et al. Can the post-ruminal urea release impact liver metabolism, and nutritional status of beef cows at late gestation? PLoS ONE 2023, 18, e0293216. [CrossRef] [PubMed]
42. Blake, J.S.; Salter, D.N.; Smith, R.H. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and ureacontaining diets. Ammonia assimilation into intracellular bacterial amino acids. Br. J. Nutr. 1983, 50, 769–782. [CrossRef] [PubMed]
43. Bell, A.W.; Bauman, D.E. Regulation of amino acid metabolism in dairy and beef cattle. In Proceedings of the 21st Annual Southwest Nutrition & Management Conference, Tempe, AZ, USA, 23–24 February 2006; pp. 34–44.
44. Stoll, B.; Burrin, D.G. Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J. Anim. Sci. 2006, 84 (Suppl. S13), E60–E72. [CrossRef]
45. Li, P.; He, W.L.; Wu, G. Composition of amino acids in foodstuffs for humans and animals. Adv. Exp. Med. Biol. 2021, 1332, 189–210. [PubMed]
46. Mahgoub, O.; Lodge, G.A. A comparative study on growth, body composition and carcass tissue distribution in Omani sheep and goats. J. Agric. Sci. 1998, 131, 329–339. [CrossRef]
47. Odongo, N.E.; Greenwood, S.L.; Or-Rashid, M.M.; Radford, D.; Alzahal, O.; Shoveller, A.K.; Lindinger, M.I.; Matthews, J.C.; McBride, B.W. Effects of nutritionally induced metabolic acidosis with or without glutamine infusion on acid-base balance, plasma amino acids, and plasma nonesterified fatty acids in sheep. J. Anim. Sci. 2009, 87, 1077–1084. [CrossRef] [PubMed]
48. Wu, G.; Greene, L.W. Glutamine and glucose metabolism in bovine blood lymphocytes. Comp. Biochem. Physiol. 1992, 103B, 821–825. [CrossRef] [PubMed]
49. Wijayasinghe, M.S.; Milligan, L.P.; Thompson, J.R. In vitro degradation of leucine in muscle, adipose tissue, liver, and kidney of fed and starved sheep. Biosci. Rep. 1983, 3, 1133–1140. [CrossRef] [PubMed]
50. Eisemann, J.H.; Huntington, G.B.; Catherman, D.R. Patterns of nutrient interchange and oxygen use among portal-drained viscera, liver, and hindquarters of beef steers from 235 to 525 kg body weight. J. Anim. Sci. 1996, 74, 1812–1831. [CrossRef] [PubMed]
51. Nieto, R.; Obitsu, T.; Fernández-Quintela, A.; Bremner, D.; Milne, E.; Calder, A.G.; Lobley, G.E. Glutamine metabolism in ovine splanchnic tissues: Effects of infusion of ammonium bicarbonate or amino acids into the abomasum. Br. J. Nutr. 2002, 87, 357–366. [CrossRef] [PubMed]
52. Huntington, G.B.; Reynolds, C.K. Oxygen consumption and metabolite flux of bovine portal-drained viscera and liver. J. Nutr. 1987, 117, 1167–1173. [CrossRef] [PubMed]
53. Ballard, F.J.; Filsell, O.H.; Jarrett, I.G. Amino acid uptake and output by the sheep hind limb. Metabolism 1976, 25, 415–418. [CrossRef] [PubMed]
54. Chung, M.; Teng, C.; Timmerman, M.; Meschia, G.; Battaglia, F.C. Production and utilization of amino acids by ovine placenta in vivo. Am. J. Physiol. 1998, 274, E13–E22. [CrossRef] [PubMed]
55. Matthews, J.C.; Huang, J.; Rentfrow, G. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages. J. Anim. Sci. 2016, 94, 1267–1275. [CrossRef] [PubMed]
56. Pell, J.M.; Jeacock, M.K.; Shepherd, D.A.L. Glutamate and glutamine metabolism in the ovine placenta. J. Agric. Sci. 1983, 101, 275–281. [CrossRef]
57. Bergman, E.N.; Kaufman, C.F.; Wolff, J.E.; Williams, H.H. Renal metabolism of amino acids and ammonia in fed and fasted pregnant sheep. Am. J. Physiol. 1974, 226, 833–837. [CrossRef] [PubMed]
58. Heitmann, R.N.; Bergman, E.N. Glutamine metabolism, interorgan transport and glucogenicity in the sheep. Am. J. Physiol. 1978, 234, E197–E203. [CrossRef] [PubMed]
59. Eisemann, J.H.; Huntington, G.B. Metabolite flux across portal-drained viscera, liver, and hindquarters of hyperinsulinemic, euglycemic beef steers. J. Anim. Sci. 1994, 72, 2919–2929. [CrossRef]
60. Lei, J.; Feng, D.Y.; Zhang, Y.L.; Zhao, F.Q.; Wu, Z.L.; San Gabriel, A.; Fujishima, Y.; Uneyama, H.; Wu, G. Nutritional and regulatory role of branched-chain amino acids in lactation. Front. Biosci. 2012, 17, 2725–2739. [CrossRef] [PubMed]
61. Lobley, G.E.; Milano, G.D. Regulation of hepatic nitrogen metabolism in ruminants. Proc. Nutr. Soc. 1997, 56, 547–563. [CrossRef]
62. Li, P.; Knabe, D.A.; Kim, S.W.; Lynch, C.J.; Hutson, S.M.; Wu, G. Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J. Nutr. 2009, 139, 502–1509. [CrossRef] [PubMed]
63. Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J. Nutr. 2010, 140, 1242–1248. [CrossRef] [PubMed]
64. Heitmann, R.N.; Hoover, W.H.; Sniffen, C.J. Gluconeogenesis from amino acids in mature wether sheep. J. Nutr. 1973, 103, 1587–1593. [CrossRef] [PubMed]
65. Tanha, T.; Amanlou, H.; Chamani, M.; Ebrahimnezhad, Y.; Salamatdost, R.; Maheri, N.; Fathi, M. Impact of glutamine on glutathione peroxidase activity (GPX) and total antioxidant status (TAS) during transition period in Holstein dairy cows. J. Cell Anim. Biol. 2011, 5, 206–214.
66. Loor, J.J.; Lopreiato, V.; Palombo, V.; D’Andrea, M. Physiological impact of amino acids during heat stress in ruminants. Anim. Front. 2023, 13, 69–80. [CrossRef] [PubMed]
67. Caroprese, M.; Albenzio, M.; Marino, R.; Santillo, A.; Sevi, A. Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine. Res. Vet. Sci. 2011, 93, 202–209. [CrossRef] [PubMed]
68. Ocheja, O.B.; Ayo, J.O.; Aluwong, T.; Minka, N.S. Effects of L-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season. Trop. Anim. Health Prod. 2017, 49, 1273–1280. [CrossRef] [PubMed]
69. Hoskin, S.O.; Lobley, G.E.; Coop, R.L.; Jackson, F. The effect of cysteine and glutamine supplementation on sheep infected with Trichostrongylus colubriformis. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 72–76.
70. Jafari, A.; Emmanuel, D.G.V.; Christopherson, R.J.; Thompson, J.R.; Murdoch, G.K.; Woodward, J.; Field, C.J.; Ametaj, B.N. Parenteral administration of glutamine modulates acute phase response in postparturient dairy cows. J. Dairy Sci. 2006, 89, 4660–4668. [CrossRef]
71. McNeil, C.J.; Hoskin, S.O.; Bremner, D.M.; Holtrop, G.; Lobley, G.E. Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge. Br. J. Nutr. 2016, 116, 211–222. [CrossRef] [PubMed]
72. Sawant, O.B.; Wu, G.; Washburn, S.E. Maternal L-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in ewes. Amino Acids 2015, 47, 1183–1192. [CrossRef]
73. Wang, S.; Wang, F.; Kong, F.; Cao, Z.; Wang, W.; Yang, H.; Wang, Y.; Bi, Y.; Li, S. Effect of supplementing different levels of L-glutamine on Holstein calves during weaning. Antioxidants 2022, 11, 542. [CrossRef] [PubMed]
74. Wu, G.; Bazer, F.W.; Satterfield, M.C.; Gilbreath, K.R.; Posey, E.A.; Sun, Y.X. L-Arginine nutrition and metabolism in ruminants. Adv. Exp. Med. Biol. 2022, 1354, 177–206. [PubMed]
75. National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007.
76. Brake, D.W.; Titgemeyer, E.C.; Anderson, D.E. Duodenal supply of glutamate and casein both improve intestinal starch digestion in cattle but by apparently different mechanisms. J. Anim. Sci. 2014, 92, 4057–4067. [CrossRef] [PubMed]
77. Howell, J.A.; Matthews, A.D.; Swanson, K.C.; Harmon, D.L.; Matthews, J.C. Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas. J. Anim. Sci. 2001, 79, 1329–1336. [CrossRef] [PubMed]
78. Huntington, G.B.; Prior, R.L. Net absorption of amino acids by portal-drained viscera and hind half of beef cattle fed a high concentrate diet. J. Anim. Sci. 1985, 60, 1491–1499. [CrossRef] [PubMed]
79. Wolff, J.E.; Bergman, E.N. Metabolism and interconversions of five plasma amino acids by tissues of the sheep. Am. J. Physiol. 1972, 223, 447–454. [CrossRef] [PubMed]
80. Oba, M.; Baldwin, R.L., 4th; Bequette, B.J. Oxidation of glucose, glutamate, and glutamine by isolated ovine enterocytes in vitro is decreased by the presence of other metabolic fuels. J. Anim. Sci. 2004, 82, 479–486. [CrossRef] [PubMed]
81. Sultana, H.; Kitano, A.; Wadud, S.; Takahashi, T.; Morita, T.; Onodera, R. Synthesis of citrulline from ornithine by the small intestinal mucosa of cattle. Anim. Sci. J. 2003, 74, 283–287. [CrossRef]
82. Dillon, E.L.; Wu, G. Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids 2021, 53, 1957–1966. [CrossRef] [PubMed]
83. McCoard, S.A.; Pacheco, D. The signifcance of N-carbamoylglutamate in ruminant production. J. Anim. Sci. Biotechnol. 2023, 14, 48. [CrossRef] [PubMed]
84. Black, A.L.; Anand, R.S.; Bruss, M.L.; Brown, C.A.; Nakagiri, J.A. Partitioning of amino acids in lactating cows: Oxidation to carbon dioxide. J. Nutr. 1990, 120, 700–710. [CrossRef] [PubMed]
85. Wu, G.; Bazer, F.W.; Johnson, G.A.; Knabe, D.A.; Burghardt, R.C.; Spencer, T.E.; Li, X.L.; Wang, J.J. Important roles for L-glutamine in swine nutrition and production. J. Anim. Sci. 2011, 89, 2017–2030. [CrossRef] [PubMed]
86. Burrin, D.G.; Ferrell, C.L.; Eisemann, J.H.; Britton, R.A. Level of nutrition and splanchnic metabolite flux in young lambs. J. Anim. Sci. 1991, 69, 1082–1091. [CrossRef]
87. Doepel, C.L.; Lobley, G.E.; Bernier, J.F.; Dubreuil, P.; Lapierre, H. Effect of glutamine supplementation on splanchnic metabolism in lactating dairy cows. J. Dairy Sci. 2007, 90, 4325–4333. [CrossRef] [PubMed]
88. Nappert, G.; Zello, G.A.; Naylor, J.M. Intestinal metabolism of glutamine and potential use of glutamine as a therapeutic agent in diarrhoeic calves. J. Am. Vet. Med. Assoc. 1997, 211, 547–553. [CrossRef] [PubMed]
89. Egan, A.R.; Black, A.L. Glutamic acid metabolism in the lactating dairy cow. J. Nutr. 1968, 96, 450–460. [CrossRef] [PubMed]
90. Egan, A.R.; Moller, F.; Black, A.L. Metabolism of glutamic acid, valine and arginine by the lactating goat. J. Nutr. 1970, 100, 419–428. [CrossRef] [PubMed]
91. Heitmann, R.N.; Bergman, E.N. Transport of amino acids in whole blood and plasma of sheep. Am. J. Physiol. 1980, 239, E242–E247. [PubMed]
92. Bergman, E.N.; Heitmann, R.N. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed. Proc. 1978, 37, 1228–1232. [PubMed]
93. Bröer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008, 88, 249–286. [CrossRef] [PubMed]
94. Xue, Y.; Liao, S.F.; Son, K.W.; Greenwood, S.L.; McBride, B.W.; Boling, J.A.; Matthews, J.C. Metabolic acidosis in sheep alters expression of renal and skeletal muscle amino acid enzymes and transporters. J. Anim. Sci. 2010, 88, 707–717. [CrossRef] [PubMed]
95. Larsen, M.; Kristensen, N.B. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. J. Dairy Sci. 2009, 92, 3306–3318. [CrossRef] [PubMed]
96. Reynolds, C.K. Splanchnic metabolism of amino acids in ruminants. In Ruminant Physiology; Sejrsen, K., Hvelplund, T., Nielsen, M.O., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 225–248.
97. Plaizier, J.C.; Walton, J.P.; McBride, B.W. Effect of post-ruminal infusion of glutamine on plasma amino acids, milk yield and composition in lactating dairy cows. Can. J. Anim. Sci. 2001, 81, 229–235. [CrossRef]
98. Meijer, G.A.L.; de Visser, H.; van der Meulen, J.; van der Koelen, C.J.; Klop, A. Effect of glutamine or propionate infused into the abomasum on milk yield, milk composition, nitrogen retention and net flux of amino acids across the udder of high yielding dairy cows. In Protein metabolism and nutrition. Proceedings 7th International Symposium, Vale de Santarém, Portugal, 24–27 May 1995; Nunes, A.F., Portugal, A.V., Costa, J.P., Ribeiro, J.R., Eds.; Estacoa Zootechnica National: Santerm, Portugal, 1995; pp. 157–160.
99. Meijer, G.A.L.; Van der Meulen, J.; Bakker, J.G.M.; Van der Koelen, C.J.; Van Vuuren, A.M. Free amino acids in plasma and muscle of high yielding dairy cows in early lactation. J. Dairy Sci. 1995, 78, 1131–1141. [CrossRef] [PubMed]
100. del Castillo, J.R.; Súlbaran-Carrasco, M.C.; Burguillos, L. Glutamine transport in isolated epithelial intestinal cells. Identification of a Na+-dependent transport mechanism, highly specific for glutamine. Eur. J. Physiol. 2002, 445, 413–422. [CrossRef] [PubMed]
101. Brockman, R.P.; Bergman, E.N. Effect of glucagon on plasma alanine and glutamine metabolism and hepatic gluconeogenesis in sheep. Am. J. Physiol. 1975, 228, 1628–1633. [CrossRef] [PubMed]
102. Welbourne, T.C. Interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 1987, 253, F1069–F1076. [CrossRef] [PubMed]
103. Taylor, L.; Curthoys, N.P. Glutamine metabolism: Role in acid-base balance. Biochem. Mol. Biol. Educ. 2004, 32, 291–304. [CrossRef] [PubMed]
104. Freetly, H.C.; Ferrell, C.L.; Archibeque, S.L. Net flux of amino acids across splanchnic tissues of ewes during abomasal protein and glucose infusion. In Proceedings of Energy and Protein Metabolism and Nutrition; EAAP Publication No. 124; Wageningen Academic: Wageningen, The Netherlands, 2007; pp. 337–338.
105. Obitsu, T.; Bremner, D.; Milne, E.; Lobley, G.E. Effect of abomasal glucose infusion on alanine metabolism and urea production in sheep. Br. J. Nutr. 2000, 84, 157–163. [CrossRef] [PubMed]
106. Larsen, M.; Kristensen, N.B. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows. J. Dairy Sci. 2012, 95, 5946–5960. [CrossRef] [PubMed]
107. Pell, J.M.; Tooley, J.; Jeacock, M.K.; Shepherd, D.A.L. Glutamate and glutamine metabolism in tissues of developing lambs. J. Agric. Sci. 1983, 101, 265–273. [CrossRef]
108. Masters, C.J.; Horgan, D.J. Glutamate transaminase activity in sheep tissues, and the response to prolonged protein depletion. Aust. J. Biol. Sci. 1962, 15, 690–699. [CrossRef]
109. Minich, D.M.; Brown, B.I. A review of dietary (phyto)nutrients for glutathione support. Nutrients 2019, 11, 2073. [CrossRef] [PubMed]
110. Kim, J.Y.; Burghardt, R.C.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol. Reprod. 2011, 84, 1139–1147. [CrossRef] [PubMed]
111. Sawant, O.B.; Meng, C.; Wu, G.; Washburn, S.E. Prenatal alcohol exposure and maternal glutamine supplementation alter the mTOR signaling pathway in ovine fetal cerebellum and skeletal muscle. Alcohol 2020, 89, 93–102. [CrossRef] [PubMed]
112. Bucak, M.N.; Turner, P.B.; Sarıozkan, S.; Ulutas, P.A. Comparison of the effects of glutamine and an amino acid solution on post-thawed ram sperm parameters, lipid peroxidation and anti-oxidant activities. Small Rumin. Res. 2009, 81, 13–17. [CrossRef]
113. Sangeeta, S.; Arangasamy, A.; Kulkarni, S.; Selvaraju, S. Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Anim. Reprod. Sci. 2015, 161, 82–88. [CrossRef] [PubMed]
114. Topraggaleh, T.R.; Shahverdi, A.; Rastegarnia, A.; Ebrahimi, B.; Shafiepour, V.; Sharbatoghli, M.; Esmaeili, V.; Janzamin, E. Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull. Andrologia 2014, 46, 777–783. [CrossRef] [PubMed]
115. Gao, H.J.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Li, X.L.; Bazer, F.W. Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol. Reprod. 2009, 80, 86–93. [CrossRef] [PubMed]
116. Johnson, G.A.; Seo, H.; Bazer, F.W.; Wu, G.; Kramer, A.C.; McLendon, B.A.; Cain, J.W. Metabolic pathways utilized by the porcine conceptus, uterus and placenta. Mol. Reprod. Dev. 2023, 90, 673–683. [CrossRef] [PubMed]
117. Seo, H.; Kramer, A.C.; McLendon, B.A.; Cain, J.W.; Burghardt, R.C.; Wu, G.; Bazer, F.W.; Johnson, G.A. Elongating porcine coneptuses utilize glutaminolysis as an anaplerotic pathway to maintain the TCA cycle. Biol. Reprod. 2022, 107, 823–833. [CrossRef] [PubMed]
118. Széll, A.Z. The effect of glutamine on the development of sheep embryos in vitro. Theriogenology 1995, 44, 673–680. [CrossRef] [PubMed]
119. Meijer, G.A.L.; van der Meulen, J.; van Vuuren, A.M. Glutamine is a potentially limiting amino acid for milk production in dairy sows: A hypothesis. Metabolism 1993, 42, 356–364. [CrossRef]
120. Turner, A.E.; Rees, G.; Barrett, D.C.; Reyher, K.K. Does inclusion of glutamine in oral rehydration solutions improve recovery from mild to moderate diarrhoea in preweaned calves? Vet. Rec. 2016, 179, 283–284. [CrossRef] [PubMed]
121. National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001.
122. Oltjen, R.R.; Robbins, J.D.; Davis, R.E. Studies involving the use of glutamic acid in ruminant nutrition. J. Anim. Sci. 1964, 23, 767–770. [CrossRef]
123. Waldern, D.E.; Van Dyk, R.D. Effect of monosodium glutamate in starter rations on feed consumption and performance of early weaned calves. J. Dairy Sci. 1971, 54, 262–265. [CrossRef]
124. Galgan, M.W.; Russell, T.S. Use of Dyna-Ferm and monosodium glutamate in rations for lambs. Wash. Agric. Exp. Stat. Bull. 1968, 695, 1–3.
125. Colucci, P.E.; Grovum, W.L. Factors affecting the voluntary intake of food by sheep 6. The effect of monosodium glutamate on the palatability of straw diets by sham-fed and normal animals. Br. J. Nutr. 1993, 69, 37–47. [CrossRef] [PubMed]
126. Meza-Herrera, C.A. Puberty, kisspeptin and glutamate: A ceaseless golden braid. In Advances in Medicine and Biology; Benhardt, L.V., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2012; Volume 52, pp. 97–124.
127. Torres-Moreno, M.; Meza-Herrera, C.A.; González-Bulnes, A.; López-Medrano, J.I.; Mellado-Bosque, M.; Wurzinger, M.; TrejoCalzada, R. Effect of exogenous glutamate supply on the onset of puberty in goats: I. Serum levels of insulin. Trop. Subtrop. Agroecosystems 2009, 11, 193–196.
128. Nakanishi, Y.; Iwasaki, M.; Manda, M. Taste responses of cows to Umami (monosodium glutamate and disodium 5′ -inosinate). Anim. Sci. Technol. 1996, 67, 561–566.
129. Li, C.; Zhang, J.; Li, Y.; Zhao, X.; Liang, H.; Li, K.; Qu, M.; Qiu, Q.; Ouyang, K. Glutamate supplementation improves growth performance, rumen fermentation, and serum metabolites in heat-stressed Hu sheep. Front. Nutr. 2022, 9, 851386. [CrossRef] [PubMed]
130. Hisadomi, S.; Haruno, A.; Fujieda, T.; Sugino, T.; Oba, M. Rumen-protected glutamate supplementation in dairy cows. J. Dairy Sci. 2022, 105, 3129–3141. [CrossRef] [PubMed]
131. Soares, A.C.S.; Alves, J.P.M.; Fernandes, C.C.L.; Silva, M.R.L.; Conde, A.J.H.; Teixeira, D.Í.A.; Rondina, D. Use of monosodiumglutamate as a novel dietary supplement strategy for ovarian stimulation in goats. Anim. Reprod. 2023, 20, e20230094. [CrossRef] [PubMed]
132. Naylor, J.M.; Leibel, T.; Middleton, D.M. Effect of glutamine or glycine containing oral electrolyte solutions on mucosal morphology, clinical and biochemical findings, in calves with viral induced diarrhea. Can. J. Vet. Res. 1997, 61, 43–48. [PubMed]
133. Brooks, H.W.; White, D.G.; Hall, G.A.; Wagstaff, A.J.; Michell, A.R. Evaluation of a glutamine-containing oral rehydration solution for the treatment of calf diarrhoea using an Escherichia coli model. Vet. J. 1997, 153, 163–170. [CrossRef] [PubMed]
134. Brooks, H.W.; Hall, G.A.; Wagstaff, A.J.; Michell, A.R. Detrimental effects on villus form during conventional oral rehydration therapy for diarrhoea in calves; alleviation by a nutrient oral rehydration solution containing glutamine. Vet. J. 1998, 155, 263–274. [CrossRef] [PubMed]
135. Pal, B.; Pachauri, S.P. Effect of oral rehydration in neonatal calves treated for diarrhoea induced with Escherichia coli (0101:K99) infection. Indian J. Vet. Res. 2008, 17, 19–26.
136. Jin, L.; Dong, G.; Lei, C.; Zhou, J.; Zhang, S. Effects of dietary supplementation of glutamine and mannan oligosaccharides on plasma endotoxin and acute phase protein concentrations and nutrient digestibility in finishing steers. J. Appl. Anim. Res. 2014, 42, 160–165. [CrossRef]
137. Caroprese, M.; Albenzio, M.; Marino, R.; Santillo, A.; Sevi, A. Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. J. Dairy Sci. 2012, 96, 3002–3011. [CrossRef]
138. Washburn, S.E.; Sawant, O.B.; Lunde, E.R.; Wu, G.; Cudd, T.A. Acute alcohol exposure, acidemia or glutamine administration impacts amino acid homeostasis in ovine maternal and fetal plasma. Amino Acids 2014, 45, 543–554. [CrossRef] [PubMed]
139. Nemati, M.; Menatian, S.; Joz Ghasemi, S.; Hooshmandfar, R.; Taheri, M.; Saifi, T. Effect of protected-glutamine supplementation on performance, milk composition and some blood metabolites in fresh Holstein cows. Iran. J. Vet. Res. 2018, 19, 225–228. [PubMed]
140. Feyz, M.; Teimouri Yansari, A.; Chashnidel, Y.; Dirandeh, E. Effect of protein levels and rumen protected glutamine supplementation on blood metabolites, thyroid hormones, and redox status of heat stressed fattening lambs. Iran. J. Appl. Anim. Sci. 2021, 11, 557–565.
141. Wu, Q.; Xing, Z.; Liao, J.; Zhu, L.; Zhang, R.; Wang, S.; Wang, C.; Ma, Y.; Wang, Y. Effects of glutamine on rumen digestive enzymes and the barrier function of the ruminal epithelium in Hu lambs fed a high-concentrate finishing diet. Animals 2022, 12, 3418. [CrossRef] [PubMed]
142. Mohamadzadeh, H.; Yansari, A.T.; Dirandeh, E. Effects of protein levels and glutamine supplementation on hematological parameters, some inflammatory and immune indicators of Afshari fattening male lambs under heat stress condition. J. Rumin. Res. 2023, 11, 91–110.
143. van Keulen, P.; Khan, M.A.; Dijkstra, J.; Knol, F.; McCoard, S.A. Effect of arginine or glutamine supplementation and milk feeding allowance on small intestine development in calves. J. Dairy Sci. 2020, 103, 4754–4764. [PubMed]
144. Hu, Z.Y.; Su, H.W.; Li, S.L.; Cao, Z.J. Effects of parenteral administration of glutamine on autophagy of liver cell and immune responses in weaned calves. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1007–1014. [CrossRef] [PubMed]
145. Wickramasinghe, J.; Appuhamy, R. Effects of L-glutamine supplementation on growth, starter intake and health of early-weaned dairy Heifer calves. In Iowa State University Animal Industry Report; Iowa State University: Ames, IA, USA, 2019; pp. 1–5.
146. Henson, J.N.; Bogdonoff, P.D.; Thrasher, G.W. Levels of monosodium glutamate in pig starter preference. J. Anim. Sci. 1962, 21, 999–1000.
147. Torii, K.; Cagan, R.H. Biochemical studies of taste sensation. IX. Enhancement of L-[3H]glutamate binding to bovine taste papillae by 5′ -ribonucleotides. Biochim. Biophys. Acta 1980, 627, 313–323. [PubMed]
148. Ahangarani, M.A.; Bach, A.; Bassols, A.; Vidal, M.; Valent, D.; Ruiz-Herrera, S.; Terré, M. Performance, intestinal permeability, and metabolic profile of calves fed a milk replacer supplemented with glutamic acid. J. Dairy Sci. 2020, 103, 433–438. [CrossRef] [PubMed]
149. Grovum, W.L.; Chapman, H.W. Factors affecting the voluntary intake of food by sheep. 4. The effect of additives representing the primary tastes on sham intakes by oesophageal-fistulated sheep. Br. J. Nutr. 1988, 59, 63–72. [CrossRef] [PubMed]
150. Liu, Y.-X. Temperature control of spermatogenesis and prospect of male contraception. Front. Biosci. (Schol. Ed.) 2010, 2, 730–755. [PubMed]
151. Meza-Herrera, C.A.; Calderón-Leyva, G.; Soto-Sanchez, M.J.; Serradilla, J.M.; García-Martinez, A.; Mellado, M.; Veliz-Deras, F.G. Glutamate supply positively affects serum cholesterol concentrations without increases in total protein and urea around the onset of puberty in goats. Anim. Reprod. Sci. 2014, 147, 106–111. [PubMed]
152. Meza-Herrera, C.A.; González-Velázquez, A.; Veliz-Deras, F.G.; Rodríguez-Martínez, R.; Arellano-Rodriguez, G.; Serradilla, J.M.; García-Martínez, A.; Avendaño-Reyes, L.; Macías-Cruz, U. Short-term glutamate administration positively affects the number of antral follicles and the ovulation rate in cyclic adult goats. Reprod. Biol. 2014, 14, 298–301. [CrossRef] [PubMed]
153. Meza-Herrera, C.A.; Vergara-Hernández, H.P.; Paleta-Ochoa, A.; Álvarez-Ruíz, A.R.; Veliz-Deras, F.G.; Arellano Rodriguez, G.; Rosales-Nieto, C.A.; Macias-Cruz, U.; Rodriguez-Martinez, R.; Carrillo, E. Glutamate supply reactivates ovarian function while increases serum insulin and triiodothyronine concentrations in criollo x saanen-alpine yearlings’ goats during the anestrous season. Animals 2020, 10, 234. [CrossRef] [PubMed]
154. Luna-García, L.A.; Meza-Herrera, C.A.; Pérez-Marín, C.C.; Corona, R.; Luna-Orozco, J.R.; Véliz-Deras, F.G.; Delgado-Gonzalez, R.; Rodriguez-Venegas, R.; Rosales-Nieto, C.A.; Bustamante-Andrade, J.A.; et al. Goats as valuable animal model to test the targeted glutamate supplementation upon antral follicle number, ovulation rate, and LH-pulsatility. Biology 2022, 11, 1015. [CrossRef] [PubMed]
155. Smith, Q.R. Transport of Glutamate and other amino acids at the blood-brain barrier. J. Nutr. 2000, 130, 1016S–1022S. [CrossRef] [PubMed]
156. Acharya, S.; Petzel, E.A.; Hales, K.E.; Underwood, K.R.; Swanson, K.C.; Bailey, E.A.; Cammack, K.M.; Brake, D.W. Effects of long-term postgastric infusion of casein or glutamic acid on small intestinal starch digestion and energy balance in cattle. J. Anim. Sci. 2023, 101, skac329. [PubMed]
157. Padunglerk, A.; Prasanpanich, S.; Kongmun, P. Use of monosodium glutamate by-product in cow diet on performance of lactating dairy cows. Anim. Sci. J. 2017, 88, 86–93. [CrossRef]
158. Maeng, W.J.; Van Nevel, C.J.; Baldwin, R.L.; Morris, J.G. Rumen microbial growth rates and yields: Effect of amino acids and protein. J. Dairy Sci. 1976, 59, 68–79. [CrossRef] [PubMed]
159. Kajikawa, H.; Mitsumori, M.; Ohmomo, S. Stimulatory and inhibitory effects of protein amino acids on growth rate and efficiency of mixed ruminal bacteria. J. Dairy Sci. 2002, 85, 2015–2022. [CrossRef] [PubMed]
160. Kajikawa, H.; Mitsumori, M.; Tajima, K.; Kurihara, M. Short communication: Amino acid antagonistic to the amino acids inhibitory for growth rate of mixed ruminal bacteria. J. Dairy Sci. 2005, 88, 2601–2603. [CrossRef] [PubMed]
161. Danna, H.M.; Ballard, C.S.; Grant, R.J.; Cotanch, K.W.; Carter, M.P.; Suekawa, M. Effects of glutamate on microbial efficiency and metabolism in continuous culture of ruminal contents and on performance of mid-lactation dairy cows. Anim. Feed Sci. Technol. 2006, 130, 204–224. [CrossRef]
162. Nombekela, S.W.; Murphy, M.R.; Gonyou, H.W.; Marden, J.I. Dietary preferences in early lactation cows as affected by primary tastes and some common feed flavors. J. Dairy Sci. 1994, 77, 2393–2399. [CrossRef] [PubMed]
163. Rezaei, R.; San Gabriel, A.; Wu, G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022, 54, 1055–1068. [CrossRef]
164. Calderón-Leyva, D.R.M.G.; Meza-Herrera, C.A.; Arellano-Rodriguez, G.; Gaytan-Alemán, L.R.; Alvarado-Espino, A.S.; GonzalezGraciano, E.A.; Delgado-Bermejo, J.V.; Véliz-Deras, F.G. Effect of glutamate supplementation upon semen quality of young seasonally sexual-inactive Dorper rams. J. Anim. Res. 2017, 7, 419–424. [CrossRef]
165. Roberts, A.; Lynch, B.; Rietjens, I. Risk assessment paradigm for glutamate. Ann. Nutr. Metab. 2018, 73 (Suppl. S5), 53–64. [CrossRef]
166. Meza-Herrera, C.A.; Torres-Moreno, M.; Lopez-Medrano, J.I.; Gonzalez-Bulnes, A.; Veliz, F.G.; Mellado, M.; Wurzinger, M.; SotoSanchez, M.J.; Calderon-Leyva, M.G. Glutamate supply positively affects serum release of triiodothronine and insulin across time without increases of glucose during the onset of puberty in female goats. Anim. Reprod. Sci. 2011, 125, 74–80. [CrossRef] [PubMed]
167. Sawant, O.B.; Ramadoss, J.; Hankins, G.D.; Wu, G.; Washburn, S.E. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol. Amino Acids 2014, 46, 1981–1996. [CrossRef] [PubMed]
168. Wu, G.; Meier, S.A.; Knabe, D.A. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 1996, 126, 2578–2584. [CrossRef]
169. Dong, G.Z.; Liu, S.M.; Wu, Y.X.; Lei, C.L.; Zhou, J.; Zhang, S. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism. Acta Vet. Scand. 2011, 53, 48. [CrossRef] [PubMed]
170. Ametaj, B.N.; Koenig, K.M.; Dunn, S.M.; Yang, W.Z.; Zebeli, Q.; Beauchemin, K.A. Backgrounding and finishing diets are associated with inflammatory responses in feedlot steers. J. Anim. Sci. 2009, 87, 1314–1320. [CrossRef]
171. Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J. Anim. Sci. 2008, 86, 827–835. [CrossRef] [PubMed]
172. Lobley, G.E.; Hoskin, S.O.; McNeil, C.J. Glutamine in animal science and production. J. Nutr. 2001, 131, 2525S–2531S. [CrossRef]
173. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [CrossRef] [PubMed]
174. Prpar, S.; Martignani, E.; Dovc, P.; Baratta, M. Identification of goat mammary stem/progenitor cells. Biol. Reprod. 2012, 86, 117. [CrossRef] [PubMed]
175. Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 2003, 86, 1201–1217. [CrossRef] [PubMed]
176. Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86 (Suppl. S14), E293–E305. [CrossRef] [PubMed]
177. Taylor-Edwards, C.C.; Burrin, D.G.; Kristensen, N.B.; Holst, J.J.; McLeod, K.R.; Harmon, D.L. Glucagon-like peptide-2 (GLP-2) increases net amino acid utilization by the portal-drained viscera of ruminating calves. Animal 2012, 6, 1985–1997. [CrossRef] [PubMed]
178. Drackley, J.K.; Blome, R.M.; Bartlett, K.S.; Bailey, K.L. Supplementation of 1% L-glutamine to milk replacer does not overcome the growth depression in calves caused by soy protein concentrate. J. Dairy Sci. 2006, 89, 1688–1693. [CrossRef] [PubMed]
179. da Silva, J.T.; Manzoni, T.; Rocha, N.B.; Santos, G.; Miqueo, E.; Slanzon, G.S.; Bittar, C.M.M. Evaluation of milk replacer supplemented with lysine and methionine in combination with glutamate and glutamine in dairy calves. J. Appl. Anim. Res. 2018, 46, 960–966. [CrossRef]
180. Kidd, M.T.; Maynard, C.W.; Mullenix, G.J. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [CrossRef] [PubMed]