A 10-week feeding trial was conducted to evaluate the effects of supplementing dif- ferent levels of dl-methionyl-dl-methionine (AQUAVI® Met-Met) in plant protein– based diets on Litopenaeus vannamei. The positive control (PC) and negative control (NC) diets were designed with 20% and 8% fishmeal respectively, and other six diets were formulated with graded levels of Met-Met from 0.05% to 0.30% with a 0.05% increment on the basis of NC diet (MM 0.05–MM 0.3). Six replicates were randomly assigned to each diet with 50 shrimp each having initial weight of 0.98 ± 0.02 g. The variation of FM concentration from 20% to 8% and supplemented with graded levels of Met-Met did not affect the survival rate, feed conversion ratio, protein efficiency ratio, whole body and muscle proximate compositions (p > 0.05). However, diets with ≤0.20% Met-Met supplementation resulted in significantly increased weight gain and specific growth rate, after which both parameters reached plateau. Shrimp fed the NC diet showed significantly lower total essential amino acid (EAA) content in muscle (p < 0.05). Supplementation of Met-Met significantly improved apparent digestibility coefficients of dry matter, crude protein, lipid, phosphorus and EAAs (p < 0.05). Based on broken-line analysis, the methionine requirement for white shrimp was estimated to be 0.87% when using Met-Met as methionine source.
KEYWORDS fishmeal reduction, growth performance, Litopenaeus vannamei, Met-Met, plant protein
Adibi, S. A. (1997). The oligopeptide transporter (Pept-1) in human intes- tine: Biology and function. Gastroenterology, 113, 332–340. https:// doi.org/10.1016/s0016-5085(97)70112-4
Amaya, E. A., Davis, D. A., & Rouse, D. B. (2007). Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus van- namei) reared under pond conditions. Aquaculture, 262, 393–401. https://doi.org/10.1016/j.aquaculture.2006.11.015
AOAC. (1995). Official methods of analysis of the Association of Official Analytical Chemists (16th ed.). Arlington, Virginia: AOAC.
Baker, D. H. (2006). Comparative species utilization and toxicity of sul- fur amino acids. Journal of Nutrition, 136, 1670S–1675S. https://doi. org/10.1093/jn/136.6.1670s
Browdy, C. L., Bharadwaj, A. S., Venero, J. A., & Nunes, A. (2012). Supplementation with 2-hydroxy-4-(methylthio)butanoic acid (HMTBa) in low fish meal diets for the white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 18, 432–440. https://doi. org/10.1111/j.1365-2095.2011.00912.x
Chaplin, A. E., Huggins, A. K., & Munday, K. A. (1967). The dis- tribution of l-α-aminotransferases in Carcinus maenas. Comparative Biochemistry & Physiology, 20, 195–198. https://doi. org/10.1016/0010-406x(67)90733-5
Chi, S. Y., Tan, B. P., Lin, H. Z., Mai, K. S., Qh, A. I., Wang, X. J. … Liufu, Z. G. (2015). Effects of supplementation of crystalline or coated me- thionine on growth performance and feed utilization of the pacific white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 17, e1–e9. https://doi.org/10.1111/j.1365-2095.2009.00710.x
Cho, C. Y., & Kaushik, S. J. (1990). Nutritional energetics in fish: Energy and protein utilization in rainbow trout (Salmo gairdneri). World Review of Nutrition and Dietetics, 61, 132–172. https://doi.org/10.1159/00041 7529
Coloso, R. M., Murillo-Gurrea, D., Borlongan, I. G., & Catacutan, M. R. (1999). Sulphur amino acid requirement of juvenile Asian sea bass Lates calcarifer. Journal of Applied Ichthyology, 15, 54–58. https://doi. org/10.1046/j.1439-0426.1999.00123.x
El-Sayed, A. F. M. (1998). Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquaculture Research, 29(4), 275–280. https://doi.org/10.1046/j.1365-2109.1998.00199.x
Espe, M., Liaset, B., Hevrøy, E., & El-Mowafi, A. (2010). DL-methi- onine enrichment in diets fed to Atlantic salmon increases appar- ent digestibility. Aquaculture Research, 42, 1123–1130. https://doi. org/10.1111/j.1365-2109.2010.02700.x
Façanha, F. N., Oliveira-Neto, A. R., Figueiredo-Silva, C., & Nunes, A. J. P. (2016). Effect of shrimp stocking density and graded levels of dietary methionine over the growth performance of Litopenaeus vannamei reared in a green-water system. Aquaculture, 463, 16–21. https://doi. org/10.1016/j.aquaculture.2016.05.024
FAO, Food and Agriculture Organization of the United Nations. (2009). The state of world fisheries and aquaculture 2008 (p. 196). Rome, Italy: FAO Fisheries and Aquaculture Department.
Figueiredo-Silva, C., Lemme, A., Sangsue, D., & Kiriratnikom, S. (2015). Effect of DL-methionine supplementation on the success of al- most total replacement of fish meal with soybean meal in diets for hybrid tilapia (Oreochromis niloticus × Oreochromis mossambi- cus). Aquaculture Nutrition, 21, 234–241. https://doi.org/10.1111/ anu.12150
Fox, J. M., Lawrence, A. L., Patnaik, S., Forster, I., Ju, Z. Y., & Dominy, W. (2010). Estimation of feed level of methionine by Litopenaeus vannamei (Boone) using covalently-attached and crystalline sources in low-protein semi-purified diets. In L. E. Cruz-Suárez, D. Ricque- Marie, M. Tapia-Salazar, M. G. Nieto-López, D. A. Villareal-Cavazos, & D. Gamboa (Eds.), Avances en Nutrición Acuícola X. Memorias del X Simposium Internacional de Nutrición Acuícola (pp. 232–249). Monterrey, México: San Nicolás de la Garza.
Fox, J. M., Lawrence, A. L., & Smith, F. (2004). Development of a low-fish- meal feed formulation for commercial production of Litopenaeus van- namei. Avances en Nutricion Acuicola VII. Memorias Del VII Simposium Internacional De Nutricion Acuicola, 11, 16–19.
Gan, L., Liu, Y. J., Tian, L. X., Yang, H. J., Yue, Y. R., Chen, Y. J., & Liang, G. Y. (2012). Effect of dietary protein reduction with lysine and me- thionine supplementation on growth performance, body compo- sition and total ammonia nitrogen excretion of juvenile grass carp, Ctenopharyngodon idella. Aquaculture Nutrition, 18, 589–598. https:// doi.org/10.1111/j.1365-2095.2012.00937.x
Gu, M., Zhang, W. B., Bai, N., Mai, K. S., & Xu, W. (2013). Effects of di- etary crystalline methionine or oligo-methionine on growth perfor- mance and feed utilization of white shrimp (Litopenaeus vannamei) fed plant protein-enriched diets. Aquaculture Nutrition, 19, 39–46. https://doi.org/10.1111/anu.12089
Hernández, C., Olvera-Novoa, M. A., Aguilar-Vejar, K., González- Rodríguez, B., & Parra, I. A. D. L. (2008). Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 277, 244–250. https://doi. org/10.1016/j.aquaculture.2008.02.016
Hernandez, C., Sarmientopardo, J., Gonzalez-Rodriguez, B., & Iadela, P. (2015). Replacement of fish meal with co-extruded wet tuna viscera and corn meal in diets for white shrimp (Litopenaeus vann- amei Boone). Aquaculture Research, 35, 1153–1157. https://doi. org/10.1111/j.1365-2109.2004.01139.x
Hu, M., Wang, Y., Wang, Q., Zhao, M., Xiong, B., Qian, X., … Luo, Z. (2008). Replacement of fish meal by rendered animal protein ingre- dients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio. Aquaculture, 275, 260–265. https://doi.org/10.1016/j.aquaculture.2008.01.005
Huai, M.-Y., Liu, Y.-J., Tian, L.-X., Deng, S.-X., Xu, A.-L., Gao, W., & Yang, H.-J. (2010). Effect of dietary protein reduction with synthetic amino acids supplementation on growth performance, digestibility, and body composition of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture International, 18(3), 255–269. https://doi. org/10.1007/s10499-009-9241-y
Li, D., Zhao, X. H., Yang, T. B., Johnson, E. W., & Thacker, P. A. (1999). A comparison of the intestinal absorption of amino acids in piglets when provided in free form or as a dipeptide. Asian-Australasian Journal of Animal Sciences, 12, 939–943. https://doi.org/10.5713/ ajas.1999.939
Lin, H., Chen, Y., Niu, J., Zhou, C., Huang, Z., & Du, Q. (2015). Dietary me- thionine requirements of pacific white shrimp Litopenaeus vannamei, of three different sizes. The Israeli Journal of Aquaculture. Bamidgeh, 67, 1–10.
Liu, X.-H., Ye, J.-D., Kong, J.-H., Wang, K., & Wang, A.-L. (2013). Apparent digestibility of 12 protein-origin ingredients for pacific white shrimp Litopenaeus vannamei. North American Journal of Aquaculture, 75(1), 90–98. https://doi.org/10.1080/15222055.2012.716019
Luo, Z., Liu, Y. J., Mai, K. S., Tian, L. X., Yang, H. J., Tan, X. Y., & Liu, D. H. (2005). Dietary L-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level. Aquaculture, 249, 409–418. https://doi.org/10.1016/j.aquaculture.2005.04.030
Mai, K., Wan, J., Ai, Q., Xu, W., Liufu, Z., Zhang, L. U., … Li, H. (2006). Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 253, 564–572. https://doi. org/10.1016/j.aquaculture.2005.08.010
Mamauag, R. E. P., Gao, J., Nguyen, B. T., Ragaza, J. A., Koshio, S., Ishikawa, M., & Yokoyama, S. (2012). Supplementations of dl-me- thionine and methionine dipeptide in diets are effective for the de- velopment and growth of larvae and juvenile red sea bream, Pagrus major. Journal of the World Aquaculture Society, 43, 362–374. https:// doi.org/10.1111/j.1749-7345.2012.00563.x
Mambrini, M., Roem, A. J., Carvèdi, J. P., Lallès, J. P., & Kaushik, S. J. (1999). Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. Journal of Animal Science, 77, 2990–2999. https ://doi.org/10.2527/1999.77112990x
Marit, E., Ernstm, H., Bjørn, L., Andreas, L., & Adel, E. M. (2008). Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture, 274, 132–141. https://doi. org/10.1016/j.aquaculture.2007.10.051
Mato, J. M., Alvarez, L., Ortiz, P., & Pajares, M. A. (1997). S -adenosylme- thionine synthesis: Molecular mechanisms and clinical implications. Pharmacology & Therapeutics, 73, 265–280. https://doi.org/10.1016/ s0163-7258(96)00197-0
Mingyan, H., Tian, L. X., Liu, Y. J., Xu, A. L., Liang, G. Y., & Yang, H. J. (2009). Quantitative dietary threonine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-sa- linity water. Journal of Fishery Sciences of China, 20, 332–340. https:// doi.org/10.1111/j.1365-2109.2009.02181.x
Niu, J., He, J. Y., Figueiredo-Silva, C., Li, H. Y., Dong, Y., Xie, S. W., & Tian, L. X. (2017). Assessing the bioavailability of the Novel Met-Met product (AQUAVI®; Met-Met) compared to dl-methionine (dl-Met) in white shrimp (Litopenaeus vannamei). Aquaculture, 484, 322–332. https://doi.org/10.1016/j.aquaculture.2017.08.021
NRC. (2011). Nutrient requirements of fish and shrimp. Washington, DC: The National Academies Press.
Nunes, A. J. P., Sá, M. V. C., Browdy, C. L., & Vazquez-Anon, M. (2014). Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture, 431, 20–27. https://doi.org/10.1016/j. aquaculture.2014.04.003
Ozório, R. O. A., Booms, G. H. R., Huisman, E. A., & Verreth, J. A. J. (2002). Changes in amino acid composition in the tissues of African catfish (Clarias gariepinus) as a consequence of dietary L-carnitine supplements. Journal of Applied Ichthyology, 18, 140–147. https://doi. org/10.1046/j.1439-0426.2002.00317.x
Robbins, K. R., Norton, H. W., & Baker, D. H. (1979). Estimation of nu- trient requirements from growth data. Journal of Nutrition, 109(10), 1710–1714. https://doi.org/10.1093/jn/109.10.1710
Roghayeh, B., & Faghani-Langroudi, H. (2015). Effect of fish meal replace- ment by blood meal in fingerling rainbow trout (Oncorhynchus my- kiss) on growth and body/fillet quality traits. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL, Bioflux), 8(1), 34–39.
Rønnestad, I., Conceição, L. E. C., Aragão, C., & Dinis, M. T. (2000). Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). Journal of Nutrition, 130, 2809–2812. https://doi.org/10.1093/jn/130.11.2809
Samocha, T. M., Davis, D. A., Saoud, I. P., & Debault, K. (2004). Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus van- namei. Aquaculture, 231, 197–203. https://doi.org/10.1016/j.aquac ulture.2003.08.023
Suárez, J. A., Gaxiola, G., Mendoza, R., Cadavid, S., Garcia, G., Alanis, G., … Cuzon, G. (2009). Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture, 289, 118–123. https://doi.org/10.1016/j. aquaculture.2009.01.001
Tacon, A. G. J. (1995). Feed ingredients for carnivorous fish species: Alternatives to fishmeal and other fishery resources. In H. Reinertsen & H. Haaland (Eds.), Sustainable fish farming (pp. 89–114). Rotterdam, the Netherlands: FAO.
Tacon, A. G. J., Hasan, M. R., & Subasinghe, R. P. (2006). Use of fishery resources as feed inputs for aquaculture development: Trends and policy. FAO Fisheries Circular. No 1018. FAO, Rome, Italy.
Takagi, S., Shimeno, S., Hosokawa, H., & Ukawa, M. (2001). Effect of ly- sine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fisheries Science, 67, 1088–1096. https://doi.org/10.1046/j.1444-2906.2001.00365.x
Tang, L., Wang, G.-X., Jiang, J., Feng, L., Yang, L., Li, S.-H., … Zhou, X.-Q. (2009). Effect of methionine on intestinal enzymes activi- ties, microflora and humoral immune of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 15(5), 477–483 https://doi. org/10.1111/j.1365-2095.2008.00613.x
Tesser, M. B., Terjesen, B. F., Zhang, Y., Portella, M. C., & Dabrowski, K. (2005). Free-and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquaculture Nutrition, 11, 443–453. https://doi.org/10.1111/j.1365-2095.2005.00373.x
Vázquezañón, M., Gonzálezesquerra, R., Saleh, E., Hampton, T., Ritcher, S., Firman, J., & Knight, C. D. (2006). Evidence for 2-hydroxy-4(meth- ylthio) butanoic acid and dl-methionine having different dose re- sponses in growing broilers. Poultry Science, 85, 1409–1420. https:// doi.org/10.1093/ps/85.8.1409
Vedenov, D., & Pesti, G. M. (2010). An economic analysis of a methionine source comparison response model. Poultry Science, 89, 2514–2520. https://doi.org/10.3382/ps.2010-00640
Wang, S., Liu, Y. J., Tian, L. X., Xie, M. Q., Yang, H. J., Wang, Y., & Liang, G. Y. (2005). Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella. Aquaculture, 249, 419–429. https://doi. org/10.1016/j.aquaculture.2005.04.005
Wang, Y., & Jiang, H. (2004). Prophenoloxidase (proPO) activation in Manduca sexta: An analysis of molecular interactions among proPO, proPO-activating proteinase-3, and a cofactor. Insect Biochemistry & Molecular Biology, 34, 731–742. https://doi.org/10.1016/j. ibmb.2004.03.008
Xia, Z., & Wu, S. (2018). Effects of glutathione on the survival, growth per- formance and non-specific immunity of white shrimps (Litopenaeus vannamei). Fish & Shellfish Immunology, 73, 141–144. https://doi. org/10.1016/j.fsi.2017.12.015
Xie, J. J., Lemme, A., He, J. Y., Yin, P., Figueiredo-Silva, C., Liu, Y. J., … Tian, L. X. (2017). Fishmeal levels can be successfully reduced in white shrimp (Litopenaeus vannamei) if supplemented with DL-methionine (DL-Met) or DL-methionyl-DL-methionine (Met-Met). Aquaculture Nutrition, 24, 1144–1152. https://doi.org/10.1111/anu.12653
Yamamoto, T., Sugita, T., & Furuita, H. (2005). Essential amino acid supplementation to fish meal-based diets with low protein to en- ergy ratios improves the protein utilization in juvenile rainbow trout Oncorhynchus mykiss. Aquaculture, 246, 379–391. https://doi. org/10.1016/j.aquaculture.2005.02.013
Zambonino Infante, J. L., Cahu, C. L., & Peres, A. (1997). Partial substitu- tion of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. Journal of Nutrition, 127, 608–614. https://doi.org/10.1093/jn/127.4.608
Zarate, D. D., Lovell, R. T., & Payne, M. (2015). Effects of feeding fre- quency and rate of stomach evacuation on utilization of dietary free and protein-bound lysine for growth by channel catfish Ictalurus punctatus. Aquaculture Nutrition, 5, 17–22. https://doi. org/10.1046/j.1365-2095.1999.00083.x
Zhang, Y., Ji, W., Wu, Y., Han, H., Qin, J., & Wang, Y. (2016). Replacement of dietary fish meal by soybean meal supplemented with crystalline methionine for Japanese seabass (Lateolabrax japonicus). Aquaculture Research, 47, 243–252. https://10.1111/are.12486
Zhou, F., Xiao, J. X., Hua, Y., Ngandzali, B. O., & Shao, Q. J. (2011). Dietary l-methionine requirement of juvenile black sea bream (Sparus macro- cephalus) at a constant dietary cystine level. Aquaculture Nutrition, 17, 469–481. https://doi.org/10.1111/j.1365-2095.2010.00823.x
Zhou, Q. C., Wang, Y. L., Wang, H. L., & Tan, B. P. (2013). Dietary thre- onine requirements of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 392, 142–147. https://doi.org/10.1016/j. aquaculture.2013.01.026
Zhou, Q. C., Wu, Z. H., Chi, S. Y., & Yang, Q. H. (2007). Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture, 273, 634–640. https://doi.org/10.1016/j.aquaculture.2007.08.056