Simple Summary: Avian metapneumovirus (aMPV) causes substantial economic losses globally. Different aMPV subtypes circulate in various regions, with subtypes A and B prevalent in the Old World and aMPV-C in North America. Recently, aMPV-A and aMPV-B have been detected in the U.S., raising questions about their introduction pathways. This study used phylodynamic and phylogeographic analyses of the G protein sequences to investigate potential importation routes. Findings suggest that aMPV-B in the U.S. likely originated from Eastern Asian strains related to European ones, with wild bird migration through the Beringian crucible being a probable pathway, similarly to avian influenza. aMPV-A appears to have Mexican origins, with strains related to Asian ones, pointing again to wild bird migration rather than trade or illegal importation. Given the limited information on wild birds’ role in aMPV spread and the significant impact on the poultry industry, further wild bird surveys are recommended.
Abstract: Avian metapneumovirus (aMPV) has been identified as an important cause of respiratory and reproductive disease, leading to significant productive losses worldwide. Different subtypes have been found to circulate in different regions, with aMPV-A and B posing a significant burden especially in the Old World, and aMPV-C in North America, albeit with limited exceptions of marginal economic relevance. Recently, both aMPV-A and aMPV-B have been reported in the U.S.; however, the route of introduction has not been investigated. In the present study, the potential importation pathways have been studied through phylogenetic and phylodynamic analyses based on a broad collection of partial attachment (G) protein sequences collected worldwide. aMPV-B circulating in the U.S. seems the descendant of Eastern Asian strains, which, in turn, are related to European ones. A likely introduction pathway mediated by wild bird migration through the Beringian crucible, where the East Asian and Pacific American flight paths intersect, appears likely and was previously reported for avian influenza. aMPV-A, on the other hand, showed a Mexican origin, involving strains related to Asian ones. Given the low likelihood of trade or illegal importation, the role of wild birds appears probable also in this case, since the region is covered by different flight paths directed in a North–South direction through America. Since the information on the role of wild birds in aMPV epidemiology is still scarce and scattered, considering the significant practical implications for the poultry industry demonstrated by recent U.S. outbreaks, further surveys on wild birds are encouraged.
Keywords: aMPV; molecular epidemiology; phylogeography; North America; wild birds
1. Cecchinato, M.; Ferreira, H.L.; Munir, M.; Catelli, E. 10 Avian Metapneumovirus. Mononegaviruses Vet. Importance Mol. Epidemiol. Control. 2016, 2, 127.
2. Graziosi, G.; Lupini, C.; Catelli, E. Disentangling the Role of Wild Birds in Avian Metapneumovirus (AMPV) Epidemiology: A Systematic Review and Meta-Analysis. Transbound. Emerg. Dis. 2022, 69, 3285–3299. [CrossRef]
3. Tucciarone, C.M.; Franzo, G.; Legnardi, M.; Pasotto, D.; Lupini, C.; Catelli, E.; Quaglia, G.; Graziosi, G.; Dal Molin, E.; Gobbo, F.; et al. Molecular Survey on A, B, C and New Avian Metapneumovirus (AMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet. Sci. 2022, 9, 373. [CrossRef]
4. Salles, G.B.C.; Pilati, G.V.T.; Muniz, E.C.; de Lima Neto, A.J.; Vogt, J.R.; Dahmer, M.; Savi, B.P.; Padilha, D.A.; Fongaro, G. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses 2023, 15, 1960. [CrossRef]
5. Easton, A.J.; Domachowske, J.B.; Rosenberg, H.F. Animal Pneumoviruses: Molecular Genetics and Pathogenesis. Clin. Microbiol. Rev. 2004, 17, 390. [CrossRef]
6. Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Clubbe, J.; Battilani, M.; Naylor, C.J. Avian Metapneumovirus (AMPV) Attachment Protein Involvement in Probable Virus Evolution Concurrent with Mass Live Vaccine Introduction. Vet. Microbiol. 2010, 146, 24–34. [CrossRef]
7. Naylor, C.J.; Lupini, C.; Brown, P.A. Charged Amino Acids in the AMPV Fusion Protein Have More Influence on Induced Protection than Deletion of the SH or G Genes. Vaccine 2010, 28, 6800–6807. [CrossRef]
8. Franzo, G.; Legnardi, M.; Mescolini, G.; Tucciarone, C.M.; Lupini, C.; Quaglia, G.; Catelli, E.; Cecchinato, M. Avian Metapneumovirus Subtype B around Europe: A Phylodynamic Reconstruction. Vet. Res. 2020, 51, 88. [CrossRef]
9. Buys, S.B.; du Preez, J.H.; Els, H.J. The Isolation and Attenuation of a Virus Causing Rhinotracheitis in Turkeys in South Africa; Government Printer: Pretoria, South Africa, 1989; Volume 56.
10. Jones, R.C. Viral Respiratory Diseases (ILT, AMPV Infections, IB): Are They Ever under Control? Br. Poult. Sci. 2010, 51, 1–11. [CrossRef]
11. Turpin, E.A.; Stallknecht, D.E.; Slemons, R.D.; Zsak, L.; Swayne, D.E. Evidence of Avian Metapneumovirus Subtype C Infection of Wild Birds in Georgia, South Carolina, Arkansas and Ohio, USA. Avian Pathol. 2008, 37, 343–351. [CrossRef]
12. Toquin, D.; Guionie, O.; Jestin, V.; Zwingelstein, F.; Allee, C.; Eterradossi, N. European and American Subgroup C Isolates of Avian Metapneumovirus Belong to Different Genetic Lineages. Virus Genes. 2006, 32, 97–103. [CrossRef] [PubMed]
13. Seal, B.S. Avian Pneumoviruses and Emergence of a New Type in the United States of America. Anim. Health Res. Rev./Conf. Res. Work. Anim. Dis. 2000, 1, 67–72. [CrossRef] [PubMed]
14. van Boheemen, S.; Bestebroer, T.M.; Verhagen, J.H.; Osterhaus, A.D.M.E.; Pas, S.D.; Herfst, S.; Fouchier, R.A.M. A Family-Wide RT-PCR Assay for Detection of Paramyxoviruses and Application to a Large-Scale Surveillance Study. PLoS ONE 2012, 7, e34961. [CrossRef] [PubMed]
15. Graziosi, G.; Mescolini, G.; Silveira, F.; Lupini, C.; Tucciarone, C.M.; Franzo, G.; Cecchinato, M.; Legnardi, M.; Gobbo, F.; Terregino, C.; et al. First Detection of Avian Metapneumovirus Subtype C Eurasian Lineage in a Eurasian Wigeon (Mareca Penelope) Wintering in Northeastern Italy: An Additional Hint on the Role of Migrating Birds in the Viral Epidemiology. Avian Pathology 2022, 51, 283–290. [CrossRef] [PubMed]
16. Wei, L.; Zhu, S.; Yan, X.; Wang, J.; Zhang, C.; Liu, S.; She, R.; Hu, F.; Quan, R.; Liu, J. Avian Metapneumovirus Subgroup C Infection in Chickens, China. Emerg. Infect. Dis. 2013, 19, 1092–1094. [CrossRef] [PubMed]
17. Lee, E.; Song, M.S.; Shin, J.Y.; Lee, Y.M.; Kim, C.J.; Lee, Y.S.; Kim, H.; Choi, Y.K. Genetic Characterization of Avian Metapneumovirus Subtype C Isolated from Pheasants in a Live Bird Market. Virus Res. 2007, 128, 18–25. [CrossRef] [PubMed]
18. Brown, P.A.; Allée, C.; Courtillon, C.; Szerman, N.; Lemaitre, E.; Toquin, D.; Mangart, J.M.; Amelot, M.; Eterradossi, N. Host Specificity of Avian Metapneumoviruses. Avian Pathol. 2019, 48, 311–318. [CrossRef] [PubMed]
19. Bayon-Auboyer, M.H.; Arnauld, C.; Toquin, D.; Eterradossi, N. Nucleotide Sequences of the F, L and G Protein Genes of Two Non-A/Non-B Avian Pneumoviruses (APV) Reveal a Novel APV Subgroup. J. Gen. Virol. 2000, 81, 2723–2733. [CrossRef] [PubMed]
20. Retallack, H.; Clubb, S.; DeRisi, J.L. Genome Sequence of a Divergent Avian Metapneumovirus from a Monk Parakeet (Myiopsitta Monachus). Microbiol. Resour. Announc. 2019, 8, 10-1128. [CrossRef]
21. Canuti, M.; Kroyer, A.N.K.; Ojkic, D.; Whitney, H.G.; Robertson, G.J.; Lang, A.S. Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds. Viruses 2019, 11, 768. [CrossRef]
22. Luqman, M.; Duhan, N.; Temeeyasen, G.; Selim, M.; Jangra, S.; Mor, S.K. Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses 2024, 16, 508. [CrossRef]
23. Standley, K. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability (Outlines Version 7). Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]
24. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef]
25. Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [CrossRef]
26. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [CrossRef]
27. Baele, G.; Lemey, P.; Bedford, T.; Rambaut, A.; Suchard, M.A.; Alekseyenko, A.V. Improving the Accuracy of Demographic and Molecular Clock Model Comparison While Accommodating Phylogenetic Uncertainty. Mol. Biol. Evol. 2012, 29, 2157–2167. [CrossRef]
28. Hill, V.; Baele, G. Bayesian Estimation of Past Population Dynamics in BEAST 1.10 Using the Skygrid Coalescent Model. Mol. Biol. Evol. 2019, 36, 2620–2628. [CrossRef]
29. Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian Phylogeography Finds Its Roots. PLoS Comput. Biol. 2009, 5, e1000520. [CrossRef]
30. Bielejec, F.; Baele, G.; Vrancken, B.; Suchard, M.A.; Rambaut, A.; Lemey, P. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Mol. Biol. Evol. 2016, 33, 2167–2169. [CrossRef]
31. Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
32. Lee, D.-H.; Torchetti, M.K.; Winker, K.; Ip, H.S.; Song, C.-S.; Swayne, D.E. Intercontinental Spread of Asian-Origin H5N8 to North America through Beringia by Migratory Birds. J. Virol. 2015, 89, 6521–6524. [CrossRef]
33. Harvey, J.A.; Mullinax, J.M.; Runge, M.C.; Prosser, D.J. The Changing Dynamics of Highly Pathogenic Avian Influenza H5N1: Next Steps for Management & Science in North America. Biol. Conserv. 2023, 282, 110041. [CrossRef]
34. Bevins, S.N.; Dusek, R.J.; White, C.L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K.G.; Debruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; et al. Widespread Detection of Highly Pathogenic H5 Influenza Viruses in Wild Birds from the Pacific Flyway of the United States. Sci. Rep. 2016, 6, 28980. [CrossRef]
35. Winker, K.; Gibson, D.D. The Asia-to-America Influx of Avian Influenza Wild Bird Hosts Is Large. Avian Dis. 2010, 54, 477–482. [CrossRef]
36. Winker, K.; McCracken, K.G.; Gibson, D.D.; Pruett, C.L.; Meier, R.; Huettmann, F.; Wege, M.; Kulikova, I.V.; Zhuravlev, Y.N.; Perdue, M.L.; et al. Movements of Birds and Avian Influenza from Asia into Alaska–Volume 13, Number 4—April 2007—Emerging Infectious Diseases Journal—CDC. Emerg. Infect. Dis. 2007, 13, 547–552. [CrossRef]
37. Heffels-Redmann, U.; Neumann, U.; Braune, S.; Cook, J.K.A.; Pruter, J. Serological Evidence for Susceptibility of Sea Gulls to Avian Pneumovirus (APV) Infection. In Proceedings of the International Symposium on Infectious Bronchitis and Pneumovirus infection in Poultry, Rauischholzhausen, Germany, 15–18 June 1998; pp. 23–25.
38. Shin, H.J.; Njenga, M.K.; McComb, B.; Halvorson, D.A.; Nagaraja, K.V. Avian Pneumovirus (APV) RNA from Wild and Sentinel Birds in the United States Has Genetic Homology with RNA from APV Isolates from Domestic Turkeys. J. Clin. Microbiol. 2000, 38, 4282. [CrossRef]
39. Jardine, C.M.; Parmley, E.J.; Buchanan, T.; Nituch, L.; Ojkic, D. Avian Metapneumovirus Subtype C in Wild Waterfowl in Ontario, Canada. Transbound. Emerg. Dis. 2018, 65, 1098–1102. [CrossRef]
40. Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.M.; Hansen, R.D.E.; Lameris, T.K.; et al. Transatlantic Spread of Highly Pathogenic Avian Influenza H5N1 by Wild Birds from Europe to North America in 2021. Sci. Rep. 2022, 12, 11729. [CrossRef]
41. Fourment, M.; Darling, A.E.; Holmes, E.C. The Impact of Migratory Flyways on the Spread of Avian Influenza Virus in North America. BMC Evol. Biol. 2017, 17, 118. [CrossRef]
42. Cerda-Armijo, C.; De León, M.B.; Ruvalcaba-Ortega, I.; Chablé-Santos, J.; Canales-Del-Castillo, R.; Peñuelas-Urquides, K.; Rivera-Morales, L.G.; Menchaca-Rodríguez, G.; Camacho-Moll, M.E.; Contreras-Cordero, J.F.; et al. High Prevalence of Avian Influenza Virus among Wild Waterbirds and Land Birds of Mexico. Avian Dis. 2020, 64, 135–142. [CrossRef]
43. Rizotto, L.S.; Simão, R.M.; Scagion, G.P.; Simasaki, A.A.; Caserta, L.C.; Benassi, J.C.; Arns, C.W.; Ferreira, H.L. Detection of Avian Metapneumovirus Subtype A from Wild Birds in the State of São Paulo, Brazil. Pesqui. Veterinária Bras. 2019, 39, 209–213. [CrossRef]
44. Felippe, P.A.; da Silva, L.H.A.; dos Santos, M.B.; Sakata, S.T.; Arns, C.W. Detection of and Phylogenetic Studies with Avian Metapneumovirus Recovered from Feral Pigeons and Wild Birds in Brazil. Avian Pathol. 2011, 40, 445–452. [CrossRef]