Salmonella enterica subsp. enterica serovar Infantis poses a growing threat to public health, due to its increasing prevalence worldwide and its association with high levels of antimicrobial resistance. Among livestock, S. Infantis is especially isolated from broilers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted by searching in three databases (Web of Science, Scopus, and PubMed) for English-language studies (1957–2023) that reported the prevalence of S. Infantis in broiler farms. Eligible studies included epidemiological investigations conducted in broiler chickens by sampling the house environment (flock-level prevalence) or the birds (individual-level prevalence). A randomeffect model was applied to calculate S. Infantis pooled prevalence estimates with 95% confidence intervals (CIs). Furthermore, to assess between-study heterogeneity, the inconsistency index statistic (I2) was calculated. Among 537 studies retrieved, a total of 9 studies reporting flock-level prevalence of S. Infantis and 4 reporting individual-level prevalence were retained for analysis. The flock-level pooled prevalence was estimated to be 9% (95% CI: 1–26%) and a high between-study heterogeneity was found (I2 = 99%, p < 0.01). Concerning individual-level prevalence, a meta-analysis was not performed due to the scarcity of eligible studies. The data presented underscore the significant occurrence of S. Infantis in broilers at the farm level. By summarizing the existing literature, this work provides useful insights for conducting future surveys of Salmonella spp. in live broiler chickens as a preliminary step for developing more efficient control strategies.
Keywords: Salmonella Infantis; broiler; chicken; systematic review; meta-analysis; prevalence
1. WHO. Salmonella (Non-Typhoidal). Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(nontyphoidal) (accessed on 7 November 2024).
2. EFSA; ECDC. The European Union One Health 2021 zoonoses report. EFSA J. 2022, 20, e07666. [CrossRef]
3. Alvarez, D.M.; Barrón-Montenegro, R.; Conejeros, J.; Rivera, D.; Undurraga, E.A.; Moreno-Switt, A.I. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int. J. Food Microbiol. 2023, 403, 110297. [CrossRef] [PubMed]
4. Rostagno, M.H.; Wesley, I.V.; Trampel, D.W.; Hurd, H.S. Salmonella prevalence in market-age turkeys on-farm and at slaughter. Poult. Sci. 2006, 85, 1838–1842. [CrossRef]
5. Toyofuku, H.; Pires, S.M.; Hald, T. Salmonella source attribution in Japan by a microbiological subtyping approach. Ecohealth 2011, 7, S22–S23.
6. Guo, C.; Hoekstra, R.M.; Schroeder, C.M.; Pires, S.M.; Ong, K.L.; Hartnett, E.; Naugle, A.; Harman, J.; Bennett, P.; Cieslak, P.; et al. Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: Adaptation of a Danish model. Foodborne Pathog. Dis. 2011, 8, 509–516. [CrossRef]
7. Pires, S.M.; Vieira, A.R.; Hald, T.; Cole, D. Source attribution of human salmonellosis: An overview of methods and estimates. Foodborne Pathog. Dis. 2014, 11, 667–676. [CrossRef]
8. Thomas, K.M.; de Glanville, W.A.; Barker, G.C.; Benschop, J.; Buza, J.J.; Cleaveland, S.; Davis, M.A.; French, N.P.; Mmbaga, B.T.; Prinsen, G.; et al. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. Int. J. Food Microbiol. 2020, 315, 108382. [CrossRef]
9. EFSA; ECDC. The European Union One Health 2022 zoonoses report. EFSA J. 2023, 21, e8442. [CrossRef]
10. Tack, D.M.; Ray, L.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Rissman, T.; Jervis, R.; Lathrop, S.; Muse, A.; Duwell, M.; et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2016–2019. Morb. Mortal. Wkly. Rep. 2020, 69, 509–514. [CrossRef] [PubMed]
11. USDA. Salmonella Infantis Outbreak Linked to Chicken Products. Available online: https://www.fsis.usda.gov/sites/default/ files/media_file/documents/FSIS-After-Action-Review-2018-11.pdf (accessed on 12 November 2024).
12. Alba, P.; Leekitcharoenphon, P.; Carfora, V.; Amoruso, R.; Cordaro, G.; Di Matteo, P.; Ianzano, A.; Iurescia, M.; Diaconu, E.L.; Pedersen, S.K.; et al. Molecular epidemiology of Salmonella Infantis in Europe: Insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microb. Genom. 2020, 6, e000365. [CrossRef]
13. Hindermann, D.; Gopinath, G.; Chase, H.; Negrete, F.; Althaus, D.; Zurfluh, K.; Tall, B.D.; Stephan, R.; Nüesch-Inderbinen, M. Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front. Microbiol. 2017, 8, 1322. [CrossRef]
14. Powell, M.R.; Williams, M.S. Trends in Salmonella Infantis human illness incidence and chicken carcass prevalence in the United States; 1996–2019. Risk Anal. 2024, 44, 2396–2402. [CrossRef] [PubMed]
15. Mattock, J.; Chattaway, M.A.; Hartman, H.; Dallman, T.J.; Smith, A.M.; Keddy, K.; Petrovska, L.; Manners, E.J.; Duze, S.T.; Smouse, S.; et al. A One Health Perspective on Salmonella enterica Serovar Infantis, an emerging human multidrug-resistant pathogen. Emerg. Infect. Dis. 2024, 30, 701–710. [CrossRef]
16. Montoro-Dasi, L.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Vega, S.; Marin, C. Holistic strategies to control Salmonella Infantis: An emerging challenge in the European broiler sector. Microorganisms 2023, 11, 1765. [CrossRef] [PubMed]
17. Aviv, G.; Tsyba, K.; Steck, N.; Salmon-Divon, M.; Cornelius, A.; Rahav, G.; Grassl, G.A.; Gal-Mor, O. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 2014, 16, 977–994. [CrossRef] [PubMed]
18. Egorova, A.; Mikhaylova, Y.; Saenko, S.; Tyumentseva, M.; Tyumentsev, A.; Karbyshev, K.; Chernyshkov, A.; Manzeniuk, I.; Akimkin, V.; Shelenkov, A. Comparative whole-genome analysis of Russian foodborne multidrug-resistant Salmonella Infantis isolates. Microorganisms 2022, 10, 89. [CrossRef]
19. McMillan, E.A.; Weinroth, M.D.; Frye, J.G. Increased prevalence of Salmonella Infantis isolated from raw chicken and turkey products in the United States is due to a single clonal lineage carrying the pESI plasmid. Microorganisms 2022, 10, 1478. [CrossRef] [PubMed]
20. Negeri, A.A.; Mamo, H.; Gahlot, D.K.; Gurung, J.M.; Seyoum, E.T.; Francis, M.S. Characterization of plasmids carrying blaCTX-M genes among extra-intestinal Escherichia coli clinical isolates in Ethiopia. Sci. Rep. 2023, 13, 8595. [CrossRef]
21. Aviv, G.; Rahav, G.; Gal-Mor, O. Horizontal Transfer of the Salmonella enterica Serovar Infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio 2016, 7, 10–1128. [CrossRef] [PubMed]
22. Mughini-Gras, L.; van Hoek, A.; Cuperus, T.; Dam-Deisz, C.; van Overbeek, W.; van den Beld, M.; Wit, B.; Rapallini, M.; Wullings, B.; Franz, E.; et al. Prevalence, risk factors and genetic traits of Salmonella Infantis in Dutch broiler flocks. Vet. Microbiol. 2021, 258, 109120. [CrossRef]
23. Bearson, S.M.D.; Monson, M.S.; Bearson, B.L.; Whelan, S.J.; Byrd, J.A.; Burciaga, S. Commercial vaccine provides cross-protection by reducing colonization of Salmonella enterica serovars Infantis and Hadar in turkeys. Vaccine 2024, 42, 727–731. [CrossRef]
24. Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agricult. 2019, 8, 417–429. [CrossRef]
25. Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA): Rome, Italy, 2012.
26. Agbaje, M.; Begum, R.H.; Oyekunle, M.A.; Ojo, O.E.; Adenubi, O.T. Evolution of Salmonella nomenclature: A critical note. Folia Microbiol. 2011, 56, 497–503. [CrossRef]
27. FAO; WHO. Measures for the Control of Non-Typhoidal Salmonella spp. In Poultry Meat—Meeting Report; Microbiological Risk Assessment Series, No. 45; Food and Agriculture Organization: Rome, Italy, 2023.
28. Kloska, F.; Casteel, M.; Kump, F.W.-S.; Klein, G. Implementation of a risk-orientated hygiene analysis for the control of Salmonella JAVA in the broiler production. Curr. Microbiol. 2017, 74, 356–364. [CrossRef]
29. Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Cesare, A.D.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. Salmonella control in poultry flocks and its public health impact. EFSA J. 2019, 17. [CrossRef]
30. Sarnino, N.; Berge, A.C.; Chantziaras, I.; Dewulf, J. Estimation of the production economic consequences of stopping partial depopulation in broiler production. Animals 2022, 12, 1521. [CrossRef] [PubMed]
31. van Meirhaeghe, H.; Schwarz, A.; Dewulf, J.; van Immerseel, F.; Vanbeselaere, B.; de Gussem, M. Transmission of poultry diseases and biosecurity in poultry production. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice; Dewulf, J., van Immerseel, F., Eds.; CABI: Oxfordshire, UK, 2019; pp. 329–356.
32. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [CrossRef]
33. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [CrossRef]
34. Namata, H.; Welby, S.; Aerts, M.; Faes, C.; Abrahantes, J.C.; Imberechts, H.; Vermeersch, K.; Hooyberghs, J.; Méroc, E.; Mintiens, K. Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Prev. Vet. Med. 2009, 90, 211–222. [CrossRef] [PubMed]
35. Graziosi, G.; Lupini, C.; Catelli, E. Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis. Transbound. Emerg. Dis. 2022, 69, 3285–3299. [CrossRef]
36. Wang, N. Conducting meta-analyses of proportions in R. J. Behav. Sci. 2023, 3, 64–126. [CrossRef]
37. Xavier, C.; Gonzales-Barron, U.; Paula, V.; Estevinho, L.; Cadavez, V. Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int. 2014, 55, 311–323. [CrossRef]
38. Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [CrossRef]
39. Cargnel, M.; Filippitzi, M.E.; Van Cauteren, D.; Mattheus, W.; Botteldoorn, N.; Cambier, L.; Welby, S. Assessing evidence of a potential Salmonella transmission across the poultry food chain. Zoonoses Public Health 2023, 70, 22–45. [CrossRef] [PubMed]
40. Burnett, E.; Ishida, M.; de Janon, S.; Naushad, S.; Duceppe, M.O.; Gao, R.; Jardim, A.; Chen, J.C.; Tagg, K.A.; Ogunremi, D.; et al. Whole-genome sequencing reveals the presence of the blaCTX-M-65 gene in extended-spectrum β-lactamase-producing and multi-drug-resistant clones of Salmonella serovar Infantis isolated from broiler chicken environments in the Galapagos Islands. Antibiotics 2021, 10, 267. [CrossRef] [PubMed]
41. Sasaki, Y.; Ikeda, A.; Ishikawa, K.; Murakami, M.; Kusukawa, M.; Asai, T.; Yamada, Y. Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol. Infect. 2012, 140, 2074–2081. [CrossRef]
42. Long, J.R.; DeWitt, W.F.; Ruet, J.L. Studies on Salmonella from floor litter of 60 broiler chicken houses in Nova Scotia. Can. Vet. J. 1980, 21, 91–94.
43. Poppe, C.; Irwin, R.J.; Messier, S.; Finley, G.G.; Oggel, J. The prevalence of Salmonella enteritidis and other Salmonella spp. among Canadian registered commercial chicken broiler flocks. Epidemiol. Infect. 1991, 107, 201–211. [CrossRef]
44. El Hage, R.; El Rayess, Y.; Bonifait, L.; El Hafi, B.; Baugé, L.; Viscogliosi, E.; Hamze, M.; Mathieu, F.; Matar, G.M.; Chemaly, M. A national study through a ‘Farm-to-fork’ Approach to determine Salmonella dissemination along with the Lebanese poultry production chain. Zoonoses Public Health 2022, 69, 499–513. [CrossRef]
45. Lassnig, H.; Much, P.; Schliessnig, H.; Osterreicher, E.; Kostenzer, K.; Kornschober, C.; Köfer, J. Prevalence of Salmonella spp. in Austrian broiler flocks in the context of the EU-wide baseline survey 2005-2006. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 129–137.
46. Witkowska, D.; Kuncewicz, M.; Zebrowska, J.P.; Sobczak, J.; Sowi ´nska, J. Prevalence of ˙ Salmonella spp. in broiler chicken flocks in northern Poland in 2014–2016. Ann. Agric. Environ. Med. 2018, 25, 693–697. [CrossRef] [PubMed]
47. Khan, A.S.; Georges, K.; Rahaman, S.; Abebe, W.; Adesiyun, A.A. Occurrence, risk factors, serotypes, and antimicrobial resistance of Salmonella strains isolated from imported fertile hatching eggs, hatcheries, and broiler farms in Trinidad and Tobago. J. Food Prot. 2022, 85, 266–277. [CrossRef]
48. Badouei, M.A.; Vaezi, H.; Nemati, A.; Ghorbanyoon, E.; Firoozeh, F.; Jajarmi, M.; Peighambari, S.M. High prevalence of clonally related multiple resistant Salmonella Infantis carrying class 1 integrons in broiler farms. Vet. Ital. 2021, 57, 181–188. [CrossRef]
49. Ishihara, K.; Takahashi, T.; Morioka, A.; Kojima, A.; Kijima, M.; Asai, T.; Tamura, Y. National surveillance of Salmonella enterica in food-producing animals in Japan. Acta Vet. Scand. 2009, 51, 35. [CrossRef] [PubMed]
50. Cui, M.; Xie, M.; Qu, Z.; Zhao, S.; Wang, J.; Wang, Y.; He, T.; Wang, H.; Zuo, Z.; Wu, C. Prevalence and antimicrobial resistance of Salmonella isolated from an integrated broiler chicken supply chain in Qingdao, China. Food Control 2016, 62, 270–276. [CrossRef]
51. ISO 6579:2017. Available online: https://www.iso.org/standard/56712.html (accessed on 26 November 2024).
52. PN-EN ISO-6579:2003. Available online: https://www.intertekinform.com/en-us/standards/pn-en-iso-6579-2003-ac-2014-924 355_saig_pkn_pkn_2181707/?srsltid=AfmBOory95B47A_wg8aiOu5k9IXcFFQ2QTuchmDQ99kjijW4PyKSXe5C (accessed on 26 November 2024).
53. ISO 6579:2002. Available online: https://www.iso.org/standard/29315.html (accessed on 26 November 2024).
54. ISO 6579-1:2007. Available online: https://www.iso.org/standard/42109.html (accessed on 26 November 2024).
55. Iannetti, L.; Neri, D.; Santarelli, G.A.; Cotturone, G.; Podaliri Vulpiani, M.; Salini, R.; Antoci, S.; Di Serafino, G.; Di Giannatale, E.; Pomilio, F.; et al. Animal welfare and microbiological safety of poultry meat: Impact of different at-farm animal welfare levels on at-slaughterhouse Campylobacter and Salmonella contamination. Food Control 2020, 109, 106921. [CrossRef]
56. Vlaanderen, F.; Uiterwijk, M.; Cuperus, T.; Keur, I.; de Rosa, M.; Rozendaal, H.; Koene, M.; Schreurs, H.; Nijsse, R.; Nielen, M.; et al. Staat van Zoönosen 2018 [State of Zoonotic Diseases 2018]; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2019.
57. Mihaiu, L.; Lapusan, A.; Tanasuica, R.; Sobolu, R.; Mihaiu, R.; Oniga, O.; Mihaiu, M. First study of Salmonella in meat in Romania. J. Infect. Dev. Ctries. 2014, 8, 50–58. [CrossRef] [PubMed]
58. Peruzy, M.F.; Proroga, Y.T.R.; Capuano, F.; Mancusi, A.; Montone, A.M.I.; Cristiano, D.; Balestrieri, A.; Murru, N. Occurrence and distribution of Salmonella serovars in carcasses and foods in southern Italy: Eleven-year monitoring (2011–2021). Front. Microbiol. 2022, 13, 1005035. [CrossRef]
59. Zeng, H.; De Reu, K.; Gabriël, S.; Mattheus, W.; De Zutter, L.; Rasschaert, G. Salmonella prevalence and persistence in industrialized poultry slaughterhouses. Poult. Sci. 2021, 100, 100991. [CrossRef]
60. Shahada, F.; Chuma, T.; Okamoto, K.; Sueyoshi, M. Temporal distribution and genetic fingerprinting of Salmonella in broiler flocks from southern Japan. Poult. Sci. 2008, 87, 968–972. [CrossRef] [PubMed]
61. Murakami, K.; Horikawa, K.; Ito, T.; Otsuki, K. Environmental survey of salmonella and comparison of genotypic character with human isolates in Western Japan. Epidemiol. Infect. 2001, 126, 159–171. [CrossRef] [PubMed]
62. Duc, V.M.; Nakamoto, Y.; Fujiwara, A.; Toyofuku, H.; Obi, T.; Chuma, T. Prevalence of Salmonella in broiler chickens in Kagoshima, Japan in 2009 to 2012 and the relationship between serovars changing and antimicrobial resistance. BMC Vet. Res. 2019, 15, 108. [CrossRef]
63. Duc, V.M.; Shin, J.; Nagamatsu, Y.; Fuhiwara, A.; Toyofuku, H.; Obi, T.; Chuma, T. Increased Salmonella Schwarzengrund prevalence and antimicrobial susceptibility of Salmonella enterica isolated from broiler chickens in Kagoshima Prefecture in Japan between 2013 and 2016. J. Vet. Med. Sci. 2020, 82, 585–589. [CrossRef] [PubMed]
64. Chuma, T.; Miyasako, D.; Dahshan, H.; Takayama, T.; Nakamoto, Y.; Shahada, F.; Akiba, M.; Okamoto, K. Chronological change of resistance to β-lactams in Salmonella enterica serovar Infantis isolated from broilers in Japan. Front. Microbiol. 2013, 4, 113. [CrossRef]
65. Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The prevalence and epidemiology of Salmonella in retail raw poultry meat in China: A systematic review and meta-analysis. Foods 2021, 10, 2757. [CrossRef]
66. Wang, H.H.; Ye, K.P.; Wei, X.R.; Cao, J.X.; Xu, X.L.; Zhou, G.H. Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control 2013, 33, 378–384. [CrossRef]
67. Park, H.J.; Chon, J.W.; Lim, J.S.; Seo, K.H.; Kim, Y.J.; Heo, E.J.; Wee, S.H.; Sung, K.; Moon, J.S. Prevalence analysis and molecular characterization of Salmonella at different processing steps in broiler slaughter plants in South Korea. J. Food Sci. 2015, 80, M2822–M2826. [CrossRef]
68. Rahmani, M.; Peighambari, S.M.; Svendsen, C.A.; Cavaco, L.M.; Agersø, Y.; Hendriksen, R.S. Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran. BMC Vet. Res. 2013, 9, 66. [CrossRef] [PubMed]
69. Fallah, S.H.; Asgharpour, F.; Naderian, Z.; Moulana, Z. Isolation and determination of antibiotic resistance patterns in nontyphoid Salmonella spp. isolated from chicken. Int. J. Enteric Pathog. 2013, 1, 17–21. [CrossRef]
70. Mejía, L.; Medina, J.L.; Bayas, R.; Salazar, C.S.; Villavicencio, F.; Zapata, S.; Matheu, J.; Wagenaar, J.A.; González-Candelas, F.; Vinueza-Burgos, C. Genomic epidemiology of Salmonella Infantis in Ecuador: From poultry farms to human infections. Front. Vet. Sci. 2020, 7, 547891. [CrossRef]
71. Medeiros, M.A.; Oliveira, D.C.; Rodrigues Ddos, P.; Freitas, D.R. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Rev. Panam. Salud Publica 2011, 30, 555–560. [CrossRef] [PubMed]
72. Vinueza-Burgos, C.; Cevallos, M.; Ron-Garrido, L.; Bertrand, S.; De Zutter, L. Prevalence and diversity of Salmonella serotypes in Ecuadorian broilers at slaughter age. PLoS ONE 2016, 11, e0159567. [CrossRef] [PubMed]
73. Voss-Rech, D.; Vaz, C.S.; Alves, L.; Coldebella, A.; Leão, J.A.; Rodrigues, D.P.; Back, A. A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult. Sci. 2015, 94, 433–441. [CrossRef]
74. Bonilla-Caballero, M.A.; Lozano-Puentes, M.P.; Ospina, M.A.; Varón-López, M. First report of multidrug-resistant Salmonella Infantis in broiler litter in Tolima, Colombia. Vet. World 2022, 15, 1557–1565. [CrossRef] [PubMed]
75. Ramirez-Hernandez, A.; Carrascal-Camacho, A.K.; Varón-García, A.; Brashears, M.M.; Sanchez-Plata, M.X. Genotypic characterization of antimicrobial resistant Salmonella spp. strains from three poultry processing plants in Colombia. Foods 2021, 10, 491. [CrossRef]
76. Siceloff, A.T.; Waltman, D.; Shariat, N.W. Regional Salmonella differences in United States broiler production from 2016 to 2020 and the contribution of multiserovar populations to Salmonella surveillance. Appl. Environ. Microbiol. 2022, 88, e0020422. [CrossRef] [PubMed]
77. FSIS. Food Safety and Inspection Service. Salmonella Quarterly Reports: FY16. Available online: https://www.fsis.usda.gov/sciencedata/data-sets-visualizations/microbiology/microbiological-testing-program-rte-meat-and-7 (accessed on 7 October 2024).
78. FSIS. Food Safety and Inspection Service. Salmonella Quarterly Reports: FY17. Available online: https://www.fsis.usda.gov/sciencedata/data-sets-visualizations/microbiology/microbiological-testing-program-rte-meat-and-7 (accessed on 7 October 2024).
79. Foley, S.L.; Nayak, R.; Hanning, I.B.; Johnson, T.J.; Han, J.; Ricke, S.C. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. Environ. Microbiol. 2011, 77, 4273–4279. [CrossRef] [PubMed]
80. Newton, K.; Gosling, B.; Rabie, A.; Davies, R. Field investigations of multidrug-resistant Salmonella Infantis epidemic strain incursions into broiler flocks in England and Wales. Avian Pathol. 2020, 49, 631–641. [CrossRef]
81. Sevilla-Navarro, S.; Torres-Boncompte, J.; Garcia-Llorens, J.; Bernabéu-Gimeno, M.; Domingo-Calap, P.; Catalá-Gregori, P. Fighting Salmonella Infantis: Bacteriophage-driven cleaning and disinfection strategies for broiler farms. Front. Microbiol. 2024, 15, 1401479. [CrossRef] [PubMed]
82. Shurson, G.C.; Urriola, P.E.; van de Ligt, J.L.G. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound. Emerg. Dis. 2022, 69, 4–30. [CrossRef]
83. Gosling, R.; Oastler, C.; Nichols, C.; Jackson, G.; Wales, A.D.; Davies, R.H. Investigations into Salmonella contamination in feed mills producing rations for the broiler industry in Great Britain. Vet. Sci. 2022, 9, 307. [CrossRef]
84. Vinueza-Burgos, C.; Baquero, M.; Medina, J.; De Zutter, L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int. J. Food Microbiol. 2019, 299, 1–7. [CrossRef]
85. Henry, I.; Granier, S.; Courtillon, C.; Lalande, F.; Chemaly, M.; Salvat, G.; Cardinale, E. Salmonella enterica subsp. enterica isolated from chicken carcasses and environment at slaughter in Reunion Island: Prevalence, genetic characterization and antibiotic susceptibility. Trop. Anim. Health Prod. 2013, 45, 317–326. [CrossRef]
86. Hald, B.; Olsen, A.; Madsen, M. Typhaea stercorea (Coleoptera: Mycetophagidae), a carrier of Salmonella enterica serovar Infantis in a Danish broiler house. J. Econ. Entomol. 1998, 91, 660–664. [CrossRef]
87. Crabb, H.K.; Allen, J.L.; Devlin, J.M.; Wilks, C.R.; Gilkerson, J.R. Spatial distribution of Salmonella enterica in poultry shed environments observed by intensive longitudinal environmental sampling. Appl. Environ. Microbiol. 2019, 85, e00333-19. [CrossRef] [PubMed]
88. Funk, J.A.; Davies, P.R.; Nichols, M.A. The effect of fecal sample weight on detection of Salmonella Enterica in swine feces. J. Vet. Diagn. Invest. 2000, 12, 412–418. [CrossRef] [PubMed]
89. Murad, M.H.; Chu, H.; Lin, L.; Wang, Z. The effect of publication bias magnitude and direction on the certainty in evidence. BMJ Evid. Based Med. 2018, 23, 84. [CrossRef]
90. Olsen, A.; Berg, R.; Tagel, M.; Must, K.; Deksne, G.; Enemark, H.L.; Alban, L.; Johansen, M.V.; Nielsen, H.V.; Sandberg, M.; et al. Seroprevalence of Toxoplasma gondii in domestic pigs, sheep, cattle, wild boars, and moose in the Nordic-Baltic region: A systematic review and meta-analysis. Parasite Epidemiol. Control 2019, 5, e00100. [CrossRef] [PubMed]
91. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [CrossRef]