Author details:
Simple Summary: Salmonella spp. is a bacterium that places human health at risk by consuming eggs and poultry. In the European Union, the use of antimicrobials to treat salmonellosis in aviculture is no longer permitted due to the resistance to treatment of some bacteria, such as Salmonella spp. For this reason, compounds derived from natural food sources are being increasingly tested to assess their efficacy against Salmonella spp. In this study, chickens were given dietary supplements in the form of fermented defatted ‘alperujo’, a modified olive oil by-product, after which they were infected with Salmonella Typhimurium. The chickens given the supplement showed a healthy gut and a reduction in the amount of Salmonella spp. in the cecum. In conclusion, this olive oil by-product may contribute to preventing and controlling salmonellosis in farms, as well as reducing environmental contamination.
Abstract: Salmonella spp. contaminates egg and poultry meat leading to foodborne infections in humans. The emergence of antimicrobial-resistant strains has limited the use of antimicrobials. We aimed to determine the effects of the food supplement, fermented defatted ‘alperujo’ (FDA), a modified olive oil by-product, on Salmonella Typhimurium colonisation in broilers. One hundred and twenty 1-day-old broilers were divided into four experimental groups—two control groups and two treated groups, and challenged with S. Typhimurium at day 7 or 21. On days 7, 14, 21, 28, 35, and 42 of life, duodenum and cecum tissue samples were collected for histopathological and histomorphometric studies. Additionally, cecum content was collected for Salmonella spp. Detection by culture and qPCR, and for metagenomic analysis. Our results showed a significant reduction of Salmonella spp. in the cecum of 42-day-old broilers, suggesting that fermented defatted ‘alperujo’ limits Salmonella Typhimurium colonization in that cecum and may contribute to diminishing the risk of carcass contamination at the time of slaughter. The improvement of the mucosal integrity, observed histologically and morphometrically, may contribute to enhancing intestinal health and to limiting Salmonella spp. colonisation in the host, mitigating production losses. These results could provide evidence that FDA would contribute to prophylactic and therapeutic measures to reduce salmonellosis prevalence in poultry farms.
Keywords: antimicrobial alternatives; fermented defatted ‘alperujo’; intestinal health; olive oil by-products; Salmonella Typhimurium.
1. EFSA. The European Union summary reports on trends and sources of zoonoses, zoonotic agents and
food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [CrossRef]
2. Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Barekatain, R. Fermented soybean meal ameliorates
Salmonella Typhimurium infection in young broiler chickens. Poult. Sci. 2019, 98, 5648–5660. [CrossRef]
[PubMed]
3. Fasina, Y.O.; Bowers, J.B.; Hess, J.B.; McKee, S.R. Effect of dietary glutamine supplementation on Salmonella
colonization in the ceca of young broiler chicks. Poult. Sci. 2010, 89, 1042–1048. [CrossRef]
4. Awad, W.A.; Aschenbach, J.R.; Khayal, B.; Hess, C.; Hess, M. Intestinal epithelial responses to Salmonella enterica
serovar Enteritidis: Effects on intestinal permeability and ion transport. Poult. Sci. 2012, 91, 2949–2957. [CrossRef]
[PubMed]
5. Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakos, A.C.; Gundogdu, O.;
Corcionivoschi, N. A review of the effect of management practices on campylobacter prevalence in poultry
farms. Front. Microbiol. 2018, 9, 2002. [CrossRef] [PubMed]
6. Jazi, V.; Foroozandeh, A.D.; Toghyani, M.; Dastar, B.; Rezaie-Koochaksaraie, R.; Toghyani, M. Effects of Pediococcus
acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal
health in young broiler chickens challenged with Salmonella Typhimurium. Poult. Sci. 2018, 97, 2034–2043.
[CrossRef] [PubMed]
7. Abudabos, A.M.; Hussein, E.O.S.; Ali, M.H.; Al-Ghadi, M.Q. The effect of some natural alternative to
antibiotics on growth and changes in intestinal histology in broiler exposed to Salmonella challenge. Poult.
Sci. 2018, 98, 1441–1446. [CrossRef]
8. Guo, L.; Gong, S.; Wang, Y.; Sun, Q.; Duo, K.; Fei, P. Antibacterial activity of olive oil polyphenol extract
against Salmonella Typhimurium and Staphylococcus aureus: Possible Mechanisms. Foodborne Pathog. Dis.
2019, 17, 396–403. [CrossRef]
9. Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid
by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200.
[CrossRef]
10. Medina, E.; Romero, C.; Brenes, M.; de Castro, A. Antimicrobial activity of olive oil, vinegar, and various
beverages against foodborne pathogens. J. Food Prot. 2007, 70, 1194–1199. [CrossRef]
11. Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Mereu, A.; Ipharraguerre, I.R.; Menoyo, D. Effects of a bioactive
olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in
broiler chickens. Poult. Sci. 2020, 99, 2–10. [CrossRef] [PubMed]
12. Karaosmanoglu, H.; Soyer, F.; Ozen, B.; Tokatli, F. Antimicrobial and antioxidant activities of Turkish extra
virgin olive oils. J. Agric. Food Chem. 2010, 58, 8238–8245. [CrossRef] [PubMed]
13. Bisignano, G.; Tomaino, A.; Cascio, R.L.; Crisafi, G.; Uccella, N.; Saija, A. On the In-vitro antimicrobial activity
of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [CrossRef] [PubMed]
14. Rebollada-Merino, A.; Bárcena, C.; Ugarte-Ruiz, M.; Porras, N.; Mayoral-Alegre, F.J.; Tomé-Sánchez, I.;
Domínguez, L.; Rodríguez-Bertos, A. Effects on intestinal mucosal morphology, productive parameters
and microbiota composition after supplementation with fermented defatted alperujo (FDA) in laying hens.
Antibiotics 2019, 8, 215. [CrossRef]
15. Rebollada-Merino, A.; Ugarte-Ruiz, M.; Hernández, M.; Miguela-Villoldo, P.; Abad, D.; Cuesta-Álvaro, P.;
Rodríguez-Lázaro, D.; de Juan, L.; Domínguez, L.; Rodríguez-Bertos, A. Dietary supplementation with
fermented defatted “alperujo” induces modifications of the intestinal mucosa and cecal microbiota of broiler
chickens. Poult. Sci. 2020. online ahead of print. [CrossRef]
16. Azcarate-Peril, M.A.; Butz, N.; Cadenas, M.B.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; Hassan, H. An
attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance
of Salmonella infections in poultry through modifications to the gut microbiome. Appl. Environ. Microbiol.
2017, 84, e02526-17. [CrossRef] [PubMed]
17. Asociación Española de Normalización (UNE). Available online: https://www.une.org/encuentra-tu-norma/
busca-tu-norma/norma?c=N0058760 (accessed on 15 September 2020).
18. Miguela-Villoldo, P.; Hernández, M.; Moreno, M.A.; Rodríguez-Lázaro, D.; Quesada, A.; Domínguez, L.;
Ugarte-Ruiz, M. National colistin sales versus colistin resistance in Spanish pig production. Res. Vet. Sci.
2019, 123, 141–143. [CrossRef]
19. Rodríguez-Lázaro, D.; Gonzalez-García, P.; Delibato, E.; De Medici, D.; García-Gimeno, R.M.; Valero, A.;
Hernandez, M. Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and
vegetable food products. Int. J. Food Microbiol. 2014, 184, 113–120. [CrossRef]
20. Rodríguez-Lázaro, D.; Hernández, M.; Esteve, T.; Hoorfar, J.; Pla, M. A rapid and direct real time PCR-based
method for identification of Salmonella spp. J. Microbiol. Methods 2003, 54, 381–390. [CrossRef]
21. Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general
16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.
Nucleic Acids Res. 2013, 41, e1. [CrossRef]
22. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.;
Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [CrossRef] [PubMed]
23. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution
sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef] [PubMed]
24. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [CrossRef]
25. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA
ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res.
2013, 41, 590–596. [CrossRef]
26. Faber, T.A.; Dilger, R.N.; Iakiviak, M.; Hopkins, A.C.; Price, N.P.; Fahey, G.C. Ingestion of a novel
galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex affected growth performance and
fermentative and immunological characteristics of broiler chicks challenged with Salmonella Typhimurium.
Poult. Sci. 2012, 91, 2241–2254. [CrossRef] [PubMed]
27. Menanteau, P.; Kempf, F.; Trotereau, J.; Virlogeux-Payant, I.; Gitton, E.; Dalifard, J.; Gabriel, I.; Rychlik, I.;
Velge, P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in
chicken. Environ. Microbiol. 2018, 20, 3246–3260. [CrossRef] [PubMed]
28. Bjerrum, L.; Engberg, R.M.; Pedersen, K. Infection models for Salmonella Typhimurium DT110 in day-old
and 14-day-old broiler chickens kept in isolators. Avian Dis. 2003, 47, 1474–1480. [CrossRef]
29. Fasina, Y.O.; Hoerr, F.J.; McKee, S.R.; Conner, D.E. Influence of Salmonella enterica serovar Typhimurium
infection on intestinal goblet cells and villous morphology in broiler chicks. Avian Dis. 2010, 54, 841–847.
[CrossRef]
30. Beal, R.; Wigley, P.; Powers, C.; Hulme, S.; Barrow, P.; Smith, A. Age at primary infection with Salmonella
enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to
re-challenge. Vet. Immunol. Immunopathol. 2004, 100, 151–164. [CrossRef]
31. Marcq, C.; Cox, E.; Szalo, I.M.; Thewis, A.; Beckers, Y. Salmonella Typhimurium oral challenge model in
mature broilers: Bacteriological, immunological, and growth performance aspects. Poult. Sci. 2010, 90, 59–67.
[CrossRef]
32. Shang, Y.; Regassa, A.; Kim, J.H.; Kim, W.K. The effect of dietary fructooligosaccharide supplementation on
growth performance, intestinal morphology, and immune responses in broiler chickens challenged with
Salmonella Enteritidis lipopolysaccharides. Poult. Sci. 2015, 94, 2887–2897. [CrossRef] [PubMed]
33. Adhikari, P.; Cosby, D.E.; Cox, N.A.; Franca, M.S.; Williams, S.M.; Gogal, R.M.; Ritz, C.W.; Kim, W.K. Effect of
dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response,
ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella Enteritidis.
Poult. Sci. 2018, 97, 2525–2533. [CrossRef]
34. Brito, J.R.F.; Xu, Y.; Hinton, M.; Pearson, G.R. Pathological findings in the intestinal tract and liver of chicks
after exposure to Salmonella serotypes Typhimurium or Kedougou. Br. Vet. J. 1995, 151, 311–323. [CrossRef]
35. Zhang, B.; Li, G.; Shahid, M.S.; Gan, L.; Fan, H.; Lv, Z.; Yan, S.; Guo, Y. Dietary l-arginine supplementation
ameliorates inflammatory response and alters gut microbiota composition in broiler chickens infected with
Salmonella enterica serovar Typhimurium. Poult. Sci. 2020, 99, 1862–1874. [CrossRef] [PubMed]
36. Van Immerseel, F.; De Buck, J.; De Smet, I.; Mast, J.; Haesebrouck, F.; Ducatelle, R. Dynamics of immune
cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella Enteritidis
strain. Dev. Comp. Immunol. 2002, 26, 355–364. [CrossRef]
37. Wigley, P. Immunity to bacterial infection in the chicken. Dev. Comp. Immunol. 2013, 41, 413–417. [CrossRef]
38. Xie, S.; Li, Y.; Zhao, S.; Lv, Y.; Yu, Q. Salmonella infection induced intestinal crypt hyperplasia through
Wnt/β-catenin pathway in chicken. Res. Vet. Sci. 2020, 130, 179–183. [CrossRef]
39. Shao, Y.; Guo, Y.; Wang, Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler
chickens challenged with Salmonella enterica serovar Typhimurium. Poult. Sci. 2013, 92, 1764–1773. [CrossRef]
40. Shao, Y.; Lei, Z.; Yuan, J.; Yang, Y.; Guo, Y.; Zhang, B. Effect of zinc on growth performance, gut morphometry,
and cecal microbial community in broilers challenged with Salmonella enterica serovar Typhimurium. J.
Microbiol. 2014, 52, 1002–1011. [CrossRef]
41. Almeida, J.A.S.; Ponnuraj, N.P.; Lee, J.J.; Utterback, P.; Gaskins, H.R.; Dilger, R.N.; Pettigrew, J.E. Effects
of dietary clays on performance and intestinal mucus barrier of broiler chicks challenged with Salmonella
enterica serovar Typhimurium and on goblet cell function in vitro. Poult. Sci. 2014, 93, 839–847. [CrossRef]
42. Rajani, J.; Dastar, B.; Samadi, F.; Karimi-Torshizi, M.A.; Abdulkhani, A.; Esfandyarpour, S. Effect of extracted
galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella Typhimurium colonisation,
growth performance and intestinal morphology in broiler chicks. Br. Poult. Sci. 2016, 57, 682–692. [CrossRef]
43. Aljumaah, M.R.; Alkhulaifi, M.M.; Abudabos, A.M.; Alabdullatifb, A.; El-Mubarak, A.H.; Al Suliman, A.R.;
Stanley, D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella
enterica serovar Typhimurium challenged broilers. PLoS ONE 2020, 15, e0232831. [CrossRef]
44. Liu, J.D.; Bayir, H.O.; Cosby, D.E.; Cox, N.A.; Williams, S.M.; Fowler, J. Evaluation of encapsulated sodium
butyrate on growth performance, energy digestibility, gut development, and Salmonella colonization in
broilers. Poult. Sci. 2017, 96, 3638–3644. [CrossRef]
45. Kelly, C.; Gundogdu, O.; Pircalabioru, G.; Cean, A.; Scates, P.; Linton, M.; Pinkerton, L.; Magowan, E.; Stef, L.;
Simiz, E.; et al. The in vitro and in vivo effect of carvacrol in preventing Campylobacter infection, colonization
and in improving productivity of chicken broilers. Foodborne Pathog. Dis. 2017, 14, 341–349. [CrossRef]
[PubMed]
46. Ijaz, U.Z.; Sivaloganathan, L.; McKenna, A.; Richmond, A.; Kelly, C.; Linton, M.; Stratakos, A.C.; Lavery, U.;
Elmi, A.; Wren, B.W.; et al. Comprehensive longitudinal microbiome analysis of the chicken cecum reveals
a shift from competitive to environmental drivers and a window of opportunity for Campylobacter. Front.
Microbiol. 2018, 9, 2452. [CrossRef] [PubMed]
47. Richards, P.; Fothergill, J.; Bernardeau, M.; Wigley, P. Development of the caecal microbiota in three broiler
breeds. Front. Vet. Sci. 2019, 6, 201. [CrossRef] [PubMed]
48. Kempf, F.; Menanteau, P.; Rychlik, I.; Kubasová, T.; Trotereau, J.; Virlogeux-Payant, I.; Schaeffer, S.; Schouler, C.;
Drumo, R.; Guitton, E.; et al. Gut microbiota composition before infection determines the Salmonella superand low-shedder phenotypes in chicken. Microb. Biotechnol. 2020, 13, 1611–1630. [CrossRef] [PubMed]
49. Rychlik, I. Composition and function of chicken gut microbiota. Animals 2020, 10, 103. [CrossRef]