1. Patel A, Desai SS, Mane VK, Enman J, Rova U, Christakopoulos P, et al.
Futuristic food fortifcation with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci
Technol. 2022;120:140–53. https://doi.org/10.1016/j.tifs.2022.01.006.
2. Neill HR, Gill CIR, McDonald EJ, McRoberts WC, Pourshahidi K. The future is bright: Biofortifcation of common foods can improve vitamin D status.
Crit Rev Food Sci Nutr. 2021. https://doi.org/10.1080/10408398.2021.1950609.
3. Ledwaba MF, Roberson KD. Efectiveness of twenty-fve-hydroxycholecalciferol in the prevention of tibial dyschondroplasia in ross cockerels depends on dietary calcium level. Poult Sci. 2003;82:1769–77. https://doi. org/10.1093/ps/82.11.1769.
4. Wideman RF, Blankenship J, Pevzner IY, Turner BJ. Efcacy of 25-OH vitamin
D3 prophylactic administration for reducing lameness in broilers grown on wire fooring. Poult Sci. 2015;94:1821–7. https://doi.org/10.3382/ps/pev160.
5. Long SF, Kang S, Wang QQ, Xu YT, Pan L, Hu JX, et al. Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profle of broilers.
Poult Sci. 2018;97:1881–90. https://doi.org/10.3382/ps/pey027.
6. Moran CA, Keegan JD, Vienola K, Apajalahti J. Broiler tissue enrichment with docosahexaenoic acid (DHA) through dietary supplementation with aurantiochytrium limacinum algae. Food Nut Sci. 2018;9;1160–73. https:// doi.org/10.4236/fns.2018.910084.
7. Khan IA, Parker NB, Lohr CV, Cherian G. Docosahexaenoic acid (22:6 n-3)-rich microalgae along with methionine supplementation in broiler chickens: efects on production performance, breast muscle quality attributes, lipid profle, and incidence of white striping and myopathy.
Poult Sci. 2021;11:865–74. https://doi.org/10.1016/j.psj.2020.10.069.
8. Yarger JG, Quarles CL, Hollis BW, Gray RW. Safety of 25-hydroxycholecalciferol as a source of cholecalciferol in poultry rations. Poult Sci.
1995;74:1437–46. https://doi.org/10.3382/ps.0741437.
9. Sun T, Tolba SA, Magnuson AD, Lei XG. Excessive Aurantiochytrium acetophilum docosahexaenoic acid supplementation decreases growth performance and breast muscle mass of broiler chickens. Algal Res.
2022;63:102648. https://doi.org/10.1016/j.algal.2022.102648.
10. Gatrell S, Lum K, Kim J, Lei XG. Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J Anim Sci. 2014;92:1306–14. https://doi.org/10.
2527/jas.2013-7250.
11. Tolba SA, Sun T, Magnuson AD, Liu GC, Abdel-Razik WM, Gamal MF, et al.
Supplemental docosahexaenoic-acid-enriched microalgae afected fatty acid and metabolic profles and related gene expression in several tissues of broiler chicks. J Agric Food Chem. 2019;67:6497–507. https://doi.org/
10.1021/acs.jafc.9b00629.
12. Adhikari R, White D, House JD, Kim WK. Efects of additional dosage of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3 on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens.
Poult Sci. 2021;99:364–73.
13. El-Safty SA, Galal A, El-Gendi GM, El-Azeem NAB, Ghazaly MA, Abdelhady
AYM. Efect of 25-hydroxyvitamin D supplementation, ultraviolet light and their interaction on productive performance, bone characteristics, and some behavioral aspects of broiler chicks. Ann Agric Sci. 2022;67:72–
8. https://doi.org/10.1016/j.aoas.2022.05.002.
14. National Research Council. Nutrient Requirements of Poultry. 9th rev. ed.
Washington: National Academy Press; 1994.
15. Cachaldora P, Garcia-Rebollar P, Alvarez C, Blas JCD, Mendez J. Efect of type and level of fsh oil supplementation on yolk fat composition and n-3 fatty acids retention efciency in laying hens. Br Poult Sci.
2006;47:43–9.
16. Feng J, Long S, Zhang HJ, Wu SG, Qi GH, Wang J. Comparative efects of dietary microalgae oil and fsh oil on fatty acid composition and sensory quality of table eggs. Poult Sci. 2020;99:1734–43.
17. Sun T, Yin R, Magnuson AD, Tolba SA, Liu G, Lei XG. Dose-dependent enrichments and improved redox status in tissues of broiler chicks under heat stress by dietary supplemental microalgal astaxanthin. J Agric Food
Chem. 2018;66:5521–30. https://doi.org/10.1021/acs.jafc.8b00860.
18. Magnuson AD, Liu G, Sun T, Tolba SA, Xi L, Whelan R, et al. Supplemental methionine and stocking density afect antioxidant status, fatty acid profles, and growth performance of broiler chickens. J Anim Sci.
2020;98:skaa092. https://doi.org/10.1093/jas/skaa092.
19. Manor ML, Derksen TJ, Magnuson AD, Raja F, Lei XG. Inclusion of dietary defatted microalgae dose-dependently enriches ω-3 fatty acids in egg yolk and tissues of laying hens. J Nutr. 2020;149:942–50. https://doi.org/
10.1093/jn/nxz032.
20. Sharma MK, White D, Chen C, Kim WK, Adhikari P. Efects of the housing environment and laying hen strain on tibia and femur bone properties of diferent laying phases of Hy-Line hens. Poult Sci. 2021;100:100933. https://doi.org/10.1016/j.psj.2020.12.030.
21. Chou SH, Chung TK, Yu B. Efects of supplemental 25-hydroxycholecalciferol on growth performance, small intestinal morphology, and immune response of broiler chickens. Poult Sci. 2009;88:2333–41. https://doi.org/
10.3382/ps.2009-00283.
22. Yan L, Kim IH. Efects of dietary ω-3 fatty acid-enriched microalgae supplementation on growth performance, blood profles, meat quality, and fatty acid composition of meat in broilers. J Appl Anim Res. 2013;4:392–7. https://doi.org/10.1080/09712119.2013.787361.
23. Fritts CA, Waldroup PW. Efect of source and level of vitamin D on live performance and bone development in growing broilers. J Appl Poult
Res. 2003;12:45–52.
24. Atencio A, Edwards HM, Pesti GM. Efect of the level of cholecalciferol supplementation of broiler breeder hen diets on the performance and bone abnormalities of the progeny fed diets containing various levels of calcium or 25-hydroxycholecalciferol. Poult Sci. 2005;84:1593–603. https://doi.org/10.1093/ps/84.10.1593.
25. Wei H-K, Zhou Y, Jiang S, Tao Y-X, Sun H, Peng J, et al. Feeding a DHAenriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br J Nutr. 2015;110:671–80. https://doi.org/10.1017/S0007114512005740.
26. Betiku OC, Barrows FT, Ross C, Sealey WM. The efect of total replacement of fsh oil with DHA-Gold® and plant oils on growth and fllet quality of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Aqua Nutr.
2016;22:158–69. https://doi.org/10.1111/anu.12234.
27. Liu B, Jiang J, Yu D, Lin G, Xiong YL. Efects of supplementation of microalgae (Aurantiochytrium sp.) to laying hen Diets on fatty acid content, health lipid Indices, oxidative stability, and quality attributes of meat.
Food. 2020; https://doi.org/10.5713/ajas.2012.12455.
28. Ribeiro T, Lordelo MM, Alves SP, Bessa RJB, Costa P, Lemos JPC, et al.
Direct supplementation of diet is the most efcient way of enriching broiler meat with n-3 long-chain polyunsaturated fatty acids. Br Poult Sci.
2013;54:753–65.
29. Garcia AFQM, Murakami AE, Duarte CRA, Rojas ICV, Picoli KP, Puzotti
MM. Use of vitamin D3 and its metabolites in broiler chicken feed on performance, bone parameters, and meat quality. Asian-Aust J Anim Sci.
2013;26:408–15. https://doi.org/10.5713/ajas.2012.12455.
30. Atencio A, Edwards HM Jr, Pesti GM, Ware GO. The vitamin D3 requirements of broiler breeders. Poult Sci. 2006;85:674–92. https://doi.org/10.
1093/ps/85.4.674.
31. Vignale K, Greene ES, Caldas JV, England JA, Boonsinchai N, Sodsee P, et al. 25-hydroxycholecalciferol enhances male broiler breast meat yield through the mTOR pathway. J Nutr. 2015;145:855–63. https://doi.org/10.
3945/jn.114.207936.
32. Mansoori A, Sotoudeh G, Djalali M, Eshraghian MR, Keramatipour M,
Nasli-Esfahani E, et al. Efect of DHA-rich fsh oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: A randomized, doubleblind, placebo-controlled clinical trial. J Clin Lipidol. 2015;9:770–7. https://doi.org/10.1016/j.jacl.2015.08.007.
33. Surdu AM, Pinzariu O, Ciobanu DM, Negru AG, Cainap SS, Lazea C, et al.
Vitamin D and its role in the lipid metabolism and the development of atherosclerosis. Biomedicines. 2021;9:172. https://doi.org/10.3390/biome dicines9020172.
34. Gupta AK, Sexton RC, Rudney H. Efect of vitamin D3 derivatives on cholesterol synthesis and HMG-CoA reductase activity in cultured cells.
J Lipid Res. 1989;30:379–86.
35. Quach HP, Dzekic T, Bukuroshi P, Pang KS. Potencies of vitamin D analogs,
1α-hydroxyvitamin D3, 1α-hydroxyvitamin D2 and 25-hydroxyvitamin D3, in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm
Drug Dispos. 2018;39:196–204. https://doi.org/10.1002/bdd.2126.
36. Froyland L, Vaagenes H, Asiedu DK, Garras A, Lie O, Berge RK. Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs. Lipids. 1996;31:169–78. https://doi. org/10.1007/BF02522617.
37. Bahety P, Nguyen THV, Hong Y, Zhang L, Chan ECY, Ee PLR. Understanding the cholesterol metabolism-perturbing efects of docosahexaenoic acid by gas chromatography-mass spectrometry targeted metabonomic profling. Eur J Nutr. 2017;56:29–43. https://doi.org/10.1007/s00394-015-1053-4.
38. Grimsgaard S, Bonaa H, Hansen J-B, Nordoy A. Highly purifed eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering efects but divergent efects on serum fatty acids.
Am J Clin Nutr. 1997;66:649–59. https://doi.org/10.1093/ajcn/66.3.649.
39. Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-Cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2011;142:99–104. https://doi.org/10.3945/jn.111.148973.
40. Chen C, Turner B, Applegate TJ, Litta G, Kim WK. Role of long-term supplementation of 25-hydroxyvitamin D3 on laying hen bone 3-dimensional structural development. Poult Sci. 2020;99:5771–82. https://doi.org/10.
1016/j.psj.2020.06.080.
41. Sirois I, Cheung AM, Ward WE. Biomechanical bone strength and bone mass in young male and female rats fed a fsh oil diet. Prostaglandins
Leukot Essent Fatty Acid. 2003;68:415–21. https://doi.org/10.1016/s0952-
3278(03)00066-8.
42. Damsgaard CT, Molgaard C, Matthiessen J, Gyldenlove SN, Lauritzen L.
The efects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys. Pediatric Res. 2012;71:713–9. https://doi.org/10.1038/pr.2012.28.
43. Anez-Bustillos L, Cowan E, Cubria MB, Villa-Camacho JC, Mohamadi A, Dao
DT, et al. Efects of dietary omega-3 fatty acids on bones of healthy mice.
Clin Nutr. 2019;38:2145–54. https://doi.org/10.1016/j.clnu.2018.08.036.
44. Zhao B, Nemere I. 1,25(OH)2D3-mediated phosphate up-take in isolated chick intestinal cells: efect of 24,25(OH)2D3, signal transduction activators, and age.
J Cell Biochem. 2002;86:497–508. https://doi.org/10.1002/jcb.10246.
45. Bar A. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds. Comp Biochem Physiol A Mol Integr
Physiol. 2008;151:477–90. https://doi.org/10.1016/j.cbpa.2008.07.006.
46. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int.
2003;14:13–8. https://doi.org/10.1007/s00198-002-1345-4.