Sustainable poultry intensification is economically constrained by several factors including high feed costs, which constitute more than 70% of total production costs. Functional feed ingredients such as fruit pomaces can be incorporated into poultry diets as natural sources of nutrients and biologically active substances to deliver sustainable production. Fruit pomaces are agro-industrial waste by-products that have no direct food value for humans. Their utilization as feed ingredients would reduce feed-food competitions, optimize poultry production systems, and promote environmental, economic, and social sustainability. Large quantities of fruit pomaces are generated and disposed in landfills or through incineration with little regard to the environment. Thus, their inclusion in poultry feeds could offer a long-term strategy to protect the environment. Valorising fruit pomaces to enhance poultry production would also contribute toward sustainable development goals and food security through the provision of affordable high-quality protein to the rapidly growing human population. Moreover, the use of fruit pomaces complements food production systems by ensuring that food animals are reared on human inedible feedstuffs. Thus, this review explores the nutritional composition and subsequent feeding values of various fruit pomaces, while examining their environmental benefits when used as feed ingredients in poultry nutrition. Furthermore, strategies that can be employed to negate the effect of anti-nutritional factors in the pomaces are presented. We postulate that the use of fresh or valorised fruit pomaces would improve poultry production and significantly reduce the amounts of waste destined for incineration and/or direct deposition in landfills.
Keywords: agro-fruit industry, bioactive compounds, food security, fruit pomace, nutrients, poultry.
Aditya, S., Ohh, S. J., Ahammed, M., and Lohakare, J. (2018). Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 4, 210–221. doi: 10.1016/j.aninu.2018.01.004
Aghili, A. H., Toghyani, M., and Tabeidian, S. A. (2019). Effect of incremental levels of apple pomace and multi enzyme on performance, immune response, gut development and blood biochemical parameters of broiler chickens. Int. J. Recycl. Org. Waste Agric. 8, 321–334. doi: 10.1007/s40093-019-00305-8
Ahmad, I., and Chwee, C. P. (2008). An overview of the world production and marketing of tropical and subtropical fruits. Acta Hortic. 787, 47–58. doi: 10.17660/ActaHortic.2008.787.3
Aili Hamzah, A. F., Hamzah, M. H., Che Man, H., Jamali, N. S., Siajam, S. I., and Ismail, M. H. (2021). Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy 11, 2221. doi: 10.3390/agronomy11112221
Akinjare, O. A., Ayedun, C. A., Oluwatobi, A. O., and Iroham, O. C. (2011). Impact of sanitary landfills on urban residential property values in Lagos State, Nigeria. J. Sustain. Dev. 4, 48–60. doi: 10.5539/jsd.v4n2p48
Alexandre, E. M. C., Silva, S., Santos, S. A. O., Silvestre, A. J. D., Duarte, M. F., Saraiva, J. A., et al. (2019). Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 115, 167–176. doi: 10.1016/j.foodres.2018.08.044
Antonic, B., Jancíkova, S., Bohuslava, D. D., and Tremlova, B. (2020). Grape pomace valorization: a systematic review and meta-analysis. Foods.9, 1627. doi: 10.3390/foods9111627
Arocho, Y. D., Bellmer, D., Maness, N., McGlynn, W., and Rayas-Duarte, P. (2012). Watermelon pomace composition and the effect of drying and storage on lycopene content and color. J. Food Qual. 35, 331–340. doi: 10.1111/j.1745-4557.2012.00455.x
Ashoush, I. S., and Gadallah, M. G. E. (2011). Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J. Dairy Food Sci. 6, 35–42.
Assefa, A. D., Hur, O. S., Ro, N. Y., Lee, J. E., Hwang, A. J., Kim, B. S., et al. (2020). Fruit morphology, citrulline, and arginine levels in diverse watermelon (Citrullus lanatus) germplasm collections. Plants 9, 1054. doi: 10.3390/plants9091054
Avilés-Gaxiola, S., Chuck-Hernández, C., and Saldívar, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: a review. J. Food Sci. 83, 17–29. doi: 10.1111/1750-3841.13985
Bedford, M. R., and Partridge, G. G. (2010). Enzymes in Farm Animal Nutrition, 2nd Edn. New York, NY: CABI Publishing. doi: 10.1079/9781845936747.0000
Beres, C., Costa, G. N. S., Cabezudo, I., da Silva-James, N. K., Teles, A. S. C., Cruz, A. P. G., et al. (2017). Towards integral utilization of grape pomace from winemaking process: a review. Waste Manage. 68, 581–594. doi: 10.1016/j.wasman.2017.07.017
Besharati, M., and Abdi, E. (2017). Evaluation of pomegranate pomace supplemented with different levels of polyethylene glycol using in vitro gas production technique. J. Proteom. Bioinform. 5, 1–5. doi: 10.15406/mojpb.2017.05.00150
Blandon, J. C., Hamady, G. A. A., and Abdel-Moneim, M. A. (2015). The effect of partial replacement of yellow corn by banana peels with and without enzymes on broiler’s performance and blood parameters. J. Anim. Poult. Sci. 4, 10–19.
Bostami, A. B. M. R., Ahmed, S. T., Islam, M. M., Mun, H. S., Ko, S. Y., Kim, S. S., et al. (2015). Growth performance, fecal noxious gas emission and economic efficacy in broilers fed fermented pomegranate by-products as residue of fruit industry. Int. J. Adv. Res. 3, 102−114.
Brenes, A., Viveros, A., Chamorro, S., and Arija, I. (2016). Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 211, 1–17. doi: 10.1016/j.anifeedsci.2015.09.016
Brenes, A., Viveros, A., Gon, I., Centeno, C., Sa’yago-Ayerdy, S. G., Arija, I., et al. (2008). Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 87, 307–316. doi: 10.3382/ps.2007-00297
Campos, D. A., Gómez-García, R., Vilas-Boas, A. A., Madureira, A. R., and Pintado, M. M. (2020). Management of fruit industrial by-products - A case study on circular economy approach. Molecules 25, 320. doi: 10.3390/molecules25020320
Castro, M. D. L. D. (2014). Towards a comprehensive exploitation of agrofood residues: Olive tree-olive oil as example. Comptes Rendus Chim. 17, 252–260. doi: 10.1016/j.crci.2013.11.010
Çerçi, I. H., Erocagi, A., and Karagözoglu, F. (2020). Investigation of opportunities the addition of canned watermelon pomace and watermelon juice produced from unmarketable watermelon in broiler quail ration. Int. J. Agric. Environ. Food Sci. 4, 181–187. doi: 10.31015/jaefs.2020.2.8
Cetkovic, G., Canadanovic-Brunet, J., Djilas, S., Savatovic, S., Mandic, A., and Tumbas, V. (2007). Assessment of polyphenolic content and antiradical characteristics of apple pomace. Food Chem. 109, 340–347. doi: 10.1016/j.foodchem.2007.12.046
Chamorro, S., Viveros, A., Rebol,é, A., Rica, A., Arija, B. D., and Brenes, A. A. (2015). Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 73, 197–203. doi: 10.1016/j.foodres.2014.11.054
Chen, Y., Luo, H., Gao, A., and Zhu, M. (2012). Extraction of polysaccharides from mango (mangifera indica, linn.) seed by response surface methodology and identification of their structural characteristics. Food Anal. Methods 5, 800–806. doi: 10.1007/s12161-011-9312-3
Conidi, C., Drioli, E., and Cassano, A. (2020). Perspective of membrane technology in pomegranate juice processing: a review. Foods 9, 889. doi: 10.3390/foods9070889
Crowley, D., Staines, A., Collins, C., Bracken, J., Bruen, M., Fry, J., et al. (2003). Health and Environmental Effects of Landfilling and Incineration of Waste - A Literature Review. Reports. Paper 3. Available online at: http://arrow.dit.ie/ schfsehrep/3 (accessed January 20, 2022).
Dedousi, A., Kritsa, M. Z., Ð*ukic Stojcic, M., Sfetsas, T., Sentas, A., and Sossidou, E. (2022). Production performance, egg quality characteristics, fatty acid profile and health lipid indices of produced eggs, blood biochemical parameters and welfare indicators of laying hens fed dried olive pulp. Sustainability 14, 3157. doi: 10.3390/su14063157
Dominguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., and Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants. 8, 429. doi: 10.3390/antiox8100429
Dwyer, K., Hosseinian, F., and Rod, M. R. (2014). The market potential of grape waste alternatives. J. Food Res. 3, 91. doi: 10.5539/jfr.v3n2p91
Ebrahimi, A., Alaw Qotbi, A. A., and Seidavi, A. (2013). The effects of different levels of dried (Citrus sinensis) peel on broiler carcass quality. Acta Sci. Vet. 41, 1–8. doi: 10.1016/j.sjbs.2014.09.006
Ebrahimzadeh, S. K., Navidshad, B., Farhoomand, P., and Aghjehgheshlagh, F. M. (2018). Effects of exogenous tannase enzyme on growth performance, antioxidant status, immune response, gut morphology and intestinal microflora of chicks fed grape pomace. S. Afr. J. Anim. Sci. 48, 2–18. doi: 10.4314/sajas.v48i1.2
FAO. (2019). Global Food Waste Statistics. Available online at: http://www.fao.org/ platform-food-loss-waste/en/ (accessed January 22, 2022).
FAO. (2021). Food and Agriculture Data. Available online at: http://www.fao.org/ faostat/en/ (accessed February 8, 2021).
FAOSTAT. (2019). Food and Agriculture Organization of the United Nations. Available online at: http://faostat.fao.org (accessed February 10, 2021).
FAOSTAT. (2020). Food and Agriculture Organization Online Statistical Database. Rome: FAOSTAT.
Fiialovych, L., and Kyryliv, L. (2016). Laying performance, egg quality and hatching results in geese fed with dry apple pomaces. Acta Sci. Pol. Zootechnica. 15, 71–82. doi: 10.21005/asp.2016.15.4.06
Garcia-Garcia, G., Stone, J., and Rahimifard, S. (2019). Opportunities for waste valorisation in the food industry – A case study with four UK food manufacturers. J. Clean. Prod. 211, 1339–1356. doi: 10.1016/j.jclepro.2018.11.269
García-Lomillo, J., and González-SanJosé, M. L. (2017). Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 16, 3–22. doi: 10.1111/1541-4337.12238
Gassara, F., Brar, S. K., Pelletier, F., Verma, M., Godbout, S., and Tyagi, R. D. (2011). Pomace waste management scenarios in Québec- Impact on greenhouse gas emissions. J. Hazard. Mater. 192, 1178–1185. doi: 10.1016/j.jhazmat.2011.06.026
Gazalli, H., Malik, A. H., Sofi, A. H., Wani, S. A., Pal, M. A., Mir, A., et al. (2014). Nutritional value and physiological effect of apple pomace. Int. J. Food Sci. Nutr. 5, 11−15.
Gungor, E., Altop, A., and Erener, G. (2021). Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals 11, 364. doi: 10.3390/ani11020364
Gurumeenakshi, G., Varadharaju, N., and Rajeswari, R. (2015). Quality analysis of mango fruit waste for utilization in food products. Int. J. Curr. Microbiol. App. Sci. 8, 20–27. doi: 10.20546/ijcmas.2019.803.004
Heidarisafar, Z., Sadegh, G., Karimi, A., and Azizi, O. (2016). Apple peel waste as a natural antioxidant for heat-stressed broiler chickens. Trop. Anim. Health Prod. 48, 831–835. doi: 10.1007/s11250-016-1001-1
Hernandez, J., Beardsworth, P., and Weber, G. (2005). Egg quality-meeting consumer expectations. Int. J. Poult. Sci. 13, 20–23.
Iqbal, A., Schulz, P., and Rizvi, S. S. H. (2021). Valorization of bioactive compounds in fruit pomace from agro-fruit industries: present Insights and future challenges. Food Biosci. 44, 101384. doi: 10.1016/j.fbio.2021. 101384
Islam, R., Hassan, Y. I., Dasa, Q., Leppa, D., Hernandeza, M., Godfrey, D. V., et al. (2020). Dietary organic cranberry pomace influences multiple blood biochemical parameters and cecal microbiota in pasture-raised broiler chickens. J. Funct. Foods. 72, 1–13. doi: 10.1016/j.jff.2020.104053
Jahurul, M. H. A., Zaidul, I. S. M., Kashif, G., Fahad, Y., Al-Juhaimi, F. Y., Nyam, K. L. A., et al. (2015). Mango (Mangifera indica L.) byproducts and their valuable components: a review. Food Chem. 183, 173–180. doi: 10.1016/j.foodchem.2015.03.046
Jami, E., Shabtay, A., Nikbachat, M., Yosef, E., Miron, J., and Mizrahi, I. (2012). Effects of adding a concentrated pomegranate-residue extract to the ration of lactating cows on in vivo digestibility and profile of rumen bacterial population. J. Dairy Sci. 95, 5996–6005. doi: 10.3168/jds.2012-5537
Juskiewicz, J., Jankowski, J., Zielinski, H., Zdunczyk, Z., Mikulski, D., and Antoszkiewicz, Z. (2017). The Fatty acid profile and oxidative stability of meat from Turkeys fed diets enriched with n-3 polyunsaturated fatty acids and dried fruit pomaces as a source of polyphenols. PLoS ONE. 12, e0170074. doi: 10.1371/journal.pone.0170074
Kalli, E., Lappa, I., Bouchagier, P., Tarantilis, P. A., and Skotti, E. (2018). Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 5, 46. doi: 10.1186/s40643-018-0232-6
Kara, K., Guclu, B. K., Baytok, E., Aktug, E., Oguz, F. K., Kamalak, A., et al. (2018). Investigation in terms of digestive values, silages quality and nutrient content of the using pomegranate pomace in the ensiling of apple pomace with high moisture contents. J. Appl. Anim. Res. 46, 1233–1241. doi: 10.1080/09712119.2018.1490300
Khan, N., Le Roes-Hill, M., Welz, P. J., Grandin, K. A., Kudanga, T., van Dyk, S. J., et al. (2015). Fruit waste streams in South Africa and their potential role in developing a bio-economy. S. Afr. J. Anim. Sci. 111, 1–11. doi: 10.17159/sajs.2015/20140189
Khattab, R. Y., and Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Anti-nutritional factors. LWT Food Sci. Technol. 42, 1113–1118. doi: 10.1016/j.lwt.2009.02.004
Knoblich, M., Anderson, B., and Latshaw, D. (2005). Analysis of tomato peel and seed byproducts and their use as a source of carotenoids. J. Sci. Food Agri. 85, 1166–1170. doi: 10.1002/jsfa.2091
Kotsampasi, B., Christodoulou, V., Zotos, A., Liakopoulou-Kyriakides, M., Goulas, P., Petrotos, K., et al. (2014). Effects of dietary pomegranate byproduct silage supplementation on performance, carcass characteristics and meat quality of growing lambs. Anim. Feed Sci. Technol. 197, 92–102. doi: 10.1016/j.anifeedsci.2014.09.003
Kumanda, C., Mlambo, V., and Mnisi, C. M. (2019a). From landfills to the dinner table: red grape pomace waste as a nutraceutical for broiler chickens. Sustainability. 22, 1931. doi: 10.3390/su11071931
Kumanda, C., Mlambo, V., and Mnisi, C. M. (2019b). Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes: physiological and meat quality responses in Broilers. Animals 9, 779. doi: 10.3390/ani9100779
Kumar, S., Gaikwad, S. A., Shekdar, A. V., Kshirsagar, P. S., and Singh, R. N. (2004). Estimation method for national methane emission from solid waste landfills. Atmos. Environ. 38, 3481–3487. doi: 10.1016/j.atmosenv.2004.02.057
Ledesma-Escobar, C. A., Priego-Capote, F., and Luque de Castro, M. D. (2015). Comparative study of the effect of auxiliary energies on the extraction of citrus fruit components. Talanta 144, 522–528. doi: 10.1016/j.talanta.2015.07.011
Lehane, M. (1999). Environment in Focus: A Discussion on Key National Environmental Indicators. Wexford: Environmental Protection Agency.
Lin, A. Y., Huang, S. T., and Wahlgvist, M. L. (2009). Waste management to improve food safety and security for health advancement. Asia Pac. J. Clin. Nutr. 18, 538–545.
Lokaewmanee, K., and Promdee, P. (2018). Mao pomace on carcass and meat quality of broiler. Int. J. Poult. Sci. 17, 221–228. doi: 10.3923/ijps.2018.221.228
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., et al. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 9, 68. doi: 10.1186/s13065-015-0145-9
Lyu, F., Luiz, S. F., Azeredo, D. R. P., Cruz, A. G., Ajlouni, S., and Ranadheera, C. S. (2020). Apple pomace as a functional and healthy ingredient in food products: a review. Processes. 8, 319. doi: 10.3390/pr8030319
Mahlake, S. K., Mnisi, C. M., Lebopa, C., and Kumanda, C. (2021). The effect of green tea (Camellia sinensis) leaf powder on growth performance, selected hematological indices, carcass characteristics and meat quality parameters of Jumbo quail. Sustainability. 13, 1–13. doi: 10.3390/su13137080
Manivannan, A., Lee, E. S., Han, K., Lee, H. E., and Kim, D. S. (2020). Versatile nutraceutical potentials of watermelon - A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules 25, 5258. doi: 10.3390/molecules25225258
Mansoori, B., Modirsanei, M., and Kiaei, M. M. (2008). Influence of dried tomato pomace as an alternative to wheat bran in maize or wheat based diets, on the performance of laying hens and traits of produced eggs. Iran. J. Vet. Res. 9, 341–346. doi: 10.22099/IJVR.2008.2616
Maran, J. P., Swathi, K., Jeevitha, P., Jayalakshmi, J., and Ashvin, G. (2015). Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydr. Polym. 123, 67–71. doi: 10.1016/j.carbpol.2014.11.072
Marareni, M., and Mnisi, C. A. (2020). Growth performance, serum biochemistry and meat quality traits of Jumbo quails fed with Mopane worm (Imbrasia belina) meal-containing diets. Vet. Anim. Sci. 10, 100141. doi: 10.1016/j.vas.2020.100141
Masenya, T. I., Mlambo, V., and Mnisi, C. M. (2021). Complete replacement of maize grain with sorghum and pearl millet grains in Jumbo quail diets: feed intake, physiological parameters, and meat quality traits. PLoS ONE. 16, e0249371. doi: 10.1371/journal.pone.0249371
McKendry, P., Looney, J. H., and McKenzie, A. (2002). Managing Odour Risk at Landfill Sites: Main Report. Redditch: MSE Ltd & Viridis.
Mengesha, M. (2012). The issue of feed-food competition and chicken production for the demands of foods of animal origin. Asian J. Poult. Sci. 6, 31–43. doi: 10.3923/ajpsaj.2012.31.43
Mhlongo, G., Mnisi, C. M., and Mlambo, V. (2021). Cultivating oyster mushrooms on red grape pomace waste enhances potential nutritional value of the spent substrate for ruminants. PLoS ONE. 16, e0246992. doi: 10.1371/journal.pone.0246992
Mnisi, C. M., Mlambo, V., Kumanda, C., and Crafford, A. (2021). Effect of graded levels of red grape pomace (Vitis vinifera L.) powder on physiological and meat quality responses of Japanese quail. Acta Agric. Scand. A Anim. Sci. 70, 100–106. doi: 10.1080/09064702.2021.1923796
Montalvo-González, E., Aguilar-Hernández, G., Hernández-Cázares, A. S., RuizLópez, I. I., Pérez-Silva, A., Hernández-Torres, J., et al. (2018). Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages. CyTA J. Food. 16, 831–839. doi: 10.1080/19476337.2018.1465125
Munekata, P. E. S., Domínguez, R., Pateiro, M., Nawaz, A., Hano, C., Walayat, N., et al. (2021). Strategies to increase the value of pomaces with fermentation. Fermentation. 7, 299. doi: 10.3390/fermentation7040299
Musacchi, S., and Serra, S. (2018). Apple fruit quality: overview on pre-harvest factors. Sci. Hortic. 2, 409–430. doi: 10.1016/j.scienta,.2017.12.057
OECD-FAO. (2021). Organization for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations Agricultural Outlook 2021-2030. Paris: OECD Publishing.
Omoni, A. O., and Aluko, R. E. (2005). The anti-carcinogenic and antiatherogenic effects of lycopene: a review. Trends Food Sci. Technol. 16, 344–350. doi: 10.5772/48134
Orayaga, K. T., Oluremi, O. I. A., Tuleun, C. D., and Carew, S. N. (2017). Utilization of composite mango (Mangifera indica) fruit reject meal in starter broiler chicks feeding. J. Exp. Agric. Int. 17, 1–9. doi: 10.9734/JEAI/2017/ 30226
Owino, W. O., and Ambuko, J. L. (2021). Mango fruit processing: options for small-scale processors in developing countries. Agriculture. 11, 1105. doi: 10.3390/agriculture11111105
Pereira, A. A., Alcântara, R. S., Moura, A. S., Griep Júnior,., D. N., Vieira, G. M. N., et al. (2020). Passion fruit waste in diets for quail in the laying phase. Acta Sci. Anim. Sci. 42, e48281. doi: 10.4025/actascianimsci.v42i1.48281
Perkins-Veazie, P., Collins, J. K., Siddiq, M., and Dolan, K. (2006). Juice and carotenoid yield from processed watermelon. HortScience. 41, 518. doi: 10.21273/HORTSCI.41.3.518E
Perkins-Veazie, P., Davis, A., and Collins, J. K. (2012). Watermelon: from dessert to functional food. Isr. J. Plant Sci. 60, 395–402. doi: 10.1560/IJPS.60. 1.402
Pienaar, L. (2021). The Economic Contribution of South Africa’s Pomegranate Industry. AgriProbe: Elsenburg.
Rechkemmer, G. (2007). Thermal Processing of Food: Potential Health Benefits and Risks. Weinheim: Wiley-VCH GmbH.
Rico, X., Gallon, B., Alonso, J. L., and Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res. Int. 132, 109086. doi: 10.1016/j.foodres.2020.109086
Saratale, G. D., Chen, S. D., Lo, Y. C., Saratale, R. G., and Chang, J. S. (2008). Outlook of bio-hydrogen production from lingocellulosic feedstock using dark fermentation–a review. J. Sci. Ind. Res. 67, 962–979. handle/123456789/2424
Sataria, B., and Karimia,. K. (2018). Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167. doi: 10.1016/j.resconrec.2017.10.032
Selani, M. M., Brazaca, S. G., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., and Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 163, 23–30. doi: 10.1016/j.foodchem.2014.04.076
Sengul, A. Y., Sengul, T., Celik, S., Sengul, G., Das, A., Inci, H., et al. (2021). The effect of dried white mulberry (Morus alba) pulp supplementation in diets of laying quail. Rev. MVZ Cordoba. 26, e1940. doi: 10.21897/rmvz.1940
Shen, S., Wu, B., Xu, H., and Zhang, Z. (2020). Assessment of landfill odorous gas effect on surrounding environment. Adv. Civ. Eng. 2020, 11. doi: 10.1155/2020/8875393
Smaoui, S., Hlima, H. B., Mtibaa, A. C., Fourati, M., Sellem, I., Elhadef, K., et al. (2019). Pomegranate peel as phenolic compounds source: advanced analytical strategies and practical use in meat products. Meat Sci. 158, 107914. doi: 10.1016/j.meatsci.2019.107914
Sosnowka-Czajka, E., and Skomorucha, I. (2021). Effect of supplementation with dried fruit pomace on the performance, egg quality, white blood cells, and lymphatic organs in laying hens. Poult. Sci. 100, 101278. doi: 10.1016/j.psj.2021.101278
Thomas, L., Larroche, C., and Pandey, A. (2013). Current developments in solidstate fermentation. Biochem. Eng. J. 81, 146–161. doi: 10.1016/j.bej.2013.10.013
Turcu, R. P., Olteanu, M., Criste, R. D., Panaite, T. D., Ropot,a˘, M., Vlaicu, P. A., et al. (2019). Rapeseed meal used as natural antioxidant in high fatty acid diets for Hubbard broilers. Braz. J. Poult. Sci. 21, 1–12. doi: 10.1590/1806-9061-2018-0886
Van Niekerk, R. F., Mnisi, C. M., and Mlambo, V. (2020). Polyethylene glycol inactivates red grape pomace condensed tannins for broiler chickens. Br. Poult. Sci. 61, 566–573. doi: 10.1080/00071668.2020.1755014
Van Ryssen, J. B. J. (2018). Wood ash in livestock nutrition: 2. Different uses of wood ash in animal nutrition. Appl. Anim. Husb. Rural Dev. 11, 62–67.
Yeilagi, S., Rezapour, S., and Asadzadeh, F. (2021). Degradation of soil quality by the waste leachate in a Mediterranean semi-arid ecosystem. Sci. Rep. 11, 11390. doi: 10.1038/s41598-021-90699-1
Yildiz, G., Dikicioglu, T., and Sacakli, P. (1998). The effect of dried apple pomace and grindazym added to the layer rations on egg production and egg quality. J. Turk. Vet. 10, 34–39.
Yuan, Z., and Zhao, X. (2019). Pomegranate genetic resources and their utilization in China. Acta Hortic. 1254, 49–56. doi: 10.17660/ActaHortic.2019.1254.8
Zannini, D., Dal Poggetto, G., Malinconico, M., Santagata, G., and Immirzi, B. (2021). Citrus pomace biomass as a source of pectin and lignocellulose fibers: from waste to upgraded biocomposites for mulching applications. Polymers 13, 1280. doi: 10.3390/polym13081280
It is a very good idea, It needs to check chemical composition as well as microbiological before and after processing.