The chicken is the world’s most farmed animal. In this work, we introduce the Chicks4FreeID dataset, the first publicly available dataset focused on the reidentification of individual chickens. We begin by providing a comprehensive overview of the existing animal reidentification datasets. Next, we conduct closed-set reidentification experiments on the introduced dataset, using transformer-based feature extractors in combination with two different classifiers. We evaluate performance across domain transfer, supervised, and one-shot learning scenarios. The results demonstrate that transfer learning is particularly effective with limited data, and training from scratch is not necessarily advantageous even when sufficient data are available. Among the evaluated models, the vision transformer paired with a linear classifier achieves the highest performance, with a mean average precision of 97.0%, a top-1 accuracy of 95.1%, and a top-5 accuracy of 100.0%. Our evaluation suggests that the vision transformer architecture produces higher-quality embedding clusters than the Swin transformer architecture. All data and code are publicly shared under a CC BY 4.0 license.
Keywords: chicken; poultry; livestock; re-ID; individual identification; transformer; dataset; artificial intelligence; machine learning; computer vision
1. Guhl, A.M.; Ortman, L.L. Visual Patterns in the Recognition of Individuals among Chickens. Condor 1953, 55, 287–298. [CrossRef]
2. Andrew, W.; Hannuna, S.; Campbell, N.; Burghardt, T. Automatic individual holstein friesian cattle identification via selective local coat pattern matching in RGB-D imagery. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 484–488. [CrossRef]
3. Li, S.; Fu, L.; Sun, Y.; Mu, Y.; Chen, L.; Li, J.; Gong, H. Cow Dataset. 2021. Available online: https://doi.org/10.6084/m9.figshare. 16879780 (accessed on 3 November 2024).
4. Andrew, W.; Greatwood, C.; Burghardt, T. Visual Localisation and Individual Identification of Holstein Friesian Cattle via Deep Learning. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 2850–2859. [CrossRef]
5. Gao, J.; Burghardt, T.; Andrew, W.; Dowsey, A.W.; Campbell, N.W. Towards Self-Supervision for Video Identification of Individual Holstein-Friesian Cattle: The Cows2021 Dataset. arXiv 2021, arXiv:2105.01938 .
6. Andrew, W.; Gao, J.; Mullan, S.; Campbell, N.; Dowsey, A.W.; Burghardt, T. Visual identification of individual Holstein-Friesian cattle via deep metric learning. Comput. Electron. Agric. 2021, 185, 106133. [CrossRef]
7. Zhang, T.; Zhao, Q.; Da, C.; Zhou, L.; Li, L.; Jiancuo, S. YakReID-103: A Benchmark for Yak reidentification. In Proceedings of the 2021 IEEE International Joint Conference on Biometrics (IJCB), Shenzhen, China, 4–7 August 2021; pp. 1–8. [CrossRef]
8. Chan, J.; Carrión, H.; Mégret, R.; Rivera, J.L.A.; Giray, T. Honeybee reidentification in Video: New Datasets and Impact of Self-supervision. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)—Volume 5: VISAPP, INSTICC, Avenida de S. Francisco Xavier, Lote 7 Cv. C, Online, 6–8 February 2022; pp. 517–525. [CrossRef]
9. Tausch, F.; Stock, S.; Fricke, J.; Klein, O. Bumblebee reidentification Dataset. In Proceedings of the 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), Snowmass Village, CO, USA, 1–5 March 2020; pp. 35–37. [CrossRef]
10. Borlinghaus, P.; Tausch, F.; Rettenberger, L. A Purely Visual Re-ID Approach for Bumblebees (Bombus terrestris). Smart Agric. Technol. 2023, 3, 100135. [CrossRef]
11. Kulits, P.; Wall, J.; Bedetti, A.; Henley, M.; Beery, S. ElephantBook: A Semi-Automated Human-in-the-Loop System for Elephant reidentification. In Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies, New York, NY, USA, 28 June–2 July 2021; pp. 88–98. [CrossRef]
12. Moskvyak, O.; Maire, F.; Dayoub, F.; Armstrong, A.O.; Baktashmotlagh, M. Robust reidentification of Manta Rays from Natural Markings by Learning Pose Invariant Embeddings. In Proceedings of the 2021 Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 29 November–1 December 2021; pp. 1–8. [CrossRef]
13. Wang, L.; Ding, R.; Zhai, Y.; Zhang, Q.; Tang, W.; Zheng, N.; Hua, G. Giant Panda Identification. IEEE Trans. Image Process. 2021, 30, 2837–2849. [CrossRef]
14. He, Q.; Zhao, Q.; Liu, N.; Chen, P.; Zhang, Z.; Hou, R. Distinguishing Individual Red Pandas from Their Faces. In Pattern Recognition and Computer Vision; Lin, Z., Wang, L., Yang, J., Shi, G., Tan, T., Zheng, N., Chen, X., Zhang, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 714–724.
15. Vidal, M.; Wolf, N.; Rosenberg, B.; Harris, B.P.; Mathis, A. Perspectives on Individual Animal Identification from Biology and Computer Vision. Integr. Comp. Biol. 2021, 61, 900–916. [CrossRef]
16. Neethirajan, S. ChickTrack—A quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [CrossRef]
17. T. Psota, E.; Schmidt, T.; Mote, B.; C. Pérez, L. Long-Term Tracking of Group-Housed Livestock Using Keypoint Detection and MAP Estimation for Individual Animal Identification. Sensors 2020, 20, 3670. [CrossRef]
18. Li, N.; Ren, Z.; Li, D.; Zeng, L. Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: Towards the goal of precision livestock farming. Animal 2020, 14, 617–625. [CrossRef]
19. Food Traceability. European Commission—B-1049 Brussels. 2007. Available online: https://food.ec.europa.eu/system/files/20 16-10/gfl_req_factsheet_traceability_2007_en.pdf (accessed on 13 August 2024).
20. Dennis, R.L.; Fahey, A.G.; Cheng, H.W. Different Effects of Individual Identification Systems on Chicken Well-Being1. Poult. Sci. 2008, 87, 1052–1057. [CrossRef]
21. Anderson, G.; Johnson, A.; Arguelles-Ramos, M.; Ali, A. Impact of Body-worn Sensors on Broiler Chicken Behavior and Agonistic Interactions. J. Appl. Anim. Welf. Sci. 2023, 1–10. [CrossRef] [PubMed]
22. Stadig, L.M.; Rodenburg, T.B.; Ampe, B.; Reubens, B.; Tuyttens, F.A. An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl. Anim. Behav. Sci. 2018, 198, 83–88. [CrossRef]
23. Marino, L. Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. Anim. Cogn. 2017, 20, 127–147. [CrossRef] [PubMed]
24. Lu, W.; Zhao, Y.; Wang, J.; Zheng, Z.; Feng, L.; Tang, J. MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition. Electronics 2023, 12, 4506. [CrossRef]
25. Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C.H. Deep Learning for Person reidentification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [CrossRef]
26. Witham, C.L. Automated face recognition of rhesus macaques. J. Neurosci. Methods 2018, 300, 157–165. [CrossRef]
27. Freytag, A.; Rodner, E.; Simon, M.; Loos, A.; Kühl, H.S.; Denzler, J. Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. In Pattern Recognition; Rosenhahn, B., Andres, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 51–63.
28. Lin, T.Y.; Kuo, Y.F. Cat Face Recognition Using Deep Learning; American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting: St. Joseph, MI, USA, 2018. [CrossRef]
29. Dlamini, N.; Zyl, T.L.v. Automated Identification of Individuals in Wildlife Population Using Siamese Neural Networks. In Proceedings of the 2020 7th International Conference on Soft Computing and Machine Intelligence (ISCMI), Stockholm, Sweden, 14–15 November 2020; pp. 224–228. [CrossRef]
30. Mougeot, G.; Li, D.; Jia, S. A Deep Learning Approach for Dog Face Verification and Recognition. In Proceedings of the PRICAI 2019: Trends in Artificial Intelligence, Cuvu, Fiji, 26–30 August 2019; Nayak, A.C.; Sharma, A., Eds.; Springer International Publishing: Cham, Swtizerland, 2019; pp. 418–430. [CrossRef]
31. Lamping, C.; Kootstra, G.; Derks, M. Transformer-Based Similarity Learning for Re-Identification of Chickens. Available online: https://doi.org/10.2139/ssrn.4886408 (accessed on 22 October 2024).
32. Li, S.; Li, J.; Tang, H.; Qian, R.; Lin, W. ATRW: A Benchmark for Amur Tiger Re-identification in the Wild. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2590–2598. [CrossRef]
33. Parham, J.; Crall, J.; Stewart, C.; Berger-Wolf, T.; Rubenstein, D. Animal population censusing at scale with citizen science and photographic identification. Aaai Spring Symp. Tech. Rep. 2017, SS-17-01–SS-17-08, 37–44.
34. Haurum, J.B.; Karpova, A.; Pedersen, M.; Bengtson, S.H.; Moeslund, T.B. reidentification of Zebrafish using Metric Learning. In Proceedings of the 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), Snowmass Village, CO, USA, 1–5 March 2020; pp. 1–11. [CrossRef]
35. Lahiri, M.; Tantipathananandh, C.; Warungu, R.; Rubenstein, D.I.; Berger-Wolf, T.Y. Biometric animal databases from field photographs: Identification of individual zebra in the wild. In Proceedings of the 1st ACM International Conference on Multimedia Retrieval, Vancouver, BC, Canada, 30–31 October 2008. [CrossRef]
36. Adam, L.; Cermák, V.; Papafitsoros, K.; Picek, L. SeaTurtleID2022: A long-span dataset for reliable sea turtle reidentification. In ˇ Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 7131–7141. [CrossRef]
37. Bouma, S.; Pawley, M.D.; Hupman, K.; Gilman, A. Individual Common Dolphin Identification via Metric Embedding Learning. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018; pp. 1–6. [CrossRef]
38. Hughes, B.; Burghardt, T. Automated Visual Fin Identification of Individual Great White Sharks. Int. J. Comput. Vision 2017, 122, 542–557. [CrossRef]
39. Bae, H.B.; Pak, D.; Lee, S. Dog Nose-Print Identification Using Deep Neural Networks. IEEE Access 2021, 9, 49141–49153. [CrossRef]
40. Zuerl, M.; Dirauf, R.; Koeferl, F.; Steinlein, N.; Sueskind, J.; Zanca, D.; Brehm, I.; Fersen, L.v.; Eskofier, B. PolarBearVidID: A Video-Based reidentification Benchmark Dataset for Polar Bears. Animals 2023, 13, 801. [CrossRef]
41. Clapham, M.; Miller, E.; Nguyen, M.; Darimont, C.T. Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears. Ecol. Evol. 2020, 10, 12883–12892. [CrossRef] [PubMed]
42. Körschens, M.; Denzler, J. ELPephants: A Fine-Grained Dataset for Elephant reidentification. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 263–270. [CrossRef]
43. Cermák, V.; Picek, L.; Adam, L.; Papafitsoros, K. WildlifeDatasets: An Open-Source Toolkit for Animal reidentification. In ˇ Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 5953–5963.
44. Wahltinez, O.; Wahltinez, S.J. An open-source general purpose machine learning framework for individual animal reidentification using few-shot learning. Methods Ecol. Evol. 2024, 15, 373–387. [CrossRef]
45. Guo, S.; Xu, P.; Miao, Q.; Shao, G.; Chapman, C.A.; Chen, X.; He, G.; Fang, D.; Zhang, H.; Sun, Y.; et al. Automatic Identification of Individual Primates with Deep Learning Techniques. iScience 2020, 23, 32. [CrossRef] [PubMed]
46. Ferreira, A.C.; Silva, L.R.; Renna, F.; Brandl, H.B.; Renoult, J.P.; Farine, D.R.; Covas, R.; Doutrelant, C. Bird individualID. 2020. Available online: https://github.com/AndreCFerreira/Bird_individualID (accessed on 3 November 2024).
47. Kuncheva, L.I.; Williams, F.; Hennessey, S.L.; Rodríguez, J.J. Animal-Identification-from-Video. 2022. Available online: https: //github.com/LucyKuncheva/Animal-Identification-from-Video (accessed on 3 November 2024).
48. Adam, L.; Cermák, V.; Papafitsoros, K.; Picek, L. SeaTurtleID. 2022. Available online: ˇ https://www.kaggle.com/datasets/ wildlifedatasets/seaturtleid2022 (accessed on 3 November 2024).
49. Wahltinez, O. Sea Star Re-ID. 2023. Available online: https://lila.science/sea-star-re-id-2023/ (accessed on 3 November 2024).
50. Me, W. Beluga ID. info@wildme.org. 2022. Available online: https://lila.science/datasets/beluga-id-2022/ (accessed on 3 November 2024).
51. Cheeseman, T.; Southerland, K.; Reade, W.; Howard, A. Happywhale—Whale and Dolphin Identification. 2022. Available online: https://kaggle.com/competitions/happy-whale-and-dolphin (accessed on 3 November 2024).
52. Nepovinnykh, E. SealID. Lappeenranta University of Technology, School of Engineering Science Yhteiset. 2022. Available online:. (accessed on 3 November 2024). [CrossRef]
53. Papafitsoros, K.; Adam, L.; Cermák, V.; Picek, L. SeaTurtleID. 2022. Available online: ˇ https://www.kaggle.com/datasets/ wildlifedatasets/seaturtleidheads (accessed on 3 November 2024).
54. Watch, W.T.; Conservation, L.O. Turtle Recall: Conservation Challenge. 2022. Available online: https://zindi.africa/competitions/ turtle-recall-conservation-challenge/data (accessed on 3 November 2024).
55. Trotter, C.; Atkinson, G.; Sharpe, M.; Richardson, K.; McGough, A.S.; Wright, N.; Burville, B.; Berggren, P. The Northumberland Dolphin Dataset 2020; Newcastle University: Newcastle upon Tyne, UK, 2020. Available online: https://doi.org/10.25405/data. ncl.c.4982342 (accessed on 3 November 2024).
56. Humpback Whale Identification, Kaggle. 2018. Available online: https://kaggle.com/competitions/humpback-whaleidentification (accessed on 3 November 2024).
57. Khan, C.B.; Shashank; Kan, W. Right Whale Recognition, Kaggle. 2015. Available online: https://kaggle.com/competitions/ noaa-right-whale-recognition (accessed on 3 November 2024).
58. Holmberg, J.; Norman, B.; Arzoumanian, Z. Whale Shark ID. info@wildme.org. 2020. Available online: https://lila.science/ datasets/whale-shark-id (accessed on 3 November 2024).
59. Gao, J.; Burghardt, T.; Andrew, W.; Dowsey, A.W.; Campbell, N.W. Cows2021. 2021. Available online: https://doi.org/10.5523/ bris.4vnrca7qw1642qlwxjadp87h7 (accessed on 3 November 2024).
60. Andrew, W.; Gao, J.; Mullan, S.; Campbell, N.; Dowsey, A.W.; Burghardt, T. OpenCows2020. 2020. Available online: https: //doi.org/10.5523/bris.10m32xl88x2b61zlkkgz3fml17 (accessed on 3 November 2024).
61. Andrew, W.; Greatwood, C.; Burghardt, T. AerialCattle2017, University of Bristol. 2017. Available online: https://doi.org/10.552 3/bris.3owflku95bxsx24643cybxu3qh (accessed on 3 November 2024).
62. Andrew, W.; Greatwood, C.; Burghardt, T. FriesianCattle2017, University of Bristol. 2017. Available online: https://doi.org/10.5 523/bris.2yizcfbkuv4352pzc32n54371r (accessed on 3 November 2024).
63. Andrew, W.; Hannuna, S.; Campbell, N.; Burghardt, T. FriesianCattle2015, University of Bristol. 2016. Available online: https://doi.org/10.5523/bris.wurzq71kfm561ljahbwjhx9n3 (accessed on 3 November 2024).
64. Kern, D.; Schiele, T.; Klauck, U.; Ingabire, W. Chicks4FreeID. 2024. Available online: https://huggingface.co/datasets/dariakern/ Chicks4FreeID (accessed on 3 November 2024).
65. Lu, W.; Zhao, Y.; Wang, J.; Zheng, Z.; Feng, L.; Tang, J. MammalClub. 2023. Available online: https://github.com/WJ-0425 /MammalClub (accessed on 3 November 2024).
66. He, Z.; Qian, J.; Yan, D.; Wang, C.; Xin, Y. Animal reidentification Algorithm for Posture Diversity. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]
67. He, Z. Multi-Pose Dog Dataset. 2023. Mendeley Data, V1. Available online: https://data.mendeley.com/datasets/v5j6m8dzhv/1 (accessed on 3 November 2024).
68. Dataset for: PolarBearVidID: A Video-Based Re-Identification Benchmark Dataset for Polar Bears. Available online: https://zenodo. org/records/7564529 (accessed on 3 November 2024).
69. Kuncheva, L.I.; Williams, F.; Hennessey, S.L.; Rodríguez, J.J. A Benchmark Database for Animal reidentification and Tracking. In Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 5–7 December 2022; Volume 5, pp. 1–6. [CrossRef]
70. Trust, B.P.C. Hyiena ID. Panthera Pardus CSV Custom Export. Retrieved from African Carnivore Wildbook 2022-04-28. 2022. Available online: https://lila.science/datasets/hyena-id-2022/ (accessed on 3 November 2024).
71. Trust, B.P.C. Leopard ID. Panthera Pardus CSV Custom Export. Retrieved from African Carnivore Wildbook 2022-04-28. 2022. Available online: https://lila.science/datasets/leopard-id-2022/ (accessed on 3 November 2024).
72. Nepovinnykh, E.; Eerola, T.; Biard, V.; Mutka, P.; Niemi, M.; Kunnasranta, M.; Kälviäinen, H. SealID: Saimaa Ringed Seal reidentification Dataset. Sensors 2022, 22, 11. [CrossRef]
73. Papafitsoros, K.; Adam, L.; Cermák, V.; Picek, L. SeaTurtleID: A novel long-span dataset highlighting the importance of ˇ timestamps in wildlife re-identification. arXiv 2022, arXiv:2211.10307. [CrossRef]
74. Li, S.; Fu, L.; Sun, Y.; Mu, Y.; Chen, L.; Li, J.; Gong, H. Individual dairy cow identification based on lightweight convolutional neural network. PLoS ONE 2021, 16, 13. [CrossRef]
75. Miele, V.; Dussert, G.; Spataro, B.; Chamaillé-Jammes, S.; Allainé, D.; Bonenfant, C. Revisiting animal photo-identification using deep metric learning and network analysis. Methods Ecol. Evol. 2021, 12, 863–873. [CrossRef]
76. Miele, V.; Dussert, G.; Spataro, B.; Chamaillé-Jammes, S.; Allainé, D.; Bonenfant, C. Giraffe Dataset. 2020. Available online: https://plmlab.math.cnrs.fr/vmiele/animal-reid/ (accessed on 3 November 2024).
77. Wang, L.; Ding, R.; Zhai, Y.; Zhang, Q.; Tang, W.; Zheng, N.; Hua, G. iPanda-50. 2021. Available online: https://github.com/ iPandaDateset/iPanda-50 (accessed on 3 November 2024).
78. Haurum, J.B.; Karpova, A.; Pedersen, M.; Bengtson, S.H.; Moeslund, T.B. AAU Zebrafish Re-Identification Dataset. 2020. Available online: https://www.kaggle.com/datasets/aalborguniversity/aau-zebrafish-reid (accessed on 3 November 2024).
79. Guo, S.; Xu, P.; Miao, Q.; Shao, G.; Chapman, C.A.; Chen, X.; He, G.; Fang, D.; Zhang, H.; Sun, Y.; et al. AFD. Mendeley Data, Version 2. 2020. Available online: https://doi.org/10.17632/z3x59pv4bz.2 (accessed on 3 November 2024).
80. Li, S.; Li, J.; Tang, H.; Qian, R.; Lin, W. ATRW (Amur Tiger Re-identification in the Wild). 2020. Available online: https://lila.science/ datasets/atrw (accessed on 3 November 2024).
81. Dlamini, N.; Zyl, T.L.v. Lion Face Dataset. Mara Masia Project, Kenya. 2020. Available online: https://github.com/tvanzyl/wildlife_ reidentification/ (accessed on 3 November 2024).
82. Trotter, C.; Atkinson, G.; Sharpe, M.; Richardson, K.; McGough, A.S.; Wright, N.; Burville, B.; Berggren, P. NDD20: A large-scale few-shot dolphin dataset for coarse and fine-grained categorisation. arXiv 2020, arXiv:2005.13359.
83. Dlamini, N.; Zyl, T.L.v. Nyala Dataset. South African Nature Reserves. 2020. Available online: https://github.com/tvanzyl/ wildlife_reidentification/ (accessed on 3 November 2024).
84. Ferreira, A.C.; Silva, L.R.; Renna, F.; Brandl, H.B.; Renoult, J.P.; Farine, D.R.; Covas, R.; Doutrelant, C. Deep learning-based methods for individual recognition in small birds. Methods Ecol. Evol. 2020, 11, 1072–1085. [CrossRef]
85. Mougeot, G.; Li, D.; Jia, S. Dog Face Dataset. 2019. Available online: https://github.com/GuillaumeMougeot/DogFaceNet (accessed on 3 November 2024).
86. Lin, T.Y.; Kuo, Y.F. Cat Individual Images. 2018. Available online: https://www.kaggle.com/datasets/timost1234/cat-individuals (accessed on 3 November 2024).
87. Schneider, J.; Murali, N.; Taylor, G.; Levine, J. Can Drosophila melanogaster tell who’s who? PLoS ONE 2018, 13, e0205043. [CrossRef]
88. Dataset for: Can Drosophila Melanogaster Tell Who’s Who? Available online: https://borealisdata.ca/dataset.xhtml? persistentId=doi:10.5683/SP2/JP4WDF (accessed on 3 November 2024).
89. Witham, C.L. MacaqueFaces. 2018. Available online: https://github.com/clwitham/MacaqueFaces (accessed on 3 November 2024).
90. Parham, J.; Crall, J.; Stewart, C.; Berger-Wolf, T.; Rubenstein, D. Great Zebra and Giraffe Count ID. info@wildme.org. 2017. Available online: https://lila.science/datasets/great-zebra-giraffe-id (accessed on 3 November 2024).
91. Freytag, A.; Rodner, E.; Simon, M.; Loos, A.; Kühl, H.S.; Denzler, J. Chimpanzee Faces in the Wild. Acknowledgements: Tobias Deschner, Laura Aporius, Karin Bahrke, Zoo Leipzig. 2016. Available online: https://github.com/cvjena/chimpanzee_faces (accessed on 3 November 2024).
92. Holmberg, J.; Norman, B.; Arzoumanian, Z. Estimating population size, structure, and residency time for whale sharks Rhincodon typus through collaborative photo-identification. Endanger. Species Res. 2009, 7, 39–53. [CrossRef]
93. Labelbox. “Labelbox”. 2024 Available online: https://labelbox.com (accessed on 3 November 2024).
94. Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q. RandAugment: Practical Automated Data Augmentation with a Reduced Search Space. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 18613–18624.
95. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. 2021. Available online: https://openreview.net/forum?id=YicbFdNTTy (accessed on 8 May 2012).
96. TorchVision: PyTorch’s Computer Vision Library. 2016. Available online: https://github.com/pytorch/vision (accessed on 3 November 2024).
97. Lightly (Software Version 1.5.2). 2020. Available online: https://github.com/lightly-ai/lightly/blob/master/CITATION.cff (accessed on 3 November 2024).
98. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 9992–10002. [CrossRef]
99. Wightman, R. PyTorch Image Models. 2019. Available online: https://github.com/rwightman/pytorch-image-models (accessed on 3 November 2024).
100. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–19 June 2019.
101. Cermák, V.; Picek, L.; Adam, L.; Papafitsoros, K. MegaDescriptor-L-384. 2024. Available online: ˇ https://huggingface.co/BVRA/ MegaDescriptor-L-384 (accessed on 3 November 2024).
102. Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec, M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-Nouby, A.; et al. DINOv2: Learning Robust Visual Features without Supervision. arXiv 2024, arXiv:2304.07193.
103. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. PMLR 2021, 139, 8748–8763.
104. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised Feature Learning via Non-parametric Instance Discrimination. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3733–3742. [CrossRef]
105. Detlefsen, N.S.; Borovec, J.; Schock, J.; Jha, A.H.; Koker, T.; Liello, L.D.; Stancl, D.; Quan, C.; Grechkin, M.; Falcon, W. TorchMetrics— Measuring Reproducibility in PyTorch. J. Open Source Softw. 2022, 7, 4101. [CrossRef]
106. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 2–4 August 1996; pp. 226–231.
107. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. Acm Trans. Database Syst. (Tods) 2017, 42, 19:1–19:21. [CrossRef]
108. Nielsen, F. Introduction to HPC with MPI for Data Science; Hierarchical Clustering; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 8, pp. 195–211.