Abstract
Background: H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses.
Methods: Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted.
Results: Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion.
Conclusion: Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Keywords: Avian influenza H9N2, Algeria, Full-length genome sequencing, Phylogenetic analysis, Molecular characterization.
1. Webster RG, Krauss S, Hulse-Post D, Sturm-Ramirez K. Evolution of influenza
A viruses in wild birds. J Wildl Dis. 2007;43(3 Supplement):S1–6.
2. Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin
Microbiol Infect. 2016;22(12):975–83.
3. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005;79(5):
2814–22.
4. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:10.
5. Homme P, Easterday B. Avian influenza virus infections. I. Characteristics of influenza A/Turkey/Wisconsin/1966 virus. Avian Dis. 1970:66–74.
6. Nagy A, Mettenleiter TC, Abdelwhab EM. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect. 2017;
145(16):3320–33.
7. Butt AM, Siddique S, Idrees M, Tong Y. Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol J. 2010;7(1):319.
8. Hassan KE, Shany SA, Ali A, Dahshan A-HM, El-Sawah AA, El-Kady MF.
Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult Sci.
2016;95(6):1271–80.
9. Sid H, Benachour K, Rautenschlein S. Co-infection with multiple respiratory pathogens contributes to increased mortality rates in Algerian poultry flocks. Avian Dis. 2015;59(3):440–6.
10. Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res. 2017;48(1):49.
11. Suttie A, Karlsson EA, Deng Y-M, Horm SV, Yann S, Tok S, et al. Influenza A (H5N1) viruses with A (H9N2) single gene (matrix or PB1) reassortment isolated from Cambodian live bird markets. Virology. 2018;523:22–6.
12. Parvin R, Heenemann K, Halami MY, Chowdhury EH, Islam M, Vahlenkamp
TW. Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Arch Virol. 2014;159(7):1651–61.
13. Tombari W, Nsiri J, Larbi I, Guerin JL, Ghram A. Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations. Virol J. 2011;8(1):467.
14. Houadfi ME, Fellahi S, Nassik S, Guérin J-L, Ducatez MF. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virol J. 2016;13(1):140.
15. Yamaji R, Yamada S, Le MQ, Ito M, Sakai-Tagawa Y, Kawaoka Y. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J Virol. 2015;89(8):4117–25.
16. OIE. Highly pathogenic avian influenza, Algeria 2016 [Available from: https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/
Review?page_refer=MapFullEventReport&reportid=21433.
17. Jeevan T, Darnell D, Gradi EA, Benali Y, Kara R, Guetarni D, et al. A (H9N2) influenza viruses associated with chicken mortality in outbreaks in Algeria
2017. Influenza Respir Viruses. 2019;13(6):622–6.
18. Spackman E, Senne DA, Myers T, Bulaga LL, Garber LP, Perdue ML, et al.
Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin
Microbiol. 2002;40(9):3256–60.
19. Hoffmann E, Stech J, Guan Y, Webster R, Perez D. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;
146(12):2275–89.
20. BioSoft H. DNA Sequence Assembler v4 (2013) 2013 [Available from: www.DnaBaser.com.
21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol.
2018;35(6):1547–9.
22. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al.
Multiple sequence alignment with the Clustal series of programs. Nucleic
Acids Res. 2003;31(13):3497–500.
Barberis et al. Virology Journal (2020) 17:108 Page 14 of 16
23. Hassan KE, Ali A, Shany SA, El-Kady MF. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens. Res Vet Sci. 2017;115:356–62.
24. Umar S, Teillaud A, Aslam HB, Guerin J-L, Ducatez MF. Molecular epidemiology of respiratory viruses in commercial chicken flocks in Pakistan from 2014 through to 2016. BMC Vet Res. 2019;15(1):351.
25. Seifi S, Asasi K, Mohammadi A. Short paper: an experimental study on broiler chicken co-infected with the specimens containing avian influenza (h9 subtype) and infectious bronchitis (4/91 strain) viruses. 2012.
26. Nili H, Asasi K. Avian influenza (H9N2) outbreak in Iran. Avian Dis. 2003;
47(s3):828–31.
27. Kammon A, Heidari A, Dayhum A, Eldaghayes I, Sharif M, Monne I, et al.
Characterization of avian influenza and Newcastle disease viruses from poultry in Libya. Avian Dis. 2015;59(3):422–30.
28. Kandeil A, El-Shesheny R, Maatouq AM, Moatasim Y, Shehata MM, Bagato O, et al. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Arch Virol. 2014;159(11):2861–76.
29. Shanmuganatham K, Feeroz MM, Jones-Engel L, Walker D, Alam S, Hasan M, et al. Genesis of avian influenza H9N2 in Bangladesh. Emerg Microbes Infect.
2014;3(1):1–17.
30. Nagy A, Mettenleiter T, Abdelwhab E. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect. 2017;
145(16):3320–33.
31. Okazaki K, Mweene A, Shi W-M, Wu Q-M, Su J-L, Zhang G-Z, et al. Genetic conservation of hemagglutinin gene of H9 influenza virus in chicken population in Mainland China. Virus Genes. 2004;29(3):329–34.
32. Chrzastek K. Lee D-h, Gharaibeh S, Zsak A, Kapczynski DR. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology. 2018;518:195–201.
33. Aamir U, Wernery U, Ilyushina N, Webster R. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology. 2007;
361(1):45–55.
34. Ghorbani A, Moosakhani F, Marandi MV. Phylogenetic analysis of the hemagglutinin gene of recent H9N2 avian influenza viruses isolated from broiler flocks in Iran. Vet Arhiv. 2016;86(1):95–109.
35. Soda K, Asakura S, Okamatsu M, Sakoda Y. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. Virol J. 2011;8(1):64.
36. Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One. 2009;4:6.
37. Weis W, Brown J, Cusack S, Paulson J, Skehel J, Wiley D. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid.
Nature. 1988;333(6172):426–31.
38. Matrosovich MN, Gambaryan AS, Klenk H-D. Receptor specificity of influenza viruses and its alteration during interspecies transmission. Avian Influenza.
2008;27:134–55.
39. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, et al.
Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One. 2008;3:8.
40. Wan H, Perez DR. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol. 2007;81(10):5181–91.
41. Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;
281(2):156–62.
42. Zhu R, Xu D, Yang X, Zhang J, Wang S, Shi H, et al. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014. PLoS One. 2018;13:7.
43. Mukherjee A, Nayak MK, Dutta S, Panda S, Satpathi BR, Chawla-Sarkar M.
Genetic characterization of circulating 2015 A (H1N1) pdm09 influenza viruses from Eastern India. PLoS One. 2016;11:12.
44. Pariani E, Piralla A, Frati E, Anselmi G, Campanini G, Rovida F, et al. Early cocirculation of different clades of influenza A/H1N1v pandemic virus in northern Italy. J Prev Med Hygiene. 2011;52(1):17–20.
45. Jie Y, Zheng H, Xiaolei L, Xinhua O, Dong Y, Yingchun S, et al. Full-length genome analysis of an avian influenza A virus (H9N2) from a human infection in Changsha City. Futur Virol. 2018;13(5):323–30.
46. Kaverin NV, Rudneva IA, Ilyushina NA, Lipatov AS, Krauss S, Webster RG.
Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J
Virol. 2004;78(1):240–9.
47. Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of
H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol. 1999;73(2):1146–55.
48. Reading PC, Pickett DL, Tate MD, Whitney PG, Job ER, Brooks AG. Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice.
Respir Res. 2009;10(1):117.
49. Sun X, Jayaraman A, Maniprasad P, Raman R, Houser KV, Pappas C, et al. Nlinked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A viruses. J
Virol. 2013;87(15):8756–66.
50. Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti M-A, Naffakh N, Warnes C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J
Virol. 2009;83(9):4704–8.
51. Varghese JN, Colman PM, Van Donkelaar A, Blick TJ, Sahasrabudhe A,
McKimm-Breschkin JL. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci. 1997;94(22):
11808–12.
52. Rashid S, Naeem K, Ahmed Z, Saddique N, Abbas M, Malik S. Multiplex polymerase chain reaction for the detection and differentiation of avian influenza viruses and other poultry respiratory pathogens. Poult Sci. 2009;
88(12):2526–31.
53. Lin Y, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, et al. Avian-tohuman transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci. 2000;97(17):
9654–8.
54. Cameron K, Gregory V, Banks J, Brown I, Alexander D, Hay A, et al. H9N2 subtype influenza A viruses in poultry in Pakistan are closely related to the
H9N2 viruses responsible for human infection in Hong Kong. Virology. 2000;
278(1):36–41.
55. Hulse-Post D, Franks J, Boyd K, Salomon R, Hoffmann E, Yen H, et al.
Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol. 2007;
81(16):8515–24.
56. Igarashi M, Ito K, Kida H, Takada A. Genetically destined potentials for Nlinked glycosylation of influenza virus hemagglutinin. Virology. 2008;376(2):
323–9.
57. Colman P, Tulip WR, Varghese JN, Tulloch P, Baker A, Laver WG, et al. Threedimensional structures of influenza virus neuraminidase-antibody complexes.
Philosop Trans Royal Soc London B, Biol Sci. 1989;323(1217):511–8.
58. Chen Y, Mao H, Li Z, Xu C, Gao J, Feng Y, et al. Genomic sequences of human infection of avian-origin influenza A (H7N9) virus in Zhejiang province. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34(6):604–8.
59. Chen G-W, Chang S-C, Mok C-K, Lo Y-L, Kung Y-N, Huang J-H, et al.
Genomic signatures of human versus avian influenza A viruses. Emerg Infect
Dis. 2006;12(9):1353.
60. Fan S, Hatta M, Kim JH, Le MQ, Neumann G, Kawaoka Y. Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. J Virol. 2014;88(23):13737–46.
61. Taft AS, Ozawa M, Fitch A, Depasse JV, Halfmann PJ, Hill-Batorski L, et al.
Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 2015;6(1):1–12.
62. Gabriel G, Dauber B, Wolff T, Planz O, Klenk H-D, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci. 2005;102(51):18590–5.
63. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840–2.
64. Naffakh N, Tomoiu A, Rameix-Welti M-A, van der Werf S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev
Microbiol. 2008;62:403–24.
65. Katz JM, Lu X, Tumpey TM, Smith CB, Shaw MW, Subbarao K. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol. 2000;
74(22):10807–10.
66. Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS
Pathog. 2009;5:1.
67. Mänz B, Schwemmle M, Brunotte L. Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol. 2013;
87(13):7200–9.
68. Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J Virol. 2011;85(1):357–65.
69. Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84(9):4395–406.
70. Arai Y, Kawashita N, Ibrahim MS, Elgendy EM, Daidoji T, Ono T, et al. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019;15(7): e1007919.
71. Wernery U, Shanmuganatham KK, Krylov PS, Joseph S, Friedman K, Krauss S, et al. H 9 N 2 influenza viruses from birds used in falconry. Influenza Respir
Viruses. 2013;7(6):1241–5.
72. Romero-Tejeda A, Capua I. Virus-specific factors associated with zoonotic and pandemic potential. Influenza Respir Viruses. 2013;7:4–14.
73. Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, et al. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an
H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res. 2009;144(1–2):123–9.
74. Rolling T, Koerner I, Zimmermann P, Holz K, Haller O, Staeheli P, et al.
Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. J Virol. 2009;83(13):6673–80.
75. Shehata AA, Parvin R, Sultan H, Halami MY, Talaat S, Elrazek AA, et al.
Isolation and full genome characterization of avian influenza subtype H9N2 from poultry respiratory disease outbreak in Egypt. Virus Genes. 2015;50(3):
389–400.
76. Perales B, de la Luna S, Palacios I, Ortín J. Mutational analysis identifies functional domains in the influenza A virus PB2 polymerase subunit. J Virol.
1996;70(3):1678–86.
77. Sediri H, Thiele S, Schwalm F, Gabriel G, Klenk H-D. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. J Gen Virol. 2016;97(1):
39–48.
78. Ping J, Keleta L, Forbes NE, Dankar S, Stecho W, Tyler S, et al. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One. 2011;6:6.
79. Feng X, Wang Z, Shi J, Deng G, Kong H, Tao S, et al. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J
Virol. 2016;90(4):1872–9.
80. Zhong G, Le MQ, Lopes TJ, Halfmann P, Hatta M, Fan S, et al. Mutations in the PA protein of avian H5N1 influenza viruses affect polymerase activity and mouse virulence. J Virol. 2018;92(4):e01557–17.
81. Suttie A, Deng Y-M, Greenhill AR, Dussart P, Horwood PF, Karlsson EA.
Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 2019:1–30.
82. Shaw M, Cooper L, Xu X, Thompson W, Krauss S, Guan Y, et al. Molecular changes associated with the transmission of avian influenza a H5N1 and
H9N2 viruses to humans. J Med Virol. 2002;66(1):107–14.
83. Kim JH, Hatta M, Watanabe S, Neumann G, Watanabe T, Kawaoka Y. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol. 2010;91(Pt 5):1284.
84. Zhao D, Fukuyama S, Yamada S, Lopes TJ, Maemura T, Katsura H, et al.
Molecular determinants of virulence and stability of a reporter-expressing
H5N1 influenza A virus. J Virol. 2015;89(22):11337–46.
85. Hu M, Chu H, Zhang K, Singh K, Li C, Yuan S, et al. Amino acid substitutions
V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci Rep. 2016;6:37800.
86. Song J, Xu J, Shi J, Li Y, Chen H. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep. 2015;5:10510.
87. Biswas SK, Boutz PL, Nayak DP. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol. 1998;72(7):5493–501.
88. Joseph U, Su YC, Vijaykrishna D, Smith GJ. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Respir Viruses.
2017;11(1):74–84.
89. Zhu W, Zou X, Zhou J, Tang J, Shu Y. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature. Virol J. 2015;12(1):71.
90. Furuse Y, Suzuki A, Kamigaki T, Oshitani H. Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis.
Virol J. 2009;6(1):67.
91. Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of
H5N1 avian influenza viruses in mice. Virology. 2009;384(1):28–32.
92. Nao N, Kajihara M, Manzoor R, Maruyama J, Yoshida R, Muramatsu M, et al.
A single amino acid in the M1 protein responsible for the different pathogenic potentials of H5N1 highly pathogenic avian influenza virus strains. PLoS One. 2015;10:9.
93. Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451(7178):591–5.
94. Lan Y, Zhang Y, Dong L, Wang D, Huang W, Xin L, et al. A comprehensive surveillance of adamantane resistance among human influenza A virus isolated from mainland China between 1956 and 2009. Antiviral Ther.
2010;15(6):853.
95. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci. 2008;105(11):4381–6.
96. Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X, Webster RG, et al.
Persistent host markers in pandemic and H5N1 influenza viruses. J Virol.
2007;81(19):10292–9.
97. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008;82(3):1146–54.
98. Ayllon J, Domingues P, Rajsbaum R, Miorin L, Schmolke M, Hale BG, et al. A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence. J Virol. 2014;88(20):12146–51.
99. Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol. 2006;
80(22):11115–23.