The reduced use of antibiotics in poultry feed has led to the investigation of alternatives to antibiotics, and one such substitution is fermentable carbohydrates. Exogenous b-glucanase (BGase) is commonly used in poultry fed barley-based diets to reduce digesta viscosity. The effects of hulless barley (HB) and BGase levels on ileal digesta soluble b-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens were determined. A total of 360 day-old broilers were housed in battery cages (4 birds per cage) and fed graded levels of high b-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200 P; 0, 0.01, and 0.1%) in a 3 x 3 factorial arrangement. Beta-glucan peak molecular weight in the ileal digesta was lower with 30 and 60 than 0% HB, whereas the peak decreased with increasing BGase. The weight average molecular weight was lower at 0.1 than 0% BGase in wheat diets, whereas in HB diets, it was lower at 0.01 and 0.1 than 0% BGase. The maximum molecular weight was lower with 0.01 and 0.1 than 0% BGase regardless of the HB level. The maximum molecular weight was lower with HB than wheat at 0 or 0.01% BGase. Overall, empty weights and lengths of digestive tract sections increased with increasing HB, but there was no BGase effect. Hulless barley decreased the duodenum and jejunum contents, whereas increasing the gizzard (diets with BGase), ileum, and colon contents. The jejunum and small intestine contents decreased with increasing BGase. Ileal and colon pH increased with increasing HB, but there was no BGase effect. Treatment effects were minor on short-chain fatty acids levels and performance. In conclusion, exogenous BGase depolymerized the ileal digesta soluble b-glucan in broiler chickens in a dose-dependent manner. Overall, feed efficiency was impaired by increasing HB levels. However, HB and BGase did not affect carbo-hydrate fermentation in the ileum and ceca, although BGase decreased ileal viscosity and improved feed efficiency at the 0.1% dietary level.
Key words: prebiotic, viscosity, oligosaccharide, nonstarch polysaccharide, feed enzyme, fermentation.
American Association of Cereal Chemists (AACC International). 2010. Approved Methods of Analysis. 11th ed. St. Paul, MN.
Adhikari, P. A., and W. K. Kim. 2017. Overview of prebiotics and probiotics: focus on performance, gut health and immunity – a review. Ann. Anim. Sci. 17:949–966.
Almirall, M., and E. Esteve-Garcia. 1994. Rate of passage of barley diets with chromium oxide: influence of age and poultry strain and effect of beta-glucanase supplementation. Poult. Sci. 73:1433– 1440.
AOAC. 2006. Official Methods of Analysis. 18th. ed. Association of Official Analytical Chemists, Arlington, VA.
Aoki, R., K. Kamikado, W. Suda, H. Takii, Y. Mikami, N. Suganuma, M. Hattori, and Y. Koga. 2017. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci. Rep. 7:43522.
Apajalahti, J. 2005. Comparative gut microflora, metabolic challenges, and potential opportunities. J. Appl. Poult. Res. 14:444– 453.
Aviagen. 2014. Ross 308 Broiler performance objectives. Accessed Oct. 2017. https://www.winmixsoft.com/files/info/Ross-308-BroilerPO-2014-EN.pdf.
Ball, M. E. E., B. Owens, and K. J. McCracken. 2013. The effect of variety and growing conditions on the chemical composition and nutritive value of wheat for broilers. Asian-Australas. J. Anim. Sci. 26:378–385.
Baurhoo, B., P. R. Ferket, and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88:2262–2272.
Bautil, A., J. Verspreet, J. Buyse, P. Goos, M. R. Bedford, and C. M. Courtin. 2019. Age-related arabinoxylan hydrolysis and fermentation in the gastrointestinal tract of broilers fed wheatbased diets. Poult. Sci. 98:4606–4621.
Bedford, M. R., H. L. Classen, and G. L. Campbell. 1991. The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci. 70:1571– 1577.
Bedford, M. R., T. A. Scott, F. G. Silversides, H. L. Classen, M. L. Swift, and M. Pack. 1998. The effect of wheat cultivar, growing environment, and enzyme supplementation on digestibility of amino acids by broilers. Can. J. Anim. Sci. 78:335– 342.
Biliaderis, C. G., and M. S. Izydorczyk. 2007. Page 550 in Functional Food Carbohydrates. CRC Press, London. Bindels, L. B., N. M. Delzenne, P. D. Cani, and J. Walter. 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gstroenterol. Hepatol. 12:303–310.
Boyd, L., R. Holley, J. Storsley, and N. Ames. 2017. Effect of heat treatments on microbial load and associated changes to b-glucan physicochemical properties in whole grain barley. Cereal Chem. 94:333–340.
Brenes, A., M. Smith, W. Guenter, and R. R. Marquardt. 1993. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat- and barley-based diets. Poult. Sci. 72:1731–1739.
Brooks, L., A. Viardot, A. Tsakmaki, E. Stolarczyk, J. K. Howard, P. D. Cani, A. Everard, M. L. Sleeth, A. Psichas, J. Anastasovskaj, J. D. Bell, K. Bell-Anderson, C. R. Mackay, M. A. Ghatei, S. R. Bloom, G. Frost, and G. A. Bewick. 2017. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 6:48–60.
Burton, R. A., and G. B. Fincher. 2014. Evolution and development of cell walls in cereal grains. Front. Plant Sci. 5:456–471.
Canadian Council on Animal Care. 1993. in Guide to the Care and Use of Experimental Animals, 1. E. D. Olfert, B. M. Cross, and A. A. McWilliam, eds. 2nd ed. Canadian Council on Animal Care, Ottawa, ON, Canada. Canadian Council on Animal Care in science. 2009. CCAC Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing.
Canadian Council on Animal Care, Ottawa, ON, Canada. Chee, S. H., P. A. Iji, M. Choct, L. L. Mikkelsen, and A. Kocher. 2010. Functional interactions of manno-oligosaccharides with dietary threonine in chicken gastrointestinal tract. I. Growth performance and mucin dynamics. Br. Poult. Sci. 51:658–666.
Choct, M., and G. Annison. 1992. Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Br. Poult. Sci. 33:821–834.
Choct, M., R. J. Hughes, and M. R. Bedford. 1999. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 40:419–422.
Classen, H. L., G. L. Campbell, and J. W. D. Grootwassink. 1988. Improved feeding value of Saskatchewan-grown barley for broiler chickens with dietary enzyme supplementation. Can. J. Anim. Sci. 68:1253–1259.
Classen, H. L., G. L. Campbell, B. G. Rossnagel, R. Bhatty, and R. D. Reichert. 1985. Studies on the use of hulless barley in chick diets: deleterious effects and methods of alleviation. Can. J. Anim. Sci. 65:725–733.
Courtin, C. M., K. Swennen, W. F. Broekaert, Q. Swennen, J. Buyse, E. Decuypere, C. W. Michiels, B. De Ketelaere, and J. A. Delcour. 2008. Effects of dietary inclusion of xylooligo- saccharides, arabinoxylooligosaccha- rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. J. Sci. Food Agric. 88:2517–2522.
Dhingra, D., M. Michael, H. Rajput, and R. T. Patil. 2012. Dietary fibre in foods: a review. J. Food Sci. Technol. 49:255–266.
Diarra, M. S., F. G. Silversides, F. Diarrassouba, J. Pritchard, L. Masson, R. Brousseau, C. Bonnet, P. Delaquis, S. Bach, B. J. Skura, and E. Topp. 2007. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and Enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microbiol. 73:6566–6576.
Dikeman, C. L., M. R. Murphy, and G. C. Fahey. 2006. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J. Nutr. 136:913–919.
Ducatelle, R., V. Eeckhaut, F. Haesebrouck, and F. Van Immerseel. 2015. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal 9:43–48.
Econase GT 200 P Description and specification. AB Enzymes. Accessed Sept. 2019. http://www.elixirfeed.verteez.net/sites/ default/files/AB%20Vista%20%20ECONASE%20GT%2020% 20P%20rev0_PDS_logo.pdf.
Edney, M. J., G. L. Campbell, and H. L. Classen. 1989. The effect of bglucanase supplementation on nutrient digestibility and growth in broilers given diets containing barley, oat groats or wheat. Anim. Feed Sci. Technol. 25:193–200.
Eeckhaut, V., F. Van Immerseel, J. Dewulf, F. Pasmans, F. Haesebrouck, R.Ducatelle, C.M. Courtin, J. A. Delcour, andW. F. Broekaert. 2008. Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poult. Sci. 87:2329–2334.
Fry, R. E., J. B. Allred, L. S. Jensen, and J. McGinnis. 1958. Influence of enzyme supplementation and water treatment on the nutritional value of different grains for poults. Poult. Sci. 37:372–375.
Fuente, J. M., P. Perez de Ayala, and M. J. Villamide. 1995. Effect of dietary enzyme on the metabolizable energy of diets with increasing levels of barley fed to broilers at different ages. Anim. Feed Sci. Technol. 56:45–53.
Furuse, M., M. Matsumoto, J. Okumura, K. Sugahara, and S. Hasegawa. 1997. Intracerebroventricular injection of mammalian and chicken glucagon-like peptide-1 inhibits food intake of the neonatal chick. Brain Res. 755:167–169.
Gadde, U., W. H. Kim, S. T. Oh, and H. S. Lillehoj. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 18:26–45.
Garcia-Migura, L., R. S. Hendriksen, L. Fraile, and F. M. Aarestrup. 2014. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 170:1–9.
Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, K. Verbeke, and G. Reid. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502.
Heller, V. G., and R. Penquite. 1936. Effect of minerals and fiber on avian intestinal pH. Poult. Sci. 15:397–399.
Henry, R. J. 1985. A comparison of the non-starch carbohydrates in cereal grains. J. Sci. Food Agri. 36:1243–1253.
Herwig, E., D. Abbott, K. V. Schwean-Lardner, and H. L. Classen. 2019. Effect of rate and extent of starch digestion on broiler chicken performance. Poult. Sci. 98:3676–3684.
Herwig, E., K. Schwean-Lardner, A. Van Kessel, R. K. Savary, and H. L. Classen. 2020. Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS One 15:e0228647.
Hesselman, K., and P. Aman. 1986. The effect of b-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low- or high-viscosity. Anim. Feed Sci. Technol. 15:83–93.
Hetland, H., and B. Svihus. 2001. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 42:354–361.
Hill, F. W., and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587–603.
Hu, X. F., Y. M. Guo, B. Y. Huang, S. Bun, L. B. Zhang, J. H. Li, D. Liu, F. Y. Long, X. Yang, and P. Jiao. 2010. The effect of glucagon-like peptide 2 injection on performance, small intestinal morphology, and nutrient transporter expression of stressed broiler chickens. Poult. Sci. 89:1967–1974.
Huang, Q., Y. Wei, Y. Lv, Y. Wang, and T. Hu. 2015. Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livest. Sci. 180:172–176.
ICC. 2011. ICC Standard Methods. International Association for Cereal Science and Technology, Vienna, Austria.
Jacob, J. P., and A. J. Pescatore. 2014. Barley b-glucan in poultry diets. Ann. Transl. Med. 2:20.
Jozefiak, D., S. Kaczmarek, A. Rutkowski, A. Jozefiak, B. B. Jensen, and R. M. Engberg. 2005. Fermentation in broiler chicken gastrointestinal tract as affected by high dietary inclusion of barley and by b-glucanase supplementation. J. Anim. Feed Sci. 14:695– 704.
Jozefiak, D., A. Rutkowski, B. B. Jensen, and R. M. Engberg. 2006. The effect of b-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Br. Poult. Sci. 47:57–64.
Jozefiak, D., A. Rutkowski, S. Kaczmarek, B. B. Jensen, R. M. Engberg, and O. Højberg. 2010. Effect of b -glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br. Poult. Sci. 51:546–557.
Karppinen, S., K. Liukkonen, A. M. Aura, P. Forssell, and K. Poutanen. 2000. In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. J. Sci. Food Agric. 80:1469–1476.
Karunaratne, N. D. 2020. Effects of Hulless Barley and Exogenous Beta-Glucanase Levels on Beta- Glucan Depolymerization, Digestive Tract Physiology and Morphology, and Performance in Chickens. PhD Diss. Univ. Saskatchewan, Saskatoon.
Keenan, M. J., J. Zhou, K. L. Mccutcheon, A. M. Raggio, H. G. Bateman, E. Todd, C. K. Jones, R. T. Tulley, S. Melton, R. J. Martin, and M. Hegsted. 2006. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 14:1523–1534.
Keerqin, C., N. K. Morgan, S. B. Wu, R. A. Swick, and M. Choct. 2017. Dietary inclusion of arabinoxylo-oligosaccharides in response to broilers challenged with subclinical necrotic enteritis. Br. Poult. Sci. 58:418–424.
Khadem, A., M. Lourenço, E. Delezie, L. Maertens, A. Goderis, R. Mombaerts, M. H€ofte, V. Eeckhaut, F. Van Immerseel, and G. P. J. Janssens. 2016. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers? Poult. Sci. 95:1066–1076.
Kiarie, E., L. F. Romero, and V. Ravindran. 2014. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 93:1186–1196.
Kim, G.-B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75–82.
Kocher, A., M. Choct, G. Ross, J. Broz, and T. K. Chung. 2003. Effects of enzyme combinations on apparent metabolizable energy of cornsoybean meal-based diets in broilers. J. Appl. Poult. Res. 12:275– 283.
Lee, S. A., J. Apajalahti, K. Vienola, G. Gonzalez-Ortiz, C. M. G. A. Fontes, and M. R. Bedford. 2017. Age and dietary xylanase supplementation affects ileal sugar residues and short chain fatty acid concentration in the ileum and caecum of broiler chickens. Anim. Feed Sci. Technol. 234:29–42.
Lepkovsky, S., and F. Furuta. 1960. The effect of water treatment of feeds upon the nutritional values of feeds. Poult. Sci. 39:394–398.
Maljaars, P. W. J., H. P. F. Peters, D. J. Mela, and A. A. M. Masclee. 2008. Ileal brake: a sensible food target for appetite control. A. Review. Physiol. Behav. 95:271–281.
Mathlouthi, N., S. Mallet, L. Saulnier, B. Quemener, and M. Larbier. 2002. Effects of xylanase and beta-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 51:395–406.
Mehdi, Y., M.-P. Letourneau-Montminy, M.-L. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S. K. Brar, C. C^ote, A. A. Ramirez, and S. Godbout. 2018. Use of antibiotics in broiler production: global impacts and alternatives. Anim. Nutr. 4:170–178.
Myers, W. D., P. A. Ludden, V. Nayigihugu, and B. W. Hess. 2014. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 82:179–183.
Meyer, J. H., Y. Tabrizi, N. DiMaso, M. Hlinka, and H. E. Raybould. 1998. Length of intestinal contact on nutrientdriven satiety. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275:R1308–R1319.
Miyamoto, J., K. Watanabe, S. Taira, M. Kasubuchi, X. Li, J. Irie, H. Itoh, and I. Kimura. 2018. Barley b-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One 13:e0196579.
Ofek, I., and E. H. Beachey. 1978. Mannose binding and epithelial cell adherence of Escherichia coli. Infect. Immun. 22:247–254.
Pang, Y., and T. J. Applegate. 2007. Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poult. Sci. 86:531–537.
Perttil€a, S., J. Valaja, K. Partanen, T. Jalava, T. Kiiskinen, and S. Palander. 2001. Effects of preservation method and b-glucanase supplementation on ileal amino acid digestibility and feeding value of barley for poultry. Br. Poult. Sci. 42:218–229.
Pettersson, D., and P. Aman. 1989. Enzyme supplementation of a poultry diet containing rye and wheat. Br. J. Nutr. 62:139. Pourabedin, M., and X. Zhao. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362 fnv122.
Rebole, A., L. T. Ortiz, M. L. Rodríguez, C. Alzueta, J. Treviño, and S. Velasco. 2010. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poult. Sci. 89:276–286.
Ribeiro, T., M. M. S. Lordelo, P. I. P. Ponte, B. Maç~as, J. A. M. Prates, M. Aguiar Fontes, L. Falcao, J. P. B. Freire, L. M. A. Ferreira, and C. M. G. A. Fontes. 2011. Levels of exogenous b-glucanase activity in barley affect the efficacy of exogenous enzymes used to supplement barley based diets for poultry. Poult. Sci. 90:1245–1256.
Rodríguez, M. L., A. Rebole, S. Velasco, L. T. Ortiz, J. Treviño, and C. Alzueta. 2012. Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J. Sci. Food Agric. 92:184– 190.
Roth, N., A. K€asbohrer, S. Mayrhofer, U. Zitz, C. Hofacre, and K. J. Domig. 2019. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult. Sci. 98:1791–1804.
Salih, M. E., H. L. Classen, and G. L. Campbell. 1991. Response of chickens fed on hull-less barley to dietary b-glucanase at different ages. Anim. Feed Sci. Technol. 33:139–149.
SAS Institute. 2008. SAS User’s Guide: Statistics. Version 9. 4th ed. SAS Institute. Inc., Cary, NC. Scott, T. A., F. G. Silversides, H. L. Classen, M. L. Swift, and M. R. Bedford. 1998. Effect of cultivar and environment on the feeding value of Western Canadian wheat and barley samples with and without enzyme supplementation. Can. J. Anim. Sci. 78:649– 656.
Shafey, T. M., M. W. McDonald, and J. G. Dingle. 1991. Effects of dietary calcium and available phosphorus concentration on digesta pH and on the availability of calcium, iron, magnesium and zinc from the intestinal contents of meat chickens. Br. Poult. Sci. 32:185–194.
Shang, Y., A. Regassa, J. H. Kim, and W. K. Kim. 2015. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poult. Sci. 94:2887–2897.
Suresh, G., R. K. Das, S. Kaur Brar, T. Rouissi, A. Avalos Ramirez, Y. Chorfi, and S. Godbout. 2018. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit. Rev. Microbiol. 44:318– 335.
Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121:91–119.
Tiwari, U., and E. Cummins. 2009. Factors influencing b-glucan levels and molecular weight in cereal-based products. Cereal Chem. 86:290–301.
Tsai, C. H., M. Hill, S. L. Asa, P. L. Brubaker, and D. J. Drucker. 1997. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol. Endocrinol. Metab. 36:77–84.
Wang, Y., N. P. Ames, H. M. Tun, S. M. Tosh, P. J. Jones, and E. Khafipour. 2016. High molecular weight barley b-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front. Microbiol. 7:129.
Yitbarek, A., H. Echeverry, J. Brady, J. Hernandez-Doria, G. Camelo-Jaimes, S. Sharif, W. Guenter, J. D. House, and J. C. Rodriguez-Lecompte. 2012. Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poult. Sci. 91:1105–1112.
Zhao, G., M. Nyman, and J. A. J€onsson. 2006. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 20:674–682.