Author details:
Eimeria (E.) maxima is one of the most pathogenic Eimeria spp persistently invading the middle jejunum and ileum, damaging the intestinal mucosa of chickens. Heat stress (HS) is a common stressor and equally contributes to inflammation and oxidative stress. We investigated the effect of E. maxima infection and HS on ileal digestibility, mRNA expression of nutrient transporters, and ileal tissue morphology in broiler chickens. There were four treatment groups: thermoneutral control (TNc), thermoneutral infected (TNi), heat stress control (HSc), and heat stress infected (HSi), 6 replicates each of 10 birds per treatment. Chickens were fed a diet containing 0.2% TiO2. At 6-day-post infection, ileal content and tissue were collected to quantify ileal digestibility of crude protein and fat, mRNA levels of nutrient transporters and histopathology. Growth and feed intake were reduced in all treatment groups, compared with the TNc. Contrary to expectation, the combination of two major stressors (E. maxima and HS) in the TNi group exhibited almost normal digestibility while only the TNi birds expressed severe digestibility depression, compared with the TNc group. The TNi group showed the lowest mRNA expression of the transporters: SGLT1, GLUT2-5-8-10-12, FABP1-2-6, and PEPT1 compared with the other treatment groups. The expression of the absorptive enterocytes’ gene markers (ACSL5, IAP, and SGLT1) supported by the ileal tissue morphology indicated that the TNi group had the highest enterocytic destruction. The expression of oxidative genes (iNOS and CYBB) dramatically increased only in the TNi group compared with the other treatment groups. Our results showed that exposing broiler chickens to HS can mitigate the disruptive effect of E. maxima on the ileal digestibility and absorption by limiting the parasite-induced tissue injury and suppressing the enterocytic inducible oxidative damage.
1. Allen PC, Fetterer R. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical microbiology reviews. 2002; 15(1):58–65. https://doi.org/10.1128/CMR.15.1.58-65.2002 PMID: 11781266
2. McDougald LR. Intestinal protozoa important to poultry. Poultry science. 1998; 77(8):1156–8. https:// doi.org/10.1093/ps/77.8.1156 PMID: 9706082
3. Levine ND. Protozoan parasites of domestic animals and of man. Protozoan Parasites of Domestic Animals and of Man. 1961.
4. Dubey J, Jenkins M. Re-evaluation of the life cycle of Eimeria maxima Tyzzer, 1929 in chickens (Gallus domesticus). Parasitology. 2018; 145(8):1051–8. https://doi.org/10.1017/S0031182017002153 PMID: 29239290
5. Zulpo DL, Peretti J, Ono LM, Longhi E, Oliveira MR, Guimarães IG, et al. Pathogenicity and histopathological observations of commercial broiler chicks experimentally infected with isolates of Eimeria tenella, E. acervulina and E. maxima. Semina: Ciências Agra´rias. 2007; 28(1):97–104.
6. Ducatelle R, Goossens E, De Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, et al. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res. 2018; 49 (1):43. Epub 2018/05/10. https://doi.org/10.1186/s13567-018-0538-6 PMID: 29739469; PubMed Central PMCID: PMC5941335.
7. Allen PC, Jenkins MC, Miska KB. Cross protection studies with Eimeria maxima strains. Parasitol Res. 2005; 97(3):179–85. Epub 2005/07/02. https://doi.org/10.1007/s00436-005-1423-6 PMID: 15991044.
8. Sharman PA, Smith NC, Wallach MG, Katrib M. Chasing the golden egg: vaccination against poultry coccidiosis. Parasite Immunol. 2010; 32(8):590–8. Epub 2010/07/16. https://doi.org/10.1111/j.1365- 3024.2010.01209.x PMID: 20626814.
9. Attia Y, Hassan R, Tag El-Din A, Abou-Shehema B. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. Journal of animal physiology and animal nutrition. 2011; 95(6):744–55. https://doi.org/10.1111/j.1439-0396.2010.01104.x PMID: 21158953
10. Habashy W, Milfort M, Adomako K, Attia Y, Rekaya R, Aggrey S. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poultry science. 2017; 96(7):2312–9. https://doi. org/10.3382/ps/pex027 PMID: 28339933
11. Habashy WS, Milfort MC, Fuller AL, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int J Biometeorol. 2017; 61(12):2111–8. Epub 2017/08/12. https://doi.org/10.1007/s00484-017-1414-1 PMID: 28799035.
12. Byers MS, Howard C, Wang X. Avian and Mammalian Facilitative Glucose Transporters. Microarrays (Basel). 2017; 6(2). Epub 2017/04/06. https://doi.org/10.3390/microarrays6020007 PMID: 28379195; PubMed Central PMCID: PMC5487954.
13. Kono T, Nishida M, Nishiki Y, Seki Y, Sato K, Akiba Y. Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br Poult Sci. 2005; 46(4):510–5. Epub 2005/11/05. https://doi.org/ 10.1080/00071660500181289 PMID: 16268111.
14. Augustin R, Mayoux E. Mammalian sugar transporters. Glucose homeostasis: IntechOpen; 2014.
15. Romero A, Gomez O, Terrado J, Mesonero JE. Expression of GLUT8 in mouse intestine: identification of alternative spliced variants. Journal of cellular biochemistry. 2009; 106(6):1068–78. https://doi.org/ 10.1002/jcb.22090 PMID: 19229868
16. Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Human genomics. 2011; 5(3):170. https://doi.org/10.1186/1479-7364-5-3-170 PMID: 21504868
17. Yuan J, Zhang B, Guo Y. Poultry fat decreased fatty acid transporter protein mRNA expression and affected fatty acid composition in chickens. Journal of animal science and biotechnology. 2012; 3(1):17. https://doi.org/10.1186/2049-1891-3-17 PMID: 22958585
18. Zwarycz B, Wong EA. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick. Poult Sci. 2013; 92(5):1314–21. Epub 2013/04/11. https://doi.org/10.3382/ps. 2012-02826 PMID: 23571341.
19. Chen H, Wong EA, Webb KE Jr. Tissue distribution of a peptide transporter mRNA in sheep, dairy cows, pigs, and chickens. J Anim Sci. 1999; 77(5):1277–83. Epub 1999/05/26. https://doi.org/10.2527/ 1999.7751277x PMID: 10340597.
20. Adedokun SA, Helmbrecht A, Applegate TJ. Investigation of the effect of coccidial vaccine challenge on apparent and standardized ileal amino acid digestibility in grower and finisher broilers and its evaluation in 21-day-old broilers. Poult Sci. 2016; 95(8):1825–35. Epub 2016/03/10. https://doi.org/10.3382/ps/ pew066 PMID: 26957634.
21. Guo S, Liu D, Zhao X, Li C, Guo Y. Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens. Poult Sci. 2014; 93(1):94–103. Epub 2014/02/27. https://doi.org/10.3382/ps.2013- 03188 PMID: 24570428.
22. Teng PY, Fuller AL, Kim WK. Evaluation of nitro compounds as feed additives in diets of Eimeria-challenged broilers in vitro and in vivo. Poult Sci. 2020; 99(3):1320–5. Epub 2020/03/01. https://doi.org/10. 1016/j.psj.2019.11.026 PMID: 32111308.
23. Rossi Sebastiano M, Konstantinidou G. Targeting Long Chain Acyl-CoA Synthetases for Cancer Therapy. Int J Mol Sci. 2019; 20(15). Epub 2019/07/28. https://doi.org/10.3390/ijms20153624 PMID: 31344914; PubMed Central PMCID: PMC6696099.
24. Bilski J, Mazur-Bialy A, Wojcik D, Zahradnik-Bilska J, Brzozowski B, Magierowski M, et al. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators Inflamm. 2017; 2017:9074601. Epub 2017/03/21. https://doi.org/10.1155/2017/9074601 PMID: 28316376; PubMed Central PMCID: PMC5339520.
25. Sabino-Silva R, Mori RC, David-Silva A, Okamoto MM, Freitas HS, Machado UF. The Na(+)/glucose cotransporters: from genes to therapy. Braz J Med Biol Res. 2010; 43(11):1019–26. Epub 2010/11/05. https://doi.org/10.1590/s0100-879x2010007500115 PMID: 21049241.
26. Gassler N, Newrzella D, Bohm C, Lyer S, Li L, Sorgenfrei O, et al. Molecular characterisation of nonabsorptive and absorptive enterocytes in human small intestine. Gut. 2006; 55(8):1084–9. Epub 2006/ 03/25. https://doi.org/10.1136/gut.2005.073262 PMID: 16556670; PubMed Central PMCID: PMC1856251.
27. Schneiders G, Foutz J, Milfort M, Ghareeb A, Sorhue U, Richter J, et al. Ontogeny of intestinal permeability in chickens infected with Eimeria maxima: implications for intestinal health. 2019; 6(3):41–50.
28. Horowitz W, Latimer GJG, Md. AOAC International. Official methods of analysis of AOAC International. 2006;18.
29. Edwards H Jr, Gillis M. A chromic oxide balance method for determining phosphate availability. Poultry Science. 1959; 38(3):569–74.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001; 25(4):402–8. https://doi.org/10.1006/meth.2001.1262 PMID: 11846609
31. Al-Zghoul MB, Alliftawi ARS, Saleh KMM, Jaradat ZW. Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poult Sci. 2019; 98(9):4113–22. Epub 2019/05/09. https://doi.org/10.3382/ps/pez249 PMID: 31065718.
32. Ruff J, Barros TL, Tellez G Jr., Blankenship J, Lester H, Graham BD, et al. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult Sci. 2020; 99 (3):1687–92. Epub 2020/03/03. https://doi.org/10.1016/j.psj.2019.10.075 PMID: 32115037.
33. Schneiders GH, Foutz JC, Milfort MC, Ghareeb AFA, Fuller AL, Rekaya R, et al. Heat stress reduces sexual development and affects pathogenesis of Eimeria maxima in meat-type chickens. Sci Rep. 2020; 10(1):10736. Epub 2020/07/03. https://doi.org/10.1038/s41598-020-67330-w PMID: 32612102; PubMed Central PMCID: PMC7329875.
34. Dyer J, Vayro S, King TP, Shirazi-Beechey SP. Glucose sensing in the intestinal epithelium. Eur J Biochem. 2003; 270(16):3377–88. Epub 2003/08/06. https://doi.org/10.1046/j.1432-1033.2003.03721.x PMID: 12899695.
35. Notari L, Riera DC, Sun R, Bohl JA, McLean LP, Madden KB, et al. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One. 2014; 9(1):e84763. Epub 2014/01/28. https://doi.org/10.1371/journal.pone.0084763 PMID: 24465430; PubMed Central PMCID: PMC3900397.
36. Teng PY, Choi J, Tompkins Y, Lillehoj H, Kim W. Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Vet Res. 2021; 52(1):81. Epub 2021/06/11. https://doi.org/10.1186/s13567-021- 00949-3 PMID: 34108017; PubMed Central PMCID: PMC8190994.
37. Shepherd EJ, Helliwell PA, Mace OJ, Morgan EL, Patel N, Kellett GL. Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol. 2004; 560(Pt 1):281–90. Epub 2004/08/07. https://doi.org/10.1113/jphysiol.2004.072447 PMID: 15297580; PubMed Central PMCID: PMC1665211.
38. Boudry G, Cheeseman CI, Perdue MH. Psychological stress impairs Na+-dependent glucose absorption and increases GLUT2 expression in the rat jejunal brush-border membrane. Am J Physiol Regul Integr Comp Physiol. 2007; 292(2):R862–7. Epub 2006/10/21. https://doi.org/10.1152/ajpregu.00655. 2006 PMID: 17053095.
39. Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, et al. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol. 2015; 59(2):127–35. Epub 2014/04/17. https://doi.org/10.1007/s00484-014-0829-1 PMID: 24736810.
40. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annual review of immunology. 2009; 27:591–619. https://doi.org/10.1146/annurev.immunol.021908.132706 PMID: 19132916
41. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014; 289(11):7884–96. Epub 2014/02/05. https://doi.org/10. 1074/jbc.M113.522037 PMID: 24492615; PubMed Central PMCID: PMC3953299.
42. Su S, Miska K, Fetterer R, Jenkins M, Wong E. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers. Experimental parasitology. 2015; 150:13–21. https://doi.org/10. 1016/j.exppara.2015.01.003 PMID: 25617757
43. Su S, Miska KB, Fetterer RH, Jenkins MC, Lamont SJ, Wong EA. Differential expression of intestinal nutrient transporters and host defense peptides in Eimeria maxima-infected Fayoumi and Ross chickens. Poult Sci. 2018; 97(12):4392–400. Epub 2018/07/15. https://doi.org/10.3382/ps/pey286 PMID: 30007365.
44. Miska KB, Fetterer RH. The mRNA expression of amino acid and sugar transporters, aminopeptidase, as well as the di- and tri-peptide transporter PepT1 in the intestines of Eimeria infected broiler chickens. Poult Sci. 2017; 96(2):465–73. Epub 2016/09/04. https://doi.org/10.3382/ps/pew303 PMID: 27591271.
45. Nowotny B, Cavka M, Herder C, Loffler H, Poschen U, Joksimovic L, et al. Effects of acute psychological stress on glucose metabolism and subclinical inflammation in patients with post-traumatic stress disorder. Horm Metab Res. 2010; 42(10):746–53. Epub 2010/07/29. https://doi.org/10.1055/s-0030- 1261924 PMID: 20665427.
46. Rostamkhani F, Zardooz H, Zahediasl S, Farrokhi B. Comparison of the effects of acute and chronic psychological stress on metabolic features in rats. J Zhejiang Univ Sci B. 2012; 13(11):904–12. Epub 2012/11/06. https://doi.org/10.1631/jzus.B1100383 PMID: 23125083; PubMed Central PMCID: PMC3494029.
47. Baumgard LH, Rhoads RP Jr., Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci. 2013; 1:311–37. Epub 2013/01/01. https://doi.org/10.1146/annurev-animal031412-103644 PMID: 25387022.
48. Lin H, Du R, Gu X, Li F, Zhang Z. A study on the plasma biochemical indices of heat-stressed broilers. Asian-Australasian Journal of Animal Sciences. 2000; 13(9):1210–8.
49. Lu Z, He XF, Ma BB, Zhang L, Li JL, Jiang Y, et al. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult Sci. 2019; 98(9):3695–704. Epub 2019/02/28. https://doi.org/10.3382/ps/pez056 PMID: 30809677.
50. Orhan C, Tuzcu M, Deeh PBD, Sahin N, Komorowski JR, Sahin K. Organic Chromium Form Alleviates the Detrimental Effects of Heat Stress on Nutrient Digestibility and Nutrient Transporters in Laying Hens. Biol Trace Elem Res. 2019; 189(2):529–37. Epub 2018/08/23. https://doi.org/10.1007/s12011- 018-1485-9 PMID: 30132119.
51. DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012; 153(9):4181–91. Epub 2012/07/24. https://doi.org/10.1210/en.2012-1541 PMID: 22822162; PubMed Central PMCID: PMC3423610.
52. Caspary WF. Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr. 1992; 55(1 Suppl):299S–308S. Epub 1992/01/01. https://doi.org/10.1093/ajcn/55.1.299s PMID: 1728844
53. Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr. 2008; 28:73–95. Epub 2008/04/26. https://doi.org/10.1146/annurev.nutr.27.061406. 093710 PMID: 18435590.
54. Zimmerman AW, van Moerkerk HT, Veerkamp JH. Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell Biol. 2001; 33(9):865–76. Epub 2001/07/20. https://doi.org/10.1016/s1357-2725(01)00070-x PMID: 11461829.
55. Feng Y, Yang XJ, Wang YB, Li WL, Liu Y, Yin RQ, et al. Effects of immune stress on performance parameters, intestinal enzyme activity and mRNA expression of intestinal transporters in broiler chickens. Asian-Australas J Anim Sci. 2012; 25(5):701–7. Epub 2012/05/01. https://doi.org/10.5713/ajas. 2011.11377 PMID: 25049616; PubMed Central PMCID: PMC4093104.
56. Hu XF, Guo YM, Huang BY, Bun S, Zhang LB, Li JH, et al. The effect of glucagon-like peptide 2 injection on performance, small intestinal morphology, and nutrient transporter expression of stressed broiler chickens. Poult Sci. 2010; 89(9):1967–74. Epub 2010/08/17. https://doi.org/10.3382/ps.2009-00547 PMID: 20709983.
57. Thiesen A, Wild GE, Keelan M, Clandinin MT, Thomson AB. Locally and systemically active glucocorticosteroids modify intestinal absorption of sugars in rats. J Appl Physiol (1985). 2003; 94(2):583–90. Epub 2002/10/23. https://doi.org/10.1152/japplphysiol.00134.2002 PMID: 12391102.
58. Babeu JP, Boudreau F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J Gastroenterol. 2014; 20(1):22–30. Epub 2014/01/15. https://doi.org/10.3748/ wjg.v20.i1.22 PMID: 24415854; PubMed Central PMCID: PMC3886012.
59. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB, et al. L-FABP directly interacts with PPARα in cultured primary hepatocytes. Journal of lipid research. 2009; 50(8):1663–75. https://doi.org/10.1194/jlr.M900058-JLR200 PMID: 19289416
60. McIntosh AL, Petrescu AD, Hostetler HA, Kier AB, Schroeder F. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor 4α. FEBS letters. 2013; 587(23):3787–91. https://doi.org/10. 1016/j.febslet.2013.09.043 PMID: 24140341
61. Prows DR, Murphy EJ, Schroeder F. Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells. Lipids. 1995; 30(10):907–10. https://doi.org/10.1007/ BF02537481 PMID: 8538377
62. Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, et al. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2011; 300(5):G803–G14. https://doi.org/ 10.1152/ajpgi.00229.2010 PMID: 21350192
63. Gajda AM, Zhou YX, Agellon LB, Fried SK, Kodukula S, Fortson W, et al. Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding. Journal of Biological Chemistry. 2013; 288(42):30330–44. https://doi.org/10.1074/jbc.M113. 501676 PMID: 23990461
64. Brems JJ, Reese J, Kane R 3rd, Kaminski DL. Effect of cyclosporine and steroids on canine bile flow. Hepatology. 1991; 14(3):523–7. Epub 1991/09/01. PMID: 1874497.
65. Alvaro D, Gigliozzi A, Marucci L, Alpini G, Barbaro B, Monterubbianesi R, et al. Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. Gastroenterology. 2002; 122 (4):1058–69. Epub 2002/03/23. https://doi.org/10.1053/gast.2002.32374 PMID: 11910357.
66. Xu Y, Lai X, Li Z, Zhang X, Luo Q. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult Sci. 2018; 97(11):4073–82. Epub 2018/06/23. https:// doi.org/10.3382/ps/pey256 PMID: 29931080; PubMed Central PMCID: PMC6162357.
67. Schaffer JE, Lodish HF. Molecular mechanism of long-chain fatty acid uptake. Trends Cardiovasc Med. 1995; 5(6):218–24. Epub 1995/11/01. https://doi.org/10.1016/1050-1738(95)00102-6 PMID: 21232263.
68. McKee T, McKee J. Biochemistry: The molecular basis of life. 5th: New York: Oxford University Press; 2011.
69. Smith DE, Clemencon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. 2013; 34(2–3):323–36. Epub 2013/03/20. https://doi.org/10.1016/j.mam.2012.11.003 PMID: 23506874; PubMed Central PMCID: PMC3602806.
70. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev. 2006; 86(4):1151–78. Epub 2006/10/04. https://doi.org/10.1152/physrev.00050.2005 PMID: 17015487.
71. Rexhepaj R, Rotte A, Kempe DS, Sopjani M, Foller M, Gehring EM, et al. Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone. Pflugers Arch. 2009; 459(1):191– 202. Epub 2009/08/13. https://doi.org/10.1007/s00424-009-0701-z PMID: 19672619.
72. Boehmer C, Palmada M, Klaus F, Jeyaraj S, Lindner R, Laufer J, et al. The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2. Cell Physiol Biochem. 2008; 22(5–6):705–14. Epub 2008/12/18. https://doi.org/10.1159/000185554 PMID: 19088452.
73. Khatlab AS, Del Vesco AP, de Oliveira Neto AR, Fernandes RPM, Gasparino E. Dietary supplementation with free methionine or methionine dipeptide mitigates intestinal oxidative stress induced by Eimeria spp. challenge in broiler chickens. J Anim Sci Biotechnol. 2019; 10:58. Epub 2019/07/13. https://doi. org/10.1186/s40104-019-0353-6 PMID: 31297194; PubMed Central PMCID: PMC6598363.
74. Emami NK, Calik A, White MB, Young M, Dalloul RA. Necrotic Enteritis in Broiler Chickens: The Role of Tight Junctions and Mucosal Immune Responses in Alleviating the Effect of the Disease. Microorganisms. 2019; 7(8). Epub 2019/08/03. https://doi.org/10.3390/microorganisms7080231 PMID: 31370350; PubMed Central PMCID: PMC6723922.
75. Nakamura N, Lill JR, Phung Q, Jiang Z, Bakalarski C, de Maziere A, et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature. 2014; 509(7499):240–4. Epub 2014/04/ 04. https://doi.org/10.1038/nature13133 PMID: 24695226.
76. Sun D, Wang Y, Tan F, Fang D, Hu Y, Smith DE, et al. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol Pharm. 2013; 10(4):1409–16. Epub 2013/02/28. https://doi.org/10.1021/mp300700p PMID: 23442152; PubMed Central PMCID: PMC3633525.
77. Broer S, Broer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J. 2017; 474(12):1935–63. Epub 2017/05/27. https://doi.org/10.1042/BCJ20160822 PMID: 28546457; PubMed Central PMCID: PMC5444488.
78. Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells. 2020; 9(5). Epub 2020/05/08. https://doi.org/10.3390/cells9051131 PMID: 32375321; PubMed Central PMCID: PMC7290337.
79. Wang X, Zou W, Yu H, Lin Y, Dai G, Zhang T, et al. RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo. Genes (Basel). 2019; 10(6). Epub 2019/06/05. https:// doi.org/10.3390/genes10060420 PMID: 31159150; PubMed Central PMCID: PMC6627390.
80. Giannenas I, Tsalie E, Triantafillou E, Hessenberger S, Teichmann K, Mohnl M, et al. Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathol. 2014; 43(3):209–16. Epub 2014/03/08. https://doi.org/10.1080/03079457.2014. 899430 PMID: 24601749.
81. Ozdogan M, Topal E, Paksuz EP, Kirkan S. Effect of different levels of crude glycerol on the morphology and some pathogenic bacteria of the small intestine in male broilers. Animal. 2014; 8(1):36–42. Epub 2013/11/02. https://doi.org/10.1017/S1751731113001833 PMID: 24176107.
82. Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MH, Koolmees PA, Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avian Pathol. 2015; 44(1):19–22. Epub 2014/11/21. https://doi.org/10.1080/03079457.2014. 988122 PMID: 25410755.
83. Lillehoj HS, Li G. Nitric oxide production by macrophages stimulated with Coccidia sporozoites, lipopolysaccharide, or interferon-gamma, and its dynamic changes in SC and TK strains of chickens infected with Eimeria tenella. Avian Dis. 2004; 48(2):244–53. Epub 2004/07/31. https://doi.org/10.1637/7054 PMID: 15283411.
84. Rehman ZU, Meng C, Sun Y, Safdar A, Pasha RH, Munir M, et al. Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxid Med Cell Longev. 2018; 2018:5123147. Epub 2019/01/17. https://doi.org/ 10.1155/2018/5123147 PMID: 30647810; PubMed Central PMCID: PMC6311761.
85. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015; 12(1):5–23. Epub 2014/09/30. https://doi.org/10. 1038/cmi.2014.89 PMID: 25263488; PubMed Central PMCID: PMC4654378.