Author details:
Campylobacter jejuni (CJ) is the most prevalent zoonotic pathogen of chicken meat and related products, which may lead to gastroenteritis and autoimmune diseases in humans. Although controlling this bacterium is important, CJ strains resistance against traditional antibiotic therapy has been increased. Vegetable oils and fats are natural biomaterials explored since the Ancient times, due to their therapeutic properties. Nanotechnology has promoted the miniaturization of materials, improving bioavailability and efficacy, while reducing the toxicity of loaded active molecules. In this work, a screening of 28 vegetable oils was firstly performed, in order to select anti-CJ candidates by the disc diffusion test. Thus, the selected liquid lipids were used as active molecules in nanostructured lipid carriers (NLC) formulations. The three resultant systems were characterized in terms of particle size (~200 nm), polydispersity index (~0.15), and zeta potential (~-35mV), and its physicochemical stability was confirmed for a year, at 25°C. The structural properties of NLC were assessed by infrared (FTIR-ATR) and differential scanning calorimetry (DSC) analyses. The spherical nanoparticle morphology and narrow size distribution was observed by transmission electron microscopy (TEM) and field emission scanning electron (FE-SEM) analyses, respectively. Then, the in vitro antimicrobial activity test determined the minimum inhibitory concentration (MIC) of each formulation against CJ strains, in both free (1–3 mg/ml−1) and sessile (0.78 mg/ml−1) forms. Finally, the in vitro biocompatibility of NLC was demonstrated through cell viability using VERO cell line, in which F6 was found twice less cytotoxic than pure olibanum oil. Considering the abovementioned achieved, F6 formulation is able to be evaluated in the in vivo anti-CJ efficacy assays.
Keywords: lipid nanoparticles, Campylobacteriose, natural oils, bioactive molecules, biofilm
Attama, A. A., Schicke, B. C., and Müller-Goymann, C. C. (2006). Further characterization of theobroma oil-beeswax admixtures as lipid matrices for improved drug delivery systems. Eur. J. Pharm. Biopharm. 64, 294–306. doi: 10.1016/j.ejpb.2006.06.010
Badea, G., Bors, A. G., Lacatusu, I., Oprea, O., Ungureanu, C., Stan, R., et al. (2015a). Influence of basil oil extract on the antioxidant and antifungal activities of nanostructured carriers loaded with nystatin. Comptes Rendus Chim. 18, 668–677. doi: 10.1016/j.crci.2014.09.012
Badea, G., Lacatusu, I., Badea, N., Ott, C., and Meghea, A. (2015b). Use of various vegetable oils in designing photoprotective nanostructured formulations for UV protection and antioxidant activity. Ind. Crops Prod. 67, 18–24. doi: 10.1016/j.indcrop.2014.12.049
Barbosa, R. M., Ribeiro, L. N. M., Casadei, B., da Silva, C., Queiróz, V., Duran, N., et al. (2018). Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics 10:231. doi: 10.3390/pharmaceutics10040231
Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Pereira, A. E. S., Ribeiro, L. N. M., Fernandes, F. O., et al. (2018). Carvacrol and linalool co-loaded in bcyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 8, 1–14. doi: 10.1038/s41598-018-26043-x
Carbone, C., Martins-Gomes, C., Caddeo, C., Silva, A. M., Musumeci, T., Pignatello, R., et al. (2018). Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. 548, 217–226. doi: 10.1016/j.ijpharm.2018.06.064
Castro, S. R., de Paula, E., Mendonça, T. C., Ribeiro, L. N. M., and Lancellotti, M. (2019). Carreadores lipı́dicos nanoestruturados antimicrobianos 1–31. BR1020190267305, filing date: 15/12/2019, patented by Instituto Nacional da Propriedade Industrial (INPI), Brazil.
Clemente, I., Condón-Abanto, S., Pedrós-Garrido, S., Whyte, P., and Lyng, J. G. (2020). Efficacy of pulsed electric fields and antimicrobial compounds used alone and in combination for the inactivation of Campylobacter jejuni in liquids and raw chicken. Food Control 107, 106491. doi: 10.1016/ j.foodcont.2019.01.017
Clinical and Laboratory Standards Institute (CLSI) (2018). Performance standards for antimicrobial susceptibility testing: 28th informational supplement. M100Ed28E. Wayne, PA: Clinical and Laboratory Standards Institute (2018).
Crofts, A. A., Poly, F. M., Ewing, C. P., Kuroiwa, J. M., Rimmer, J. E., Harro, C., et al. (2018). Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat. Microbiol. 3, 494–502. doi: 10.1038/s41564-018- 0133-7
de Araújo, D. R., Ribeiro, L. N. M., and de Paula, E. (2019). Lipid-based carriers for the delivery of local anesthetics. Expert Opin. Drug Deliv. 16, 1–14. doi: 10.1080/17425247.2019.1629415
Di Stefano, V., Schillaci, D., Cusimano, M. G., Rishan, M., and Rashan, L. (2020). In vitro antimicrobial activity of frankincense oils from boswellia sacra grown in different locations of the Dhofar region (Oman). Antibiotics 9, 1–9. doi: 10.3390/antibiotics9040195
Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 8, 881–890. doi: 10.3201/eid0809.020063
Duarte, A., Luıs, A ́ ̂ ., Oleastro, M., and Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control 61, 115–122. doi: 10.1016/j.foodcont. 2015.09.033
EUCAST (European Committee on Antimicrobial Susceptibility Testing) (2020). Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion. Version 8.0, Valid from 2018-01-01.
Fonseca, B. B., Rossi, D. A., Maia, C. A., Nalevaiko, P. C., Melo, R. T., Cuccato, L. P., and Beletti, M. E. (2014) Characterization of the virulence, growth temperature and antibiotic resistance of the Campylobacter jejuni IAL 2383 strain isolated from humans. Braz. J. Microbiol. 45, 271–274.
Fonseca, B. B., Ferreira Júnior, Á ., dos Santos, J. P., Coelho, L. R., Rossi, D. A., Melo, R. T., et al. (2016). Campylobacter jejuni increases transcribed Il-1B and causes morphometric changes in the ileal enterocytes of chickens. Rev. Bras. Cienc. Avic. 18, 63–68. doi: 10.1590/1516-635x1801063-068
Khezri, K., Farahpour, M. R., and Mounesi Rad, S. (2020). Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf. A Physicochem. Eng. Asp. 589, 124414. doi: 10.1016/j.colsurfa. 2020.124414
Kivrak, I., Duru, M. E., Öztürk, M., Mercan, N., Harmandar, M., and Topçu, G. (2009). Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 116, 470–479. doi: 10.1016/j.foodchem.2009.02.069
Klančnik, A., Š imunović , K., Sternisa, M., Ramic ̌ ́ , D., Smole Mož ina, S., and Bucar, F. (2020). Anti-adhesion activity of phytochemicals to prevent Campylobacter jejuni biofilm formation on abiotic surfaces. Phytochem. Rev. 6, 1–30. doi: 10.1007/s11101-020-09669-6
Melo, R. T., Mendonça, E. P., Monteiro, G. P., Siqueira, M. C., Pereira, C. B., Peres, P. A. B. M., et al. (2017). Intrinsic and extrinsic aspects on Campylobacter jejuni Biofilms. Front. Microbiol. 8, 1332. doi: 10.3389/ fmicb.2017.01332
Melo, R. T., Grazziotin, A. L., Júnior, E. C. V., Prado, R. R., Mendonça, E. P., Monteiro, G. P., et al. (2019). Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol. 82, 489–496. doi: 10.1016/j.fm.2019.03.009
Muller, R. H., Shegokar, R., and Keck, C. M. (2011). 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr. Drug Discovery Technol. 8, 207–227. doi: 10.2174/157016311796799062
Odeh, F., Al-Jaber, H., and Khater, D. (2014). “Nanoflora — How Nanotechnology Enhanced the Use of Active Phytochemicals,” in Appl. Nanotechnol. Drug Deliv. Chapter 10, 1st Edition. Ed. A. D. Sezer (London: IntechOpen) 10, 1–20. doi: 10.5772/58704
Orhan, D. D., Özçelik, B., Özgen, S., and Ergun, F. (2010). Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 165, 496–504. doi: 10.1016/j.micres.2009.09.002
Pardauil, J. J. R., de Molfetta, F. A., Braga, M., de Souza, L. K. C., Filho, G. N. R., Zamian, J. R., et al. (2017). Characterization, thermal properties and phase transitions of amazonian vegetable oils. J. Therm. Anal. Calorim. 127, 1221– 1229. doi: 10.1007/s10973-016-5605-5
Reuter, M., Mallett, A., Pearson, B. M., and Van Vliet, A. H. M. (2010). Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 76, 2122–2128. doi: 10.1128/AEM.01878-09
Ribeiro, L. N. M., Franz-Montan, M., Breitkreitz, M. C., Alcântara, A. C. S., Castro, S. R., Guilherme, V. A., et al. (2016). Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur. J. Pharm. Sci. 93, 192–202. doi: 10.1016/j.ejps.2016.08.030
Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., Rodrigues da Silva, G. H., Couto, V. M., Castro, S. R., et al. (2017). Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies. Eur. J. Pharm. Sci. 106, 102– 112. doi: 10.1016/j.ejps.2017.05.060
Ribeiro, L. N. M., Couto, V. M., Fraceto, L. F., and de Paula, E. (2018). Use of nanoparticle concentration as a tool to understand the structural properties of colloids. Sci. Rep. 8, 982. doi: 10.1038/s41598-017-18573-7
Ribeiro, L. N. M., Alcântara, A. C. S., Franz-Montan, M., Couto, V. M., Nista, S. V. G., and de Paula, E. (2019). “Nanostructured organic-organic bio-hybrid delivery systems,” in Biomedical Applications of Nanoparticles. Ed. A. M. Grumezescu (Amsterdam: Elsevier), 341–374.
Rodrigues da Silva, G. H., Ribeiro, L. N. M., Mitsutake, H., Guilherme, V. A., Castro, S. R., Poppi, R. J., et al. (2017). Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine. Int. J. Pharm. 529, 253–263. doi: 10.1016/j.ijpharm.2017.06.066
Rodrigues da Silva, G. H., Geronimo, G., Ribeiro, L. N. M., Guilherme, V. A., de Moura, L. D., Bombeiro, A. L., et al. (2020). Injectable in situ forming nanogel: A hybrid Alginate-NLC formulation extends bupivacaine anesthetic effect. Mater. Sci. Eng. C. 109, 110608. doi: 10.1016/j.msec.2019.110608
Rodrigues, C. G., Melo, R. T., Fonseca, B. B., Martins, P. A., Ferreira, F. A., Araújo, M. B. J., et al. (2015). Occurrence and characterization of Campylobacter spp. isolates in dogs, cats and children. Pesqui. Vet. Bras. 35, 365–370. doi: 10.1590/ S0100-736X2015000400009
Š ikić Pogač ar, M., Klančnik, A., Bucar, F., Langerholc, T., and Smole Mož ina, S. (2016). Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J. Sci. Food Agric. 96, 2723–2730. doi: 10.1002/jsfa.7391
Souto, E. B., Wissing, S. A., Barbosa, C. M., and Müller, R. H. (2004). Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur. J. Pharm. Biopharm. 58, 83–90. doi: 10.1016/ j.ejpb.2004.02.015
Souto, E. B., Baldim, I., Oliveira, W. P., Rao, R., Yadav, N., Gama, F. M., et al. (2020). SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 17, 357–377. doi: 10.1080/17425247.2020.1727883
Sulaeman, S., Le Bihan, G., Rossero, A., Federighi, M., Dé , E., and Tresse, O. (2010). Comparison between the biofilm initiation of Campylobacter jejuni and Campylobacter coli strains to an inert surface using BioFilm Ring Test ®. J. Appl. Microbiol. 108, 1303–1312. doi: 10.1111/j.1365-2672.2009.04534.x
Van Houdt, R., and Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109, 1117– 1131. doi: 10.1111/j.1365-2672.2010.04756.x
Van Vuuren, S. F., Kamatou, G. P. P., and Viljoen, A. M. (2010). Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples. South Afr. J. Bot. 76, 686–691. doi: 10.1016/j.sajb. 2010.06.001
Vasireddy, L., Bingle, L. E. H., and Davies, M. S. (2018). Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PloS One 13, e0201835. doi: 10.1371/journal. pone.0201835
Venturini, C. G., Bruinsmann, F. A., Contri, R. V., Fonseca, F. N., Frank, L. A., D’Amore, C. M., et al. (2015). Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: Promising formulations against skin carcinoma. Eur. J. Pharm. Sci. 79, 36–43. doi: 10.1016/j.ejps.2015.08.016
Yu, J. Q., Lei, J. C., Zhang, X. Q., Yu, H. D., Tian, D. Z., Liao, Z. X., et al. (2011). Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel. Food Chem. 126, 1593–1598. doi: 10.1016/j.foodchem.2010.12.027
Yu, H. H., Song, Y. J., Yu, H. S., Lee, N. K., and Paik, H. D. (2020). Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci. 85, 157–164. doi: 10.1111/ 1750-3841.14989