This review provides insight into the effects of the branched-chain amino acids (BCAA: leucine, isoleucine, and valine) on the growth, production performance, immunity, and intestinal health of poultry. Besides providing nitrogen substrates and carbon framework for energy homeostasis and transamination, BCAA also function as signaling molecules in the regulation of glucose, lipid, and protein synthesis via protein kinase B and as a mechanistic target of the rapamycin (AKT-mTOR) signaling pathway that is important for muscle accretion. The level of leucine is generally high in cereals and an imbalance in the ratio among the 3 BCAA in a low protein diet would produce a negative effect on poultry growth performance. This occurs due to the structural similarity of the 3 BCAA, which leads to metabolic competition and interference with the enzymatic degradation pathway. Emerging evidence shows that the inclusion of BCAA is essential for the proper functioning of the innate and adaptive immune system and the maintenance of intestinal mucosal integrity. The recommended levels of BCAA for poultry are outlined by NRC (1994), but commercial broilers and laying hen breed standards also determine their own recommended levels. In this review, it has been noted that the requirement for BCAA is influenced by the diet type, breed, and age of the birds. Additionally, several studies focused on the effects of BCAA in low protein diets as a strategy to reduce nitrogen excretion. Notably, there is limited research on the inclusion ratio of BCAA in a supplemental form as compared to the ingredient-bound form which would affect the dynamics of utilization in different disease-challenged conditions, especially those affecting digesta passage ratio. In summary, this review encompasses the role of BCAA as functional AA and discusses their physiological effects on the productivity and health of poultry. The observations and interpretations of this review can guide future research to adjust the recommended levels of BCAA in feeding programs in the absence of subtherapeutic antibiotics in poultry.
Key words: branched chain amino acids, growth performance, immunity, microbiota, poultry disease.
Adeva-Andany, M. M., L. Lopez-Maside, C. Donapetry-García, C. Fernandez-Fernandez, and C. Sixto-Leal. 2017. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 49:1005–1028.
Allameh, S., and M. Toghyani. 2019. Effect of dietary valine supplementation to low protein diets on performance, intestinal morphology and immune responses in broiler chickens. Livest. Sci. 229:137–144.
Allen, N. K., and D. H. Baker. 1972. Quantitative efficacy of dietary isoleucine and valine for chick growth as influenced by variable quantities of excess dietary leucine. Poult. Sci. 51:1292–1298.
Amirdahri, S., H. Janmohammadi, A. Taghizadeh, W. Lambert, E. A. Soumeh, and M. Oliayi. 2020. Valine requirement of female Cobb broilers from 8 to 21 days of age. J. Appl. Poult. Res. 29:775–785.
Apajalahti, J., and K. Vienola. 2016. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol. 221:323–330.
Aviagen 2019. Ross 308 and 708 broiler nutrition specifications guide. https://en.aviagen.com/brands/ross/. Accessed Aug. 2021.
Aviagen 2021. Ross 308 and 708 parent stock nutrition specifications guide. https://en.aviagen.com/brands/ross/. Accessed Aug. 2021.
Azzam, M. M. M., X. Y. Dong, L. Dai, and X. T. Zou. 2015. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity. Br. Poult. Sci. 56:72–78.
Bai, J., E. Greene, W. Li, M. T. Kidd, and S. Dridi. 2015. Branchedchain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Mol. Nutr. Food Res. 59:1171–1181.
Berres, J., S. L. Vieira, W. A. Dozier Iii, M. E. M. Cort^es, R. De Barros, E. T. Nogueira, and M. Kutschenko. 2010. Broiler responses to reduced-protein diets supplemented with valine, isoleucine, glycine, and glutamic acid. J. Appl. Poult. Res. 19:68–79.
Beski, S. S. M., R. A. Swick, and P. A. Iji. 2015. Specialized protein products in broiler chicken nutrition: a review. Anim. Nutr. 1:47–53.
Bhanja, S. K., and A. B. Mandal. 2005. Effect of in ovo injection of critical amino acids on pre-and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. Asian Austral. J. Anim. Sci. 18:524–531.
Bischoff, S. C., G. Barbara, W. Buurman, T. Ockhuizen, J.-D. Schulzke, M. Serino, H. Tilg, A. Watson, and J. M. Wells. 2014. Intestinal permeability−a new target for disease prevention and therapy. BMC Gastroenterol 14:1–25.
Bonvini, A., A. Y. Coqueiro, J. Tirapegui, P. C. Calder, and M. M. Rogero. 2018. Immunomodulatory role of branched-chain amino acids. Nutr. Rev. 76:840–856.
Bortoluzzi, C., J. I. M. Fernandes, K. Doranalli, and T. J. Applegate. 2020. Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Anim. Feed Sci. Technol. 262:114383.
Bregendahl, K., S. A. Roberts, B. Kerr, and D. Hoehler. 2008. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorntype laying hens of twenty-eight to thirty-four weeks of age. Poult. Sci. 87:744–758.
Brosnan, J. T., and M. E. Brosnan. 2006. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr. 136:207S–211S.
Busquets, S., B. Alvarez, M. Llovera, N. Agell, F. J. Lopez-Soriano, and J. M. Argiles. 2000. Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J. Cell. Physiol. 184:380–384.
Calder, P. C. 2006. Branched-chain amino acids and immunity. J. Nutr. 136:288S–293S.
Castro, F. L. S., P.-Y. Teng, S. Yadav, R. L. Gould, S. Craig, R. Pazdro, and W. K. Kim. 2020. The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poult. Sci. 99:5844–5857.
Chang, Y., H. Cai, G. Liu, W. Chang, A. Zheng, S. Zhang, R. Liao, W. Liu, Y. Li, and J. Tian. 2015. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. Anim. Nutr. 1:313–319.
Chen, X., Q. Zhang, and T. J. Applegate. 2016. Impact of dietary branched chain amino acids concentration on broiler chicks during aflatoxicosis. Poult. Sci. 95:1281–1289.
Cheroutre, H., F. Lambolez, and D. Mucida. 2011. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11:445–456.
Chowdhury, V. S., G. Han, H. M. Eltahan, S. Haraguchi, E. R. Gilbert, M. A. Cline, J. F. Cockrem, T. Bungo, and M. Furuse. 2020. Potential role of amino acids in the adaptation of chicks and market-age broilers to heat stress. Front. Vet. Sci 7:610541.
Cobb-Vantress 2018. Cobb 500 broiler performance and nutrition supplement guide. https://www.cobb-vantress.com/en_US/products. Accessed Aug. 2021.
Cobb-Vantress 2020a. Cobb 500 breeder management supplement guide. https://www.cobb-vantress.com/en_US/products.Accessed Aug. 2021.
Cobb-Vantress 2020b. Cobb 700 breeder management supplement guide. https://www.cobb-vantress.com/en_US/products. Accessed Aug. 2021.
Cobb-Vantress 2020c. Cobb 700 broiler performance and nutrition supplement guide. https://www.cobb-vantress.com/en_US/products. Accessed Aug. 2021.
Co€effier, M., S. Claeyssens, M. Bensifi, S. Lecleire, N. Boukhettala, B. Maurer, N. Donnadieu, A. Lavoinne, A.-F. Cailleux, and P. Dechelotte. 2011. Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum. Am. J. Clin. Nutr. 93:1255–1262.
Coqueiro, A. Y., R. Raizel, A. Bonvini, T. Hypolito, A.d. M. Godois, J. R. R. Pereira, A. B.d. O. Garcia, R.d. S. B. Lara, M. M. Rogero, and J. Tirapegui. 2018. Effects of glutamine and alanine supplementation on central fatigue markers in rats submitted to resistance training. Nutrients 10:119.
Corrent, E., and J. Bartelt. 2011. Valine and isoleucine: the next limiting amino acids in broiler diets. Lohmann Inform. 46:59–67.
Corzo, A., W. A. Dozier III, M. T. Kidd, and D. Hoehler. 2008. Impact of dietary isoleucine status on heavy-broiler production. Int. J. Poult. Sci. 7:526–529.
Corzo, A., W. A. Dozier III, R. E. Loar, M. T. Kidd, and P. B. Tillman. 2010. Dietary limitation of isoleucine and valine in diets based on maize, soybean meal, and meat and bone meal for broiler chickens. Br. Poult. Sci. 51:558–563.
Corzo, A., R. E. Loar II, and M. T. Kidd. 2009. Limitations of dietary isoleucine and valine in broiler chick diets. Poult. Sci. 88:1934–1938.
Corzo, A., E. T. Moran Jr, and D. Hoehler. 2004. Valine needs of male broilers from 42 to 56 days of age. Poult. Sci. 83:946–951.
Dai, Z.-L., J. Zhang, G. Wu, and W.-Y. Zhu. 2010. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215.
De Simone, R., F. Vissicchio, C. Mingarelli, C. De Nuccio, S. Visentin, M. A. Ajmone-Cat, and L. Minghetti. 2013. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis. 1832:650–659.
Deng, H., A. Zheng, G. Liu, W. Chang, S. Zhang, and H. Cai. 2014. Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: effects of dietary leucine and age. Poult. Sci. 93:114–121.
Dong, X. Y., M. M. M. Azzam, and X. T. Zou. 2016. Effects of dietary L-isoleucine on laying performance and immunomodulation of laying hens. Poult. Sci. 95:2297–2305.
Duan, Y., Q. Guo, C. Wen, W. Wang, Y. Li, B. Tan, F. Li, and Y. Yin. 2016. Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids. J. Agric. Food Chem. 64:9390–9400.
Efeyan, A., R. Zoncu, and D. M. Sabatini. 2012. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 18:524–533.
Erdaw, M. M., R. A. Perez-Maldonado, and P. A. Iji. 2017. Apparent and standardized ileal nutrient digestibility of broiler diets containing varying levels of raw full-fat soybean and microbial protease. J. Anim. Sci. Technol. 59:1–11.
Erwan, E., A. R. Alimon, A. Q. Sazili, and H. Yaakub. 2008. Effect of varying levels of leucine and energy on performance and carcass characteristics of broiler chickens. Int. J. Poult. Sci. 7:696–699.
Erwan, E., A. R. Alimon, A. Q. Sazili, H. Yaakub, and R. Karim. 2011. Effects of levels of L-leucine supplementation with sub-optimal protein in the diet of grower-finisher broiler chickens on carcass composition and sensory characteristics. Asian Austral. J. Anim. Sci. 24:650–654.
Erwan, E., V. Maslami, E. Chardila, Y. Despika, K. M. N. Harahap, Z. Li, Q. Zhang, and W. Zhao. 2020. Effects of oral administration of encapsulated-leucine on amino acid and plasma metabolite profiles in broiler chicks during the starter phase. Int. J. Poult. Sci. 19:252–256.
Farran, M. T., E. K. Barbour, and V. M. Ashkarian. 2003. Effect of excess leucine in low protein diet on ketosis in 3-week-old male broiler chicks fed different levels of isoleucine and valine. Anim. Feed Sci. Technol. 103:171–176.
Farran, M. T., and O. P. Thomas. 1990. Dietary requirements of leucine, isoleucine, and valine in male broilers during the starter period. Poult. Sci. 69:757–762.
Farran, M. T., and O. P. Thomas. 1992. Valine deficiency.: 2. The effect of feeding a valine-deficient diet during the starter period on performance and leg abnormality of male broiler chicks. Poult. Sci. 71:1885–1890.
Francesch, M., and J. Brufau. 2004. Nutritional factors affecting excreta/litter moisture and quality. Worlds Poult. Sci. J. 60:64–75.
Gallo, R. L., and L. V. Hooper. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12:503–516.
Han, G., Y. Ouchi, T. Hirota, S. Haraguchi, T. Miyazaki, T. Arakawa, N. Masuhara, W. Mizunoya, R. Tatsumi, and K. Tashiro. 2020. Effects of L-leucine in ovo feeding on thermotolerance, growth and amino acid metabolism under heat stress in broilers. Animal 14:1701–1709.
Han, G., H. Yang, M. A. Bahry, P. V. Tran, P. H. Do, H. Ikeda, M. Furuse, and V. S. Chowdhury. 2017. L-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 204:48–56.
Han, G., H. Yang, Y. Wang, S. Haraguchi, T. Miyazaki, T. Bungo, K. Tashiro, M. Furuse, and V. S. Chowdhury. 2019. L-Leucine increases the daily body temperature and affords thermotolerance in broiler chicks. Asian Austral. J. Anim. Sci. 32:842.
Hanafy, A. M., and F. A. M. Attia. 2018. Productive and reproductive responses of breeder Japanese quails to different dietary crude protein and L-Valine levels. Egypt. Poult. Sci. J. 38:735–753.
Hayashi, K., and N. Anzai. 2017. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J. Gastrointest. Oncol. 9:21.
Heinritz, S. N., R. Mosenthin, and E. Weiss. 2013. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr. Res. Rev. 26:191–209.
Hilliar, M., C. Keerqin, C. K. Girish, R. Barekatain, S.-B. Wu, and R. A. Swick. 2020. Reducing protein and supplementing crystalline amino acids, to alter dietary amino acid profiles in birds challenged for subclinical necrotic enteritis. Poult. Sci. 99:2048–2060.
Hou, Y., Y. Yin, and G. Wu. 2015. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. 240:997–1007.
Hy-line 2016. Hy-line brown parent stock management guide. https://www.hyline.com/varieties. Accessed Aug. 2021.
Hy-line 2018. Hy-line brown commercial layers management guide. https://www.hyline.com/varieties. Accessed Aug. 2021.
Hy-line 2019. Hy-line W-80 commercial layers management guide. https://www.hyline.com/varieties. Accessed Aug. 2021.
Hy-line 2020. Hy-line W-36 commercial layers management guide. https://www.hyline.com/varieties. Accessed Aug. 2021.
Imanari, M., M. Kadowaki, and S. Fujimura. 2008. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism. Br. Poult. Sci. 49:299–307.
Jeurissen, S. H., F. Lewis, J. D. van der Klis, Z. Mroz, J. M. Rebel, and A. A. Ter Huurne. 2002. Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Curr. Issues Intestinal Microbiol. 3:1–14.
Jian, H., S. Miao, Y. Liu, H. Li, W. Zhou, X. Wang, X. Dong, and X. Zou. 2021a. Effects of dietary valine levels on production performance, egg quality, antioxidant capacity, immunity, and intestinal amino acid absorption of laying hens during the peak lay period. Animals 11:1972.
Jian, H., S. Miao, Y. Liu, X. Wang, Q. Xu, W. Zhou, H. Li, X. Dong, and X. Zou. 2021b. Dietary valine ameliorated gut health and accelerated the development of nonalcoholic fatty liver disease of laying hens. Oxid. Med. Cell. Longev 2021:4704771.
Kaplan, M., and G. Yildiz. 2017. The effects of dietary supplementation levels of valine on performance and immune system of broiler chickens. J. Agric. Crop. Res. 5:25–31.
Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71–88.
Kidd, M. T., D. J. Burnham, and B. J. Kerr. 2004. Dietary isoleucine responses in male broiler chickens. Br. Poult. Sci. 45:67–75.
Kidd, M. T., B. J. Kerr, J. P. Allard, S. K. Rao, and J. T. Halley. 2000. Limiting amino acid responses in commercial broilers. J. Appl. Poult. Res. 9:223–233.
Kidd, M. T., F. Poernama, T. Wibowo, C. W. Maynard, and S. Y. Liu. 2021. Dietary branched-chain amino acid assessment in broilers from 22 to 35 days of age. J. Anim. Sci. Biotechnol. 12:1–8.
Kita, K., K. R. Ito, M. Sugahara, M. Kobayashi, R. Makino, N. Takahashi, H. Nakahara, K. Takahashi, and M. Nishimukai. 2015. Effect of in ovo administration of branchedchain amino acids on embryo growth and hatching time of chickens. J. Poult. Sci. 52:34–36.
Konashi, S., K. Takahashi, and Y. Akiba. 2000. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Br. J. Nutr. 83:449–456.
Kop-Bozbay, C., A. Akdag, H. Atan, and N. Ocak. 2021. Response of broilers to supplementation of branched-chain amino acids blends with different valine contents in the starter period under summer conditions. Anim. Biosci. 34:295.
Kop-Bozbay, C., and N. Ocak. 2015. Growth, digestive tract and muscle weights in slow-growing broiler is not affected by a blend of branched-chain amino acids injected into different sites of egg. J. Agric. Environ. Sci 4:261–269.
Kop-Bozbay, C., and N. Ocak. 2019. In ovo injection of branchedchain amino acids: embryonic development, hatchability and hatching quality of turkey poults. J. Anim. Physiol. Anim. Nutr. 103:1135–1142.
Kop-Bozbay, C., and N. Ocak. 2020. Posthatch development in response to branched-chain amino acids blend supplementation in the diet for turkey poults subjected to early or delayed feeding. J. Anim. Plant Sci. 30:1098–1105.
Lee, D. T., J. T. Lee, and S. J. Rochell. 2020. Influence of branched chain amino acid inclusion in diets varying in ingredient composition on broiler performance, processing yields, and pododermatitis and litter characteristics. J. Appl. Poult. Res. 29:712–729.
Leeson, S., and J. D. Summers. 2005. Commercial Poultry Nutrition. University Books, Guelph, Ontario, Canada.
Li, P., Y.-L. Yin, D. Li, S. W. Kim, and G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237–252.
Lima, M. B., N. K. Sakomura, E. P. Silva, J. C. P. Dorigam, N. T. Ferreira, E. B. Malheiros, and J. B. K. Fernandes. 2018. The optimal digestible valine, isoleucine and tryptophan intakes of broiler breeder hens for rate of lay. Anim. Feed Sci. Technol. 238:29–38.
Liu, S. Q., L. Y. Wang, G. H. Liu, D. Z. Tang, X. X. Fan, J. P. Zhao, H. C. Jiao, X. J. Wang, S. H. Sun, and H. Lin. 2018. Leucine alters immunoglobulin a secretion and inflammatory cytokine expression induced by lipopolysaccharide via the nuclear factor-kB pathway in intestine of chicken embryos. Animal 12:1903–1911.
Lohmann-breeders 2019. Lohmann brown and Lohmann lsl parent stock management guide. https://lohmann-breeders.com/parentstock/. Accessed Aug. 2021.
Lohmann-breeders 2020. Lohmann brown and Lohmann lsl layers management guide. https://lohmann-breeders.com/parent-stock/. Accessed Aug. 2021.
Ma, N., P. Guo, J. Zhang, T. He, S. W. Kim, G. Zhang, and X. Ma. 2018. Nutrients mediate intestinal bacteria−mucosal immune crosstalk. Front. Immunol. 9:5.
Macelline, S. P., M. Toghyani, P. V. Chrystal, P. H. Selle, and S. Y. Liu. 2021. Amino acid requirements for laying hens: a comprehensive review. Poult. Sci. 100:101036.
Machlin, L. J. 1955. An estimate of the leucine requirement of the laying hen. Poult. Sci. 34:984–985.
Mattick, J. S. A., K. Kamisoglu, M. G. Ierapetritou, I. P. Androulakis, and F. Berthiaume. 2013. Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:449–460.
Maynard, C. W., S. Y. Liu, J. T. Lee, J. Caldas, E. J. Diehl, S. J. Rochell, and M. T. Kidd. 2020. Determining the fourth limiting amino acid in low crude protein diets for male and female Cobb mv£ 500 broilers. Br. Poult. Sci. 61:695–702.
Maynard, C. W., S. Y. Liu, J. T. Lee, J. V. Caldas, J. J. E. Diehl, S. J. Rochell, and M. T. Kidd. 2021. Evaluation of branched-chain amino acids in male Cobb MV£ 500 broiler chickens by using BoxBehnken response surface design. Anim. Feed Sci. Technol. 271:114710.
Miller, E. C., M. L. Sunde, H. R. Bird, and C. A. Elvehjem. 1954. The isoleucine requirement of the laying hen. Poult. Sci. 33:1201–1209.
Miranda, D. J. A., S. L. Vieira, C. R. Angel, H. V. Rios, A. Favero, and E. T. Nogueira. 2014. Broiler responses to feeds formulated with or without minimum crude protein restrictions and using supplementall-valine andl-isoleucine. J. Appl. Poult. Res. 23:691–704.
Miranda, D. J. A., S. L. Vieira, A. Favero, C. R. Angel, C. Stefanello, and E. T. Nogueira. 2015. Performance and meat production of broiler chickens fed diets formulated at different crude protein levels supplemented or not with L-valine and L-isoleucine. Anim. Feed Sci. Technol. 206:39–47.
Monirujjaman, M., and A. Ferdouse. 2014. Metabolic and physiological roles of branched-chain amino acids. Adv. Mol. Biol. 2014:364976.
Nascimento, G. R., A. E. Murakami, I. C. Ospina-Rojas, M. Diaz-Vargas, K. P. Picoli, and R. G. Garcia. 2016. Digestible valine requirements in low-protein diets for broilers chicks. Braz. J. Poult. Sci. 18:381–386.
Nie, C., T. He, W. Zhang, G. Zhang, and X. Ma. 2018. Branched chain amino acids: beyond nutrition metabolism. Int. J. Mol. Sci. 19:954.
NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Research Council, National Academy Press, Washington, DC.
Ojano-Dirain, C. P., and P. W. Waldroup. 2002. Evaluation of lysine, methionine and threonine needs of broilers three to six week of age under moderate temperature stress. Int. J. Poult. Sci. 1:16–21.
Ospina-Rojas, I. C., A. E. Murakami, C. R. A. Duarte, C. Eyng, C. A. L. Oliveira, and V. Janeiro. 2014. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. Br. Poult. Sci. 55:766–773.
Ospina-Rojas, I. C., A. E. Murakami, C. R. A. Duarte, G. R. Nascimento, E. R. M. Garcia, M. I. Sakamoto, and R. V. Nunes. 2017. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poult. Sci. 96:914–922.
Ospina-Rojas, I. C., P. C. Pozza, R. J. B. Rodrigueiro, E. Gasparino, A. S. Khatlab, and A. E. Murakami. 2020. High leucine levels affecting valine and isoleucine recommendations in low-protein diets for broiler chickens. Poult. Sci. 99:5946–5959.
Pan, D., and Z. Yu. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5:108–119.
Parenteau, I. A., M. Stevenson, and E. G. Kiarie. 2020. Egg production and quality responses to increasing isoleucine supplementation in Shaver white hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age. Poult. Sci. 99:1444–1453.
Park, B. C., and R. E. Austic. 2000. Isoleucine imbalance using selected mixtures of imbalancing amino acids in diets of the broiler chick. Poult. Sci. 79:1782–1789.
Parker, J., E. O. Oviedo-Rondon, B. A. Clack, S. Clemente-Hernandez, J. Osborne, J. C. Remus, H. Kettunen, H. M€akivuokko, and E. M. Pierson. 2007. Enzymes as feed additive to aid in responses against Eimeria species in coccidia-vaccinated broilers fed corn-soybean meal diets with different protein levels. Poult. Sci. 86:643–653.
Pastor, A., C. Wecke, and F. Liebert. 2013. Assessing the age-dependent optimal dietary branched-chain amino acid ratio in growing chicken by application of a nonlinear modeling procedure. Poult. Sci. 92:3184–3195.
Peganova, S., and K. Eder. 2002. Studies on requirement and excess of isoleucine in laying hens. Poult. Sci. 81:1714–1721.
Peganova, S., and K. Eder. 2003. Interactions of various supplies of soleucine, valine, leucine and tryptophan on the performance of laying hens. Poult. Sci. 82:100–105.
Prado-Rebolledo, O. F., J.d. J. Delgado-Machuca, R. J. Macedo-Barragan, L. J. Garcia-Marquez, J. E. Morales-Barrera, J. D. Latorre, X. Hernandez-Velasco, and G. Tellez. 2017. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Avian Pathol 46:90–94.
Prates, J. A. M., J. P. Freire, A. M. de Almeida, C. Martins, D. M. Ribeiro, H. Osorio, M. A. S. Pinho, P. A. Lopes, J. M. J. Correia, and R. Pinto. 2021. Influence of dietary supplementation with an amino acid mixture on inflammatory markers, immune status and serum proteome in lps-challenged weaned piglets. Animals 11:1143.
Ren, M., S. Zhang, X. Liu, S. Li, X. Mao, X. Zeng, and S. Qiao. 2016. Different lipopolysaccharide branched-chain amino acids modulate porcine intestinal endogenous b-defensin expression through the Sirt1/ERK/90RSK pathway. J. Agric. Food Chem. 64:3371–3379.
Ren, M., S. H. Zhang, X. F. Zeng, H. Liu, and S. Y. Qiao. 2015. Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian Austral. J. Anim. Sci. 28:1742.
Rochell, S. J., C. M. Parsons, and R. N. Dilger. 2016. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and a1-acid glycoprotein in broilers. Poult. Sci. 95:1573–1581.
Sakomura, N. K., R. D. Ekmay, S. J. Mei, and C. N. Coon. 2015. Lysine, methionine, phenylalanine, arginine, valine, isoleucine, leucine, and threonine maintenance requirements of broiler breeders. Poult. Sci. 94:2715–2721.
Sartori, T., A. C. A. Santos, R. O. da Silva, G. Kodja, M. M. Rogero, P. Borelli, and R. A. Fock. 2020. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor kappa B expression and modulating some inflammatory properties. Nutrition 78:110935.
Shepherd, E. M., and B. D. Fairchild. 2010. Footpad dermatitis in poultry. Poult. Sci. 89:2043–2051.
Singh, A. K., and W. K. Kim. 2021. Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities. Animals 11:181.
Singh, A. K., R. K. Mandal, M. R. Bedford, and R. Jha. 2021a. Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim. Feed Sci. Technol. 277:114956.
Singh, A. K., B. Mishra, M. R. Bedford, and R. Jha. 2021b. Effect of supplemental xylanase and xylooligosaccharides on production performance and gut health variables of broiler chickens. J. Anim. Sci. Biotechnol 12:1–15.
Singh, A. K., U. P. Tiwari, J. D. Berrocoso, Y. Dersjant-Li, A. Awati, and R. Jha. 2019. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers. Poult. Sci. 98:5571–5581.
Smith, T. K., and R. E. Austic. 1978. The branched-chain amino acid antagonism in chicks. J. Nutr. 108:1180–1191.
Smith, E. A., and G. T. Macfarlane. 1998. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol. Ecol. 25:355–368.
Spring, S., H. Premathilake, C. Bradway, C. Shili, U. DeSilva, S. Carter, and A. Pezeshki. 2020. Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Sci. Rep. 10:1–16.
Sun, Y., Z. Wu, W. Li, C. Zhang, K. Sun, Y. Ji, B. Wang, N. Jiao, B. He, and W. Wang. 2015. Dietary L-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 47:1517–1525.
Suryawan, A., H. V. Nguyen, R. D. Almonaci, and T. A. Davis. 2013. Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 45:523–530.
Tavernari, F.d. C., G. R. Lelis, P. R.d. O. Carneiro, R. A. Vieira, R. C. Polveiro, J. A. P. Luengas, H. S. Rostagno, and L. F. T. Albino. 2012. Effect of different digestible isoleucine/lysine ratios for broiler chickens. Rev. Bras. Zootec. 41:1699–1705.
Teng, P.-Y., J. Choi, Y. Tompkins, H. Lillehoj, and W. Kim. 2021. Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Vet. Res. 52:1–12.
Thornton, S. A., A. Corzo, G. Pharr, W. A. Dozier Iii, D. M. Miles, and M. T. Kidd. 2006. Valine requirements for immune and growth responses in broilers from 3 to 6 weeks of age. Br. Poult. Sci. 47:190–199.
Timmler, R., and M. Rodehutscord. 2003. Dose-response relationships for valine in the growing White Pekin duck. Poult. Sci. 82:1755–1762.
Turnbaugh, P. J., V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight, and J. I. Gordon. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1 6ra14-16ra14.
van der Wielen, P. W. J. J., G. M. L. L. Rovers, J. M. A. Scheepens, and S. Biesterveld. 2002. Clostridium lactatifermentans sp. nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken. Int. J. Syst. Evol. Microbiol. 52:921–925.
Viana, G. S., S. L. T. Barreto, J. C. L. Muniz, P. R. Arnaut, L. C. Santana, W. J. Alves, M. I. Hannas, and T. Tizziani. 2017. Optimum dietary standardized ileal digestible isoleucine to lysine ratio for meat-type quails in the growing-finishing phase. Braz. J. Poult. Sci. 19:417–420.
Waldroup, P. W., J. H. Kersey, and C. A. Fritts. 2002. Influence of branched-chain amino acid balance in broiler diets. Int. J. Poult. Sci 1:136–144.
Wang, M., C. Yang, Q. Wang, J. Li, P. Huang, Y. Li, X. Ding, H. Yang, and Y. Yin. 2020. The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. J. Anim. Physiol. Anim. Nutr. 104:606–615.
Wesney, E., and G. W. Tannock. 1979. Association of rat, pig, and fowl biotypes of lactobacilli with the stomach of gnotobiotic mice. Microb. Ecol. 5:35–42.
Wu, G. 2010. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 1:31–37.
Yin, J., J. Ma, Y. Li, X. Ma, J. Chen, H. Zhang, X. Wu, F. Li, Z. Liu, and T. Li. 2020. Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model. Food Funct 11:1304–1311.
Yudkoff, M. 2017. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem. Res. 42:10–18.
Zeitz, J. O., S.-C. K€ading, I. R. Niewalda, V. Machander, J. C. de Paula Dorigam, and K. Eder. 2019. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch. Anim. Nutr. 73:75–87.
Zhang, C., S. Jiao, Z. A. Wang, and Y. Du. 2018. Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Front. Microbiol. 9:2388.
Zhang, S., S. Qiao, M. Ren, X. Zeng, X. Ma, Z. Wu, P. Thacker, and G. Wu. 2013. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191– 1205.
Zhou, H., B. Yu, J. Gao, J. K. Htoo, and D. Chen. 2018. Regulation of intestinal health by branched-chain amino acids. Anim. Sci. J. 89:3–11.