Simple Summary: Coccidiosis has been documented to adversely affect the bone quality of broilers. While the influence of minerals and vitamins on bone development has been studied, the impact of methionine supplementation on the bone health of broilers facing coccidia challenge remains inadequately explored. This study aimed to provide insights into the effects of varying dietary methionine levels in normal or reduced protein diets on the bone quality of broilers challenged with coccidia, utilizing X-ray scanning techniques. Interestingly, our results showed that increased methionine levels were associated with decreased whole body bone mineral content and density. In the femur bone, higher methionine levels were associated with decreased cortical bone quality, while they improved trabecular bone quality in birds fed reduced protein diets. Overall, this study sheds light on the complex interplay between dietary methionine levels, protein content, and coccidiosis challenge on broiler bone health, providing information to improve the bone health and welfare of birds under coccidia challenge through nutritional interventions.
Abstract: This study investigated the effects of dietary methionine (Met) levels on the bone quality of broilers challenged with coccidia. A total of 600 fourteen-day-old male Cobb500 broilers were gavaged with mixed Eimeria spp. and randomly allocated into 10 treatment groups by a 2 × 5 factorial arrangement. Birds received normal protein diets (NCP) or reduced-protein diets (LCP), containing 2.8, 4.4, 6.0, 7.6, and 9.2 g/kg of Met. Data were analyzed via two-way ANOVA and orthogonal polynomial contrast. At 9 days post-inoculation (DPI), whole body bone mineral density (BMD) and bone mineral content (BMC) linearly decreased as Met levels increased (p < 0.05). For the femoral metaphysis bone quality at 9 DPI, BMD linearly decreased, and porosity linearly increased as Met levels increased (p < 0.05) in the cortical bone. The increased Met levels linearly improved trabecular bone quality in LCP groups (p < 0.05) while not in NCP groups. For the femoral diaphysis cortical bone at 6 DPI, LCP groups had higher BMD and BMC than NCP groups (p < 0.05). Bone volume linearly increased as Met levels increased in LCP groups (p < 0.05) while not in NCP groups. In summary, the results suggested that increased Met levels decreased the cortical bone quality. However, in the context of reduced-protein diets, the increased Met levels improved trabecular bone quality.
Keywords: methionine; broiler; coccidiosis; bone health; DEXA; micro-CT
1. Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [CrossRef]
2. Liu, G.; Ajao, A.M.; Shanmugasundaram, R.; Taylor, J.; Ball, E.; Applegate, T.J.; Selvaraj, R.; Kyriazakis, I.; Olukosi, O.A.; Kim, W.K. The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poult. Sci. 2023, 102, 102773. [CrossRef]
3. Teng, P.-Y.; Liu, G.; Choi, J.; Yadav, S.; Wei, F.; Kim, W.K. Effects of levels of methionine supplementations in forms of L- or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult. Sci. 2023, 102, 102586. [CrossRef]
4. Sharma, M.K.; Liu, G.; White, D.L.; Kim, W.K. Graded levels of Eimeria infection linearly reduced the growth performance, altered the intestinal health, and delayed the onset of egg production of Hy-Line W-36 laying hens when infected at the prelay stage. Poult. Sci. 2024, 103, 103174. [CrossRef]
5. Taylor, J.; Sakkas, P.; Kyriazakis, I. Starving for nutrients: Anorexia during infection with parasites in broilers is affected by diet composition. Poult. Sci. 2022, 101, 101535. [CrossRef] [PubMed]
6. Sakkas, P.; Oikeh, I.; Blake, D.P.; Smith, S.; Kyriazakis, I. Dietary vitamin D improves performance and bone mineralisation, but increases parasite replication and compromises gut health in Eimeria-infected broilers. Br. J. Nutr. 2019, 122, 676–688. [CrossRef]
7. Tompkins, Y.H.; Choi, J.; Teng, P.-Y.; Yamada, M.; Sugiyama, T.; Kim, W.K. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci. Rep. 2023, 13, 616. [CrossRef] [PubMed]
8. Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [CrossRef]
9. Cervantes, H.; McDougald, L. Raising broiler chickens without ionophore anticoccidials. J. Appl. Poult. Res. 2023, 32, 100347. [CrossRef]
10. Abbas, R.Z.; Iqbal, Z.; Khan, A.; Sindhu, Z.-U.-D.; Khan, J.A.; Khan, M.N.; Raza, A. Options for integrated strategies for the control of avian coccidiosis. Int. J. Agric. Biol. 2012, 14, 1014–1020.
11. Dozier, W.; Kidd, M.T.; Corzo, A. Dietary Amino Acid Responses of Broiler Chickens1. J. Appl. Poult. Res. 2008, 17, 157–167. [CrossRef]
12. Liu, G.; Sharma, M.K.; Tompkins, Y.H.; Teng, P.-Y.; Kim, W.K. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult. Sci. 2024, 103, 103300. [CrossRef]
13. Castro, F.L.S.; Teng, P.Y.; Yadav, S.; Gould, R.L.; Craig, S.; Pazdro, R.; Kim, W.K. The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poult. Sci. 2020, 99, 5844–5857. [CrossRef] [PubMed]
14. Khatlab, A.d.S.; Del Vesco, A.P.; de Oliveira Neto, A.R.; Fernandes, R.P.M.; Gasparino, E. Dietary supplementation with free methionine or methionine dipeptide mitigates intestinal oxidative stress induced by Eimeria spp. challenge in broiler chickens. J. Anim. Sci. Biotechnol. 2019, 10, 58. [CrossRef] [PubMed]
15. Liu, G.; Kim, W.K. The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Animals 2023, 13, 2949. [CrossRef]
16. Lee, J.T.; Rochell, S.J.; Kriseldi, R.; Kim, W.K.; Mitchell, R.D. Functional properties of amino acids: Improve health status and sustainability. Poult. Sci. 2023, 102, 102288. [CrossRef] [PubMed]
17. Teng, P.-Y.; Choi, J.; Yadav, S.; Tompkins, Y.H.; Kim, W.K. Effects of low-crude protein diets supplemented with arginine, glutamine, threonine, and methionine on regulating nutrient absorption, intestinal health, and growth performance of Eimeria-infected chickens. Poult. Sci. 2021, 100, 101427. [CrossRef] [PubMed]
18. Lugata, J.K.; Ortega, A.D.S.V.; Szabó, C. The Role of Methionine Supplementation on Oxidative Stress and Antioxidant Status of Poultry-A Review. Agriculture 2022, 12, 1701. [CrossRef]
19. Tompkins, Y.H.; Liu, G.; Kim, W.K. Impact of exogenous hydrogen peroxide on osteogenic differentiation of broiler chicken compact bones derived mesenchymal stem cells. Front. Physiol. 2023, 14, 1124355. [CrossRef] [PubMed]
20. Tompkins, Y.; Teng, P.; Pazdro, R.; Kim, W. Long bone mineral loss, bone microstructural changes and oxidative stress after Eimeria challenge in broilers. Front. Physiol. 2022, 13, 945740. [CrossRef]
21. Sinclair, L.V.; Howden, A.J.M.; Brenes, A.; Spinelli, L.; Hukelmann, J.L.; Macintyre, A.N.; Liu, X.; Thomson, S.; Taylor, P.M.; Rathmell, J.C.; et al. Antigen receptor control of methionine metabolism in T cells. eLife 2019, 8, e44210. [CrossRef]
22. Elias, R.J.; McClements, D.J.; Decker, E.A. Antioxidant Activity of Cysteine, Tryptophan, and Methionine Residues in Continuous Phase β-Lactoglobulin in Oil-in-Water Emulsions. J. Agric. Food Chem. 2005, 53, 10248–10253. [CrossRef]
23. Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [CrossRef] [PubMed]
24. Castro, F.L.S.; Kim, Y.; Xu, H.; Kim, W.K. The effect of total sulfur amino acid levels on growth performance and bone metabolism in pullets under heat stress. Poult. Sci. 2020, 99, 5783–5791. [CrossRef] [PubMed]
25. Liu, S.Y.; Macelline, S.P.; Chrystal, P.V.; Selle, P.H. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J. Anim. Sci. Biotechnol. 2021, 12, 20. [CrossRef] [PubMed]
26. Barekatain, R.; Chalvon-Demersay, T.; McLaughlan, C.; Lambert, W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals 2021, 11, 2416. [CrossRef]
27. Attia, Y.A.; Al-Harthi, M.A.; Shafi, M.E.; Abdulsalam, N.M.; Nagadi, S.A.; Wang, J.; Kim, W.K. Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life. Life 2022, 12, 2100. [CrossRef]
28. Attia, Y.A.; Bovera, F.; Wang, J.; Al-Harthi, M.A.; Kim, W.K. Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals 2020, 10, 973. [CrossRef]
29. Lambert, W.; Berrocoso, J.D.; Swart, B.; van Tol, M.; Bruininx, E.; Willems, E. Reducing dietary crude protein in broiler diets positively affects litter quality without compromising growth performance whereas a reduction in dietary electrolyte balance further improves litter quality but worsens feed efficiency. Anim. Feed. Sci. Technol. 2023, 297, 115571. [CrossRef]
30. Cobb-Vantress. Cobb500 Broiler Performance & Nutrition Supplement. 2018. Available online: https://www.cobb-vantress.com/ assets/5a88f2e793/Broiler-Performance-Nutrition-Supplement.pdf (accessed on 23 February 2023).
31. Cobb-Vantress. Cobb Broiler Management Guide. 2018. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/ 045bdc8f45/Broiler-Guide-2021-min.pdf (accessed on 23 February 2023).
32. Wang, J.; Patterson, R.; Kim, W. Effects of phytase and multicarbohydrase on growth performance, bone mineralization, and nutrient digestibility in broilers fed a nutritionally reduced diet. J. Appl. Poult. Res. 2021, 30, 100146. [CrossRef]
33. Chen, C.; Kim, W. The application of micro-CT in egg-laying hen bone analysis: Introducing an automated bone separation algorithm. Poult. Sci. 2020, 99, 5175–5183. [CrossRef]
34. Sharma, M.K.; Liu, G.; White, D.L.; Tompkins, Y.H.; Kim, W.K. Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age). Poult. Sci. 2023, 102, 102888. [CrossRef]
35. Cooper, D.M.L.; Kawalilak, C.E.; Harrison, K.; Johnston, B.D.; Johnston, J.D. Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? Curr. Osteoporos. Rep. 2016, 14, 187–198. [CrossRef]
36. Xiong, Y.; He, T.; Wang, Y.; Liu, W.V.; Hu, S.; Zhang, Y.; Wen, D.; Hou, B.; Li, Y.; Zhang, P.; et al. CKD Stages, Bone Metabolism Markers, and Cortical Porosity Index: Associations and Mediation Effects Analysis. Front. Endocrinol. 2021, 12, 775066. [CrossRef]
37. Sanchez-Rodriguez, E.; Benavides-Reyes, C.; Torres, C.; Dominguez-Gasca, N.; Garcia-Ruiz, A.I.; Gonzalez-Lopez, S.; RodriguezNavarro, A.B. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult. Sci. 2019, 98, 5215–5225. [CrossRef]
38. Norman, T.L.; Little, T.M.; Yeni, Y.N. Age-related changes in porosity and mineralization and in-service damage accumulation. J. Biomech. 2008, 41, 2868–2873. [CrossRef]
39. Ditscheid, B.; Fünfstück, R.; Busch, M.; Schubert, R.; Gerth, J.; Jahreis, G. Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: A placebo-controlled double-blind cross-over study. Eur. J. Clin. Nutr. 2005, 59, 768–775. [CrossRef]
40. Xie, M.; Hou, S.S.; Huang, W.; Fan, H.P. Effect of Excess Methionine and Methionine Hydroxy Analogue on Growth Performance and Plasma Homocysteine of Growing Pekin Ducks. Poult. Sci. 2007, 86, 1995–1999. [CrossRef]
41. Yang, Z.; Yang, Y.; Yang, J.; Wan, X.; Yang, H.; Wang, Z. Hyperhomocysteinemia Induced by Methionine Excess Is Effectively Suppressed by Betaine in Geese. Animals 2020, 10, 1642. [CrossRef]
42. Herrmann, M.; Wildemann, B.; Claes, L.; Klohs, S.; Ohnmacht, M.; Taban-Shomal, O.; Hübner, U.; Pexa, A.; Umanskaya, N.; Herrmann, W. Experimental Hyperhomocysteinemia Reduces Bone Quality in Rats. Clin. Chem. 2007, 53, 1455–1461. [CrossRef]
43. Herrmann, M.; Widmann, T.; Herrmann, W. Homocysteine—A newly recognised risk factor for osteoporosis. Clin. Chem. Lab. Med. (CCLM) 2005, 43, 1111–1117. [CrossRef]
44. Behera, J.; Bala, J.; Nuru, M.; Tyagi, S.C.; Tyagi, N. Homocysteine as a Pathological Biomarker for Bone Disease. J. Cell Physiol. 2017, 232, 2704–2709. [CrossRef]
45. Fratoni, V.; Brandi, M.L. B vitamins, homocysteine and bone health. Nutrients 2015, 7, 2176–2192. [CrossRef]
46. Devignes, C.-S.; Carmeliet, G.; Stegen, S. Amino acid metabolism in skeletal cells. Bone Rep. 2022, 17, 101620. [CrossRef]
47. Lorenzo, J.; Horowitz, M.; Choi, Y. Osteoimmunology: Interactions of the bone and immune system. Endocr. Rev. 2008, 29, 403–440. [CrossRef]
48. Prisby, R.D. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J. Endocrinol. 2017, 235, R77–R100. [CrossRef]
49. Mori, G.; D’Amelio, P.; Faccio, R.; Brunetti, G. The Interplay between the bone and the immune system. Clin. Dev. Immunol. 2013, 2013, 720504. [CrossRef]
50. Fang, C.C.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Kuang, S.Y.; Tang, L.; Liu, X.A.; Zhou, X.Q. Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp (Ctenopharyngodon idella). Br. J. Nutr. 2021, 126, 321–336. [CrossRef]
51. Barzel, U.S.; Massey, L.K. Excess dietary protein can adversely affect bone. J. Nutr. 1998, 128, 1051–1053. [CrossRef]
52. Heaney, R.P.; Layman, D.K. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 2008, 87, 1567S–1570S. [CrossRef]
53. Cao, J.J. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health. Curr. Osteoporos. Rep. 2017, 15, 571–576. [CrossRef]
54. Maurer, M.; Riesen, W.; Muser, J.; Hulter, H.N.; Krapf, R. Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am. J. Physiol. -Renal. Physiol. 2003, 284, F32–F40. [CrossRef]
55. Krieger, N.S.; Frick, K.K.; Bushinsky, D.A. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens. 2004, 13, 423–436. [CrossRef]
56. Sukumar, D.; Ambia-Sobhan, H.; Zurfluh, R.; Schlussel, Y.; Stahl, T.J.; Gordon, C.L.; Shapses, S.A. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: A randomized, controlled trial. J. Bone Miner. Res. 2011, 26, 1339–1348. [CrossRef]
57. Cao, J.J.; Pasiakos, S.M.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Young, A.J.; Combs, G.F., Jr. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 400–407. [CrossRef]