Dietary fibers (DF) contain an abundant amount of energy, although the mammalian genome does not encode most of the enzymes required to degrade them. However, a mutual dependence is developed between the host and symbiotic microbes, which has the potential to extract the energy present in these DF. Dietary fibers escape digestion in the foregut and are fermented in the hindgut, producing short-chain fatty acids (SCFA) that alter the microbial ecology in the gastrointestinal tract (GIT) of pigs. Most of the carbohydrates are fermented in the proximal part, allowing protein fermentation in the distal part, resulting in colonic diseases. The structures of resistant starch (RS), arabinoxylan (AX), and b-glucan (bG) are complex; hence, makes their way into the hindgut where these are fermented and provide energy substrates for the colonic epithelial cells. Different microbes have different preferences of binding to different substrates. The RS, AX and bG act as a unique substrate for the microbes and modify the relative composition of the gut microbial community. The granule dimension and surface area of each substrate are different, which influences the penetration capacity of microbes. Arabinose and xylan are 2 different hemicelluloses, but arabinose is substituted on the xylan backbone and occurs in the form of AX. Fermentation of xylan produces butyrate primarily in the small intestine, whereas arabinose produces butyrate in the large intestine. Types of RS and forms of bG also exert beneficial effects by producing different metabolites and modulating the intestinal microbiota. Therefore, it is important to have information of different types of RS, AX and bG and their roles in microbial modulation to get the optimum benefits of fiber fermentation in the gut. This review provides relevant information on the similarities and differences that exist in the way RS, AX, and bG are fermented, and their positive and negative effects on SCFA production and gut microbial ecology of pigs. These insights will help nutritionists to develop dietary strategies that can modulate specific SCFA production and promote beneficial microbiota in the GIT of swine.
Keywords: Butyrate, Fermentation, Gut ecology, Microbiota, Short-chain fatty acids, Swine.
Aminov RI, Walker AW, Duncan SH, Harmsen HJM, Welling GW, Flint HJ. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridiza-tion of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 2006;72:6371e6.
Amrein TM, Gr€anicher P, Arrigoni E, Amado R. In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. Food Sci Technol 2003;36: 451e60.
Bach Knudsen KE. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr Int Rev J 2015;6: 206e13.
Bach Knudsen KE, Canibe N. Breakdown of plant carbohydrates in the digestive tract of pigs fed on wheat- or oat-based rolls. J Sci Food Agric 2000;80:1253e61.
Bach Knudsen KE, Lærke HN. Review: rye arabinoxylans: molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract. Cereal Chem 2010;87:353e62.
Bach Knudsen KE, Jensen BB, Hansen I. Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets con-sisting of oat fractions rich in beta -D-glucan. Br J Nutr 1993;70:537e56.
Bach Knudsen KE, Nørskov NP, Bolvig AK, Hedemann MS, Lærke HN. Dietary fibers and associated phytochemicals in cereals. Mol Nutr Food Res 2017;61:1e15.
Barron C, Surget A, Rouau X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 2007;45:88e96.
Beckmann L, Simon O, Vahjen W. Isolation and identification of mixed linked b-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective b-glucanase activities. J Basic Microbiol 2006;46: 175e85.
Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006;72:3593e9.
Belobrajdic DP, Bird AR, Conlon M, Williams B, Kang S, McSweeney CS, Zhang D, Bryden WL, Gidley MJ, Topping DL. An arabinoxylan-rich fraction from wheat enhances caecal fermentation and protects colonocyte DNA against diet-induced damage in pigs. Br J Nutr 2012;107:1274e82.
Bergstrom KSB, Guttman JA, Rumi M, Ma C, Bouzari S, Khan MA, Gibson DL, Vogl AW, Vallance BA. Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 2008;76:796e811.
Biliaderis CG. The structure and interactions of starch with food constituents. Can J Physiol Pharmacol 1991;69:60e78.
Bindelle J, Pieper R, Montoya C, Van Kessel AG, Leterme P. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microbiol Ecol 2011;76: 553e63.
Bird AR, Brown IL, Topping DL. Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 2000;1:25e37.
Bird AR, Vuaran M, Brown I, Topping DL. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Br J Nutr 2007;97:134e44.
Birt DF, Boylston T, Hendrich S, Jane J-L, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP, Whitley EM. Resistant starch: promise for improving human health. Adv Nutr Int Rev J 2013;4:587e601.
Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. The propanediol uti-lization (pdu) operon of Salmonella enterica serovar LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999;181:5967e75.
Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013;14:676e84.
Brouns F, Kettlitz B, Arrigoni E. Resistant starch and “the butyrate revolution. Trends Food Sci Technol 2002;13:251e61.
Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 2001;81:653e60.
Che L, Chen H, Yu B, He J, Zheng P, Mao X, Yu J, Huang Z, Chen D. Long-term intake of pea fiber affects colonic barrier function, bacterial and transcriptional profile in pig model. Nutr Canc 2014;66:388e99.
Chen H, Wang W, Degroote J, Possemiers S, Chen D, De Smet S, Michiels J. Arabi-noxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. J Nutr 2015;145:51e8.
Choct M. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling Int 1997:13e26.
Courtin CM, Swennen K, Broekaert WF, Swennen Q, Buyse J, Decuypere E, Michiels CW, De Ketelaere B, Delcour JA. Effects of dietary inclusion of xyloo-ligo- saccharides, arabinoxylooligosaccha- rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. J Sci Food Agric 2008;88:2517e22.
Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerstrom€ R, Matt€o€ J, Saarela M, Mattila-Sandholm T, Poutanen K. In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 2002;82: 781e9.
Cuff M, Dyer J, Jones M, Shirazi-Beechey S. The human colonic monocarboxylate transporter Isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterol 2005;128:676e86.
Diez-Gonzalez F, Bond DR, Jennings E, Russell JB. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utili-zation, lactate production, and phylogeny. Arch Microbiol 1999;171:324e30.
Dock-Nascimento DB, Junqueira K, de Aguilar-Nascimento JE. Rapid restoration of colonic goblet cells induced by a hydrolyzed diet containing probiotics in experimental malnutrition. Acta Cir Bras 2007;22:72e6.
Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004;91: 915e23.
Duss R, Nyberg L. Oat soluble fibers (b-glucans) as a source for healthy snack and breakfast foods. Cereal Foods World 2004;49:320e5.
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Sci-ence 2005;308:1635e8.
Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou Hachem M. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifi-dobacterium animalis subsp. lactisBl-04. Mol Microbiol 2013;90:1100e12.
Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutri-tionally important starch fractions. Eur J Clin Nutr 1992;46(Suppl 2):S33e50.
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microb 2012;3:289e306.
Fouhse JM, Zijlstra RT, Willing BP. The role of gut microbiota in the health and disease of pigs. Anim Front Rev Mag Anim Agric 2016;6:30e6.
Garry BP, Fogarty M, Curran TP, O'Connell MJ, O'Doherty JV. The effect of cereal type and enzyme addition on pig performance, intestinal microflora, and ammonia and odour emissions. Animal 2007;1:751e7.
Gaskins HR. In: Lewis AJ, Southern LL, editors. Intestinal bacteria and their influence on swine growth. Boca Raton, FL, USA: CRC Press; 2001.
Giuberti G, Gallo A, Moschini M, Masoero F. New insight into the role of resistant starch in pig nutrition. Anim Feed Sci Technol 2015;201:1e13.
Haenen D, Zhang J, Souza C, Bosch G, Van Der Meer IM, Van Arkel J, Van Den Borne JJGC, Odette P, Smidt H, Kemp B, Hooiveld GJEJ. A Diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013;143:274e83.
Hino T, Kuroda S. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl Environ Microbiol 1993;59:255e9.
Hogberg€ A, Lindberg JE, Westerlund E, Andersson R, Pettersson D, Gibson GR, Isolauri E, Moreau M-C, Roberfroid M, Rowland I. The effect of level and type of cereal non-starch polysaccharides on the performance, nutrient utilization and gut environment of pigs around weaning. Anim Feed Sci Technol 2006;127: 200e19.
Hoije€ A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P. Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 2008;9: 2042e7.
Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA. In vitro fermentation of oat and barley derived b-glucans by human faecal microbiota. FEMS Microbiol Ecol 2008;64:482e93.
Ingerslev AK, Theil PK, Hedemann MS, Lærke HN. Resistant starch and arabinoxylan augment SCFA absorption but affect postprandial glucose and insulin responses differently. Br J Nutr 2014;111:1564e76.
Inman CF, Haverson K, Konstantinov SR, Jones PH, Harris C, Smidt H, Miller B, Bailey M, Stokes C. Rearing environment affects development of the immune system in neonates. Clin Exp Immunol 2010;160:431e9.
Ivarsson E, Roos S, Liu HY, Lindberg JE. Fermentable non-starch polysaccharides increases the abundance of BacteroidesePrevotellaePorphyromonas in ileal microbial community of growing pigs. Animal 2014;8:1777e87.
Izydorczyk MS, Dexter JE. Barley b -glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products e a Review. Food Res Int 2008;41:850e68.
Jacobasch G, Dongowski G, Schmiedl D, Müller-Schmehl K. Hydrothermal treatment of Novelose results in high yield of resistant starch type 3 with beneficial prebiotic properties and decreased secondary bile acid formation in rats. Br J Nutr 2006;95:1063e74.
Janssen PH. Growth yield increase and ATP formation linked to succinate decar-boxylation in Veillonella parvula. Arch Microbiol 1992;157:442e5.
Jensen BB, Jorgensen H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol 1994;60:1897e904.
Jha R, Berrocoso JD. Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015;9:1441e52.
Jha R, Berrocoso JFD. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: a review. Anim Feed Sci Technol 2016;212:18e26.
Jha R, Leterme P. Feed ingredients differing in fermentable fiber and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 2012;6:603e11.
Jha R, Rossnagel B, Pieper R, Van Kessel A, Leterme P. Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal 2010a;4:724e31.
Jha R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P. In vitro fermentation char-acteristics for pigs of hulless barleys differing in b-glucan content. Livest Sci 2010b;133:141e3.
Jha R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P. In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim Feed Sci Technol 2011a;163:185e93.
Jha R, Bindelle J, Van Kessel A, Leterme P. In vitro fiber fermentation of feed in-gredients with varying fermentable carbohydrate and protein levels and pro-tein synthesis by colonic bacteria isolated from pigs. Anim Feed Sci Technol 2011b;165:191e200.
Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. Dietary fiber and intestinal health of monogastric animals. In: Kim SW, Jha R, editors. Nutritional intervention for the intestinal health of young monogastric animals. Frontiers in Veterinary Science; 2019. 6:48.
Jonathan MC, Van Den Borne JJGC, Van Wiechen P, Souza C, Schols HA, Gruppen H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem 2012;133:889e97.
Kawamata K, Hayashi H, Suzuki Y. Propionate absorption associated with bicar-bonate secretion in vitro in the mouse cecum. Pflügers Archiv e Eur J Physiol 2007;454:253e62.
Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 2006;8:1191e9.
Lambo AM, Oste R, Nyman MEG-L. Dietary fibre in fermented oat and barley b-glucan rich concentrates. Food Chem 2005;89:283e93.
Lawley TD, Walker AW. Intestinal colonization resistance. Immunology 2013;138: 1e11.
Lehmann U, Robin F. Slowly digestible starch e its structure and health implica-tions: a review. Trends Food Sci Technol 2007;18:346e55.
Leng RA, Leonard GJ. Measurement of the rates of production of acetic, propionic and butyric acids in the rumen of sheep. Br J Nutr 1965;19:469e84.
Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J Agric Food Chem 2008;56:5415e21.
Leterme P, Souffrant W-B, Thewis A. Effect of barley fibres and barley intake on the ileal endogenous nitrogen losses in piglets. J Cereal Sci 2000;31:229e39.
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1e8.
Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2007;102:1197e208.
Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62:67e72.
Mach N, Berri M, Estelle J, Levenez F, Lemonnier G, Denis C, Leplat J-J, Chevaleyre C, Billon Y, Dore J, Rogel-Gaillard C, Lepage P. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 2015;7: 554e69.
Marsono Y, Illman RJ, Clarke JM, Trimble RP, Topping DL. Plasma lipids and large bowel volatile fatty acids in pigs fed on white rice, brown rice and rice bran. Br J Nutr 1993;70:503e13.
Mårtensson O, Biorklund€ M, Lambo AM, Duenas~-Chasco M, Irastorza A, Holst O, Norin E, Welling G, Oste R, Onning G. Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans. Nutr Res 2005;25:429e42.
Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010;5:1e11.
Mendis M, Simsek S. Production of structurally diverse wheat arabinoxylan hy-drolyzates using combinations of xylanase and arabinofuranosidase. Carbohydr Polym 2015;132:452e9.
Metzler-Zebeli BU, Schmitz-Esser S, Mann E, Grüll D, Molnar T. Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch Type 4. Appl Environ Microbiol 2015;81:8489e99.
Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Bera-Maillet C. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 2010;109:451e60.
Moura P, Barata R, Carvalheiro F, Gírio F, Loureiro-Dias MC, Esteves MP. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifi-dobacterium and Lactobacillus strains. LWT - Food Sci Technol 2007;40: 963e72.
Nielsen TS, Lærke HN, Theil PK, Sørensen JF, Saarinen M, Forssten S, Bach Knudsen KE. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. Br J Nutr 2014;112:1837e49.
Nofrarías M, Martínez-puig D, Pujols J, Majo N, Perez JF. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition 2007;23:861e70.
Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. In vitro fermenta-tion of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agric Food Chem 2009;57:8598e606.
Pedersen MB, Dalsgaard S, Bach Knudsen KE, Yu S, Lærke HN. Compositional profile and variation of distillers dried grains with solubles from various origins with focus on non-starch polysaccharides. Anim Feed Sci Technol 2014;197:130e41.
Petri D, Hill JE, Van Kessel AG. Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig. Livest Sci 2010;133:107e9.
Pieper R, Jha R, Rossnagel B, Van Kessel AG, Souffrant WB, Leterme P. Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiol Ecol 2008;66: 556e66.
Pieper R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P. Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and pro-liferation of Salmonella enterica in an in vitro model of the porcine gastroin-testinal tract. Appl Environ Microbiol 2009;75:7006e16.
Pieper R, Bindelle J, Malik G, Marshall J, Rossnagel BG, Leterme P, Van Kessel AG. Influence of different carbohydrate composition in barley varieties on Salmo-nella Typhimurium var. Copenhagen colonisation in a challenge model in pigs. Arch Anim Nutr 2012;66:163e79.
Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 2002;217:133e9.
Read SM, Currie G, Bacic A. Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res 1996;281:187e201.
Regmi PR, Van Kempen TATG, Matte JJ, Zijlstra RT. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs. J Nutr 2011;141: 398e405.
Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, De Los Reyes-Gavilan CG. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol Lett 2015;362: 1e7.
Rose DJ, Patterson JA, Hamaker BR. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triti-cum aestivum) brans influence human fecal fermentation profiles. J Agric Food Chem 2010;58:493e9.
Saulnier L, Sado P-E, Branlard G, Charmet G, Guillon F. Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 2007;46:261e81.
Saxena RK, Anand P, Saran S, Isar J, Agarwal L. Microbial production and applica-tions of 1,2-propanediol. Indian J Microbiol 2010;50:2e11.
Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 2006;188:4340e9.
Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP. Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Appl Environ Microbiol 2010;76:500e7.
Sun Y, Su Y, Zhu W. Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet. Front Microbiol 2016;7:1e10.
Tester RF, Qi X, Karkalas J. Hydrolysis of native starches with amylases. Anim Feed Sci Technol 2006;130:39e54.
Tiihonen K, Rautonen N, Alhoniemi E, Ahotupa M, Stowell J, Vasankari T. Post-prandial triglyceride response in normolipidemic, hyperlipidemic and obese subjects e the influence of polydextrose, a non-digestible carbohydrate. Nutr J 2015;14:1e9.
Tiwari UP, Jha R. Nutrient profile and digestibility of tubers and agro-industrial coproducts determined using an in vitro model of swine. Anim Nutr 2016;2: 1e4.
Tiwari UP, Jha R. Nutrients, amino acid, fatty acid and non-starch polysaccharide profile and in vitro digestibility of macadamia nut cake in swine. Anim Sci J 2017;88:1093e9.
Tiwari UP, Chen H, Kim SW, Jha R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim Feed Sci Technol 2018;245:77e90.
Topping DL, Illman RJ, Clarke JM, Trimble RP, Jackson KA, Marsono Y. Dietary fat and fiber alter large bowel and portal venous volatile fatty acids and plasma cholesterol but not biliary steroids in pigs. J Nutr 1993;123:133e43.
Tungland BC, Meyer D. Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 2002;1:90e109.
Van Laere KM, Hartemink R, Bosveld M, Schols HA, Voragen AG. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccha-rides by intestinal bacteria. J Agric Food Chem 2000;48:1644e52.
Varel VH, Yen. Microbial perspective on fiber utilization by swine. J Anim Sci 1997;75:2715e22.
Velazquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997;427:123e34.
Vries S De, Gerrits WJJ, Kabel MA, Vasanthan T, Zijlstra T. b -glucans and resistant starch alter the fermentation of recalcitrant fibers in growing pigs. PLoS One 2016:1e18.
Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, Mcintosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2010;5:220e30.
Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol 2012;78:511e8.
Weaver AG, Krause A, Miller T, Wolin J. Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermenta-tion; cornstarch fermentation rates correlate negatively. Am J Clin Nutr 1992;55:70e7.
Weiss E, Aumiller T, Spindler HK, Rosenfelder P, Eklund M, Witzig M, Jørgensen H, Bach E, Mosenthin R. Wheat and barley differently affect porcine intestinal microbiota. J Sci Food Agric 2016;96:2230e9.
Wellock IJ, Houdijk JGM, Kyriazakis I. Effect of dietary non-starch polysaccharide solubility and inclusion level on gut health and the risk of post weaning enteric disorders in newly weaned piglets. Livest Sci 2007;108:186e9.
Williams BA, Bosch MW, Boer H, Verstegen MWA, Tamminga S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim Feed Sci Technol 2005;124:445e62.
Wong K, Wong King-Yee, Kwan A Hoi-Shan, Cheung PCK. Dietary Fibers from Mushroom Sclerotia: 3. In vitro fermentability using human fecal microflora. J Agric Food Chem 2005;53:9407e12.
Wood PJ. REVIEW: oat and Rye b-Glucan: properties and function. Cereal Chem J 2010;87:315e30.
Wood P, Beer MU. Functional foods: biochemical and processing spects. Carbohydr Polym 2002;50:95e6.
Young W, Roy NC, Lee J, Lawley B, Otter D, Henderson G, Mccann MJ. Changes in bowel microbiota induced by feeding weanlings resistant starch stimulate transcriptomic and physiological responses. Appl Environ Microbiol 2012;78: 6656e64.
Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012;6:1535e43.
Zhang M, Chekan JR, Dodd D, Hong P-Y, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci U S A 2014;111:E3708e17.
Zhang S, Li W, Smith CJ, Musa H. Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Crit Rev Food Sci Nutr 2015;55:1035e52.
Zhao J, Cheung PCK. Fermentation of beta glucans derived from different sources by bifidobacteria: evaluation of their bifidogenic effect. J Agric Food Chem 2011;59:5986e92.
Zijlstra RT, De Lange CFM, Patience JF. Nutritional value of wheat for growing pigs: chemical composition and digestible energy content. Can J Anim Sci 1999;79: 187e94.