Author details:
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Keywords: mycotoxins; food products; action mechanisms; toxicity challenges; detoxification; prevention strategies.
1. Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies:
Prevention and Detoxification in Foods. Foods 2020, 9, 137. [CrossRef]
2. Gnonlonfin, G.J.B.; Hell, K.; Adjovi, Y.; Fandohan, P.; Koudande, D.O.; Mensah, G.A.; Sanni, A.; Brimer, L. A Review on Aflatoxin
Contamination and Its Implications in the Developing World: A Sub-Saharan African Perspective. Crit. Rev. Food Sci. Nutr. 2013,
53, 349–365. [CrossRef]
3. Wu, F.; Groopman, J.D.; Pestka, J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372.
[CrossRef] [PubMed]
4. Bryden, W.L. Mycotoxins in the food chain: Human health implications. Asia Pac. J. Clin. Nutr. 2007, 16, 95–101. [PubMed]
5. Paterson, R.R.M.; Lima, N. Toxicology of mycotoxins. Galanin 2010, 100, 31–63. [CrossRef]
6. Egbuna, C.; Amadi, C.N.; Patrick-Iwuanyanwu, K.C.; Ezzat, S.M.; Awuchi, C.G.; Ugonwa, P.O.; Orisakwe, O.E. Emerging pollutants in Nigeria: A systematic review. Environ. Toxicol. Pharmacol. 2021, 85, 103638. [CrossRef] [PubMed]
7. Awuchi, C.G.; Amagwula, I.O.; Priya, P.; Kumar, R.; Yezdani, U.; Khan, M.G. Aflatoxins In Foods And Feeds: A Review On
Health Implications, Detection, And Control. Bull. Environ. Pharmacol. Life Sci. 2020, 9, 149–155.
8. Urusov, A.E.; Zherdev, A.V.; Petrakova, A.V.; Sadykhov, E.G.; Koroleva, O.V.; Dzantiev, B.B. Rapid Multiple Immunoenzyme
Assay of Mycotoxins. Toxins 2015, 7, 238–254. [CrossRef]
9. Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-Mycotoxin Screening Reveals the Occurrence of
139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 2013, 5, 504–523. [CrossRef] [PubMed]
10. Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [CrossRef]
11. Raiola, A.; Tenore, G.C.; Manyes, L.; Meca, G.; Ritieni, A. Risk analysis of main mycotoxins occurring in food for children: An overview. Food Chem. Toxicol. 2015, 84, 169–180. [CrossRef]
12. Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food Chain Mycotoxin Exposure, Gut Health, and Impaired Growth: A Conceptual
Framework. Adv. Nutr. 2012, 3, 526–531. [CrossRef] [PubMed]
13. Avihingsanon, A.; Ramautarsing, R.A.; Suwanpimolkul, G.; Chetchotisakd, P.; Bowonwatanuwong, C.; Jirajariyavej, S.; Kantipong,
P.; Tantipong, H.; Ohata, J.P.; Suankratay, C.; et al. Ergotism in Thailand Caused by Increased Access to Antiretroviral Drugs: A
Global Warning. Top. Antivir. Med. 2016, 21, 165–168.
14. Demir, S.; Akin, S.; Tercan, F.; Aribogan, A.; Oguzkurt, L. Ergotamine-induced lower extremity arterial vasospasm presenting as acute limb ischemia. Diagn. Interv. Radiol. 2008, 16, 165–167. [CrossRef]
15. Haschek, W.M.; Gumprecht, L.A.; Smith, G.; Tumbleson, M.E.; Constable, P.D. Fumonisin toxicosis in swine: An overview of porcine pulmonary edema and current perspectives. Environ. Health Perspect. 2001, 109 (Suppl. S2), 251–257. [PubMed]
16. Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol.
2015, 78, 185–206. [CrossRef] [PubMed]
17. Qiu, J.; Dong, F.; Yu, M.; Xu, J.; Shi, J. Effect of preceding crop onFusariumspecies and mycotoxin contamination of wheat grains.
J. Sci. Food Agric. 2016, 96, 4536–4541. [CrossRef] [PubMed]
18. Klari´c, M.Š.; Raši´c, D.; Peraica, M. Deleterious Effects of Mycotoxin Combinations Involving Ochratoxin A. Toxins 2013, 5,
1965–1987. [CrossRef]
19. Becker-Algeri, T.A.; Castagnaro, D.; De Bortoli, K.; De Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in Bovine Milk and Dairy Products: A Review. J. Food Sci. 2016, 81, R544–R552. [CrossRef]
20. Amaike, S.; Keller, N.P. Aspergillus flavus. Annu. Rev. Phytopathol. 2011, 49, 107–133. [CrossRef]
21. Iongh, D.; Beerthuis, R.K.; Vles, O.R.; Barrett, C.B.; Ord, W.O. Investigation of the factor in groundnut meal responsible for
“turkey X disease”. Biochim. Biophys. Acta 1962, 65, 548–551. [CrossRef]
22. Blount, W.P. Turkey “X” disease. J. Br. Turk. Fed. 1961, 9, 52–54.
23. Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant. Pathol. 2007, 8, 713–722. [CrossRef]
24. Mellon, J.E.; Cotty, P.J.; Dowd, M.K. Influence of Lipids with and without Other Cottonseed Reserve Materials on Aflatoxin
B1Production byAspergillus flavus. J. Agric. Food Chem. 2000, 48, 3611–3615. [CrossRef] [PubMed]
25. Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [CrossRef] [PubMed]
26. De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Mutat. Res. 2015, 766, 32–41. [CrossRef] [PubMed]
27. Yu, J. Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination. Toxins
2012, 4, 1024–1057. [CrossRef]
28. Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009, 41,
1–7. [CrossRef]
29. Roze, L.V.; Hong, S.-Y.; Linz, J.E. Aflatoxin Biosynthesis: Current Frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311.
[CrossRef]
30. Kew, M.C. Aflatoxins as a cause of hepatocellular carcinoma. J. Gastrointest. Liver Dis. 2013, 22, 305–310.
31. Montesano, R.; Hainaut, P.; Wild, C.P. Hepatocellular Carcinoma: From Gene to Public Health. J. Natl. Cancer Inst. 1997, 89,
1844–1851. [CrossRef]
32. Nayak, S.; Sashidhar, R.B.; Bhat, R.V. Quantification and validation of enzyme immunoassay for urinary aflatoxin B1–N7-guanine adduct for biological monitoring of aflatoxins. Analyst 2001, 126, 179–183. [CrossRef]
33. Essigmann, J.; Green, C.; Croy, R.; Fowler, K.; Buchi, G.; Wogan, G. Interactions of Aflatoxin B1 and Alkylating Agents with DNA:
Structural and Functional Studies. Cold Spring Harb. Symp. Quant. Biol. 1983, 47, 327–337. [CrossRef]
34. Giovati, L.; Magliani, W.; Ciociola, T.; Santinoli, C.; Conti, S.; Polonelli, L. AFM1 in Milk: Physical, Biological, and Prophylactic
Methods to Mitigate Contamination. Toxins 2015, 7, 4330–4349. [CrossRef]
35. Kebede, H.; Abbas, H.K.; Fisher, D.K.; Bellaloui, N. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress. Toxins 2012, 4, 1385–1403. [CrossRef] [PubMed]
36. Narasaiah, K.V.; Sashidhar, R.B.; Subramanyam, C. Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 2006, 162, 179–189. [CrossRef]
37. O’Brian, G.R.; Georgianna, D.R.; Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Bhatnagar, D.; Cleveland, T.E.; Nierman, W.; Payne, G.A. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239. [CrossRef] [PubMed]
38. Awuchi, C.G.; Twinomhwezi, H.; Choudghal, S.; khan, M.G.; Yezdani, U.; Akram, M.V. Nanotechnology Application in Food
Science and Nutrition and Its Safety Issues; a Review. Adv. Bioresearch 2020, 11. [CrossRef]
39. Awuchi, C.G.; Amagwula, I.O. The Biochemistry, Toxicology, and Uses of the Pharmacologically Active Phytochemicals: Alkaloids,
Terpenes, Polyphenols, and Glycosides. Merit Res. J. Food Sci. Technol. 2020, 5, 006–021. [CrossRef]
40. Awuchi, C.G.; Owuamanam, I.C.; Ogueke, C.C.; Hannington, T. The Impacts of Mycotoxins on the Proximate Composition and
Functional Properties of Grains. Eur. Acad. Res. 2020, 8, 1024–1071.
41. Awuchi, C.G.; Chibueze, G.A.; Ukpe, A.E.; Asoegwu, C.R.; Uyo, C.N.; Ngoka, K.E. Environmental Impacts of Food and
Agricultural Production: A Systematic Review. Eur. Acad. Res. 2020, 8, 1120–1135.
42. Awuchi, C.G.; Hannington, T.; Igwe, V.S.; Amagwula, I.O. Food Additives and Food Preservatives for Domestic and Industrial
Food Applications. J. Anim. Health 2020, 2, 1–16.
43. Awuchi, C.G.; Igwe, V.S.; Amagwula, I.O.; Echeta, C.K. Health Benefits of Micronutrients (Vitamins and Minerals) and their
Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32.
44. Awuchi, C.G.; Igwe, V.S.; Amagwula, I.O. Nutritional Diseases and Nutrient Toxicities: A Systematic Review of the Diets and
Nutrition for Prevention and Treatment. Int. J. Adv. Acad. Res. 2020, 6, 1–46. [CrossRef]
45. Twinomuhwezi, H.; Wozeyi, P.; Igwe, V.S.; Amagwula, I.O.; Awuchi, C.G. Heat of Combustion of Coffee Pulp and Husks as
Alternative Sources of Renewable Energy. Eur. J. Agric. Food Sci. 2021, 3, 1–4. [CrossRef]
46. Awuchi, C.G. Medicinal Plants, Bioactive Compounds, and Dietary Therapies for Treating Type 1 and Type 2 Diabetes Mellitus.
IntechOpen. Available online: https://www.intechopen.com/online-first/medicinal-plants-bioactive-compounds-and-dietarytherapies-for-treating-type-1-and-type-2-diabetes-m (accessed on 20 April 2021).
47. Hannington, T.; Chinaza, G.A.; Mihigo, R. Comparative Study of the Proximate Composition and Functional Properties of
Composite Flours of Amaranth, Rice, Millet, and Soybean. Am. J. Food Sci. Nutr. 2020, 6, 6–19.
48. Georgianna, D.R.; Payne, G.A. Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genet. Biol. 2009, 46,
113–125. [CrossRef]
49. Wilkinson, J.R.; Yu, J.; Bland, J.M.; Nierman, W.C.; Bhatnagar, D.; Cleveland, T.E. Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC. Appl. Microbiol. Biotechnol.
2007, 74, 1308–1319. [CrossRef]
50. Hengstler, J.G.; Van Der Burg, B.; Steinberg, P.; Oesch, F. Interspecies differences in cancer susceptibility and toxicity*. Drug Metab.
Rev. 1999, 31, 917–970. [CrossRef] [PubMed]
51. Ilic, Z.; Crawford, D.; Egner, P.A.; Sell, S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B. Toxicol. Appl. Pharmacol. 2010, 242, 241–246. [CrossRef]
52. Krishnamachari, K.; Nagarajan, V.; Bhat, R.; Tilak, T. Hepatitis due to aflatoxicosis. Lancet 1975, 305, 1061–1063. [CrossRef]
53. Lye, M.S.; A Ghazali, A.; Mohan, J.; Alwin, N.; Nair, R.C. An outbreak of acute hepatic encephalopathy due to severe aflatoxicosis in Malaysia. Am. J. Trop. Med. Hyg. 1995, 53, 68–72. [PubMed]
54. Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin Contamination of Commercial Maize Products during an Outbreak of Acute Aflatoxicosis in Eastern and Central
Kenya. Environ. Heal. Perspect. 2005, 113, 1763–1767. [CrossRef] [PubMed]
55. Coppock, R.W.; Reynolds, R.D.; Buck, W.B.; Jacobsen, B.J.; Ross, S.C.; Mostrom, M.S. Acute aflatoxicosis in feeder pigs, resulting from improper storage of corn. J. Am. Veter Med. Assoc. 1989, 195, 1380–1381.
56. Vesonder, R.; Haliburton, J.; Stubblefield, R.; Gilmore, W.; Peterson, S. Aspergillus flavus and aflatoxins B1, B2, and M1 in corn associated with equine death. Arch. Environ. Contam. Toxicol. 1991, 20, 151–153. [CrossRef]
57. Newman, S.J.; Smith, J.R.; Stenske, K.A.; Newman, L.B.; Dunlap, J.R.; Imerman, P.M.; Kirk, C.A. Aflatoxicosis in nine dogs after exposure to contaminated commercial dog food. J. Vet. Diagn. Investig. 2007, 19, 168–175. [CrossRef] [PubMed]
58. Lee, H.J.; Ryu, D. Advances in Mycotoxin Research: Public Health Perspectives. J. Food Sci. 2015, 80, T2970–T2983. [CrossRef]
59. Gao, S.S.; Chen, X.Y.; Zhu, R.Z.; Choi, B.-M.; Kim, B.-R. Sulforaphane induces glutathione S-transferase isozymes which detoxify aflatoxin B1-8,9-epoxide in AML 12 cells. BioFactors 2010, 36, 289–296. [CrossRef] [PubMed]
60. Eaton, D.L.; Gallagher, E.P. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 135–172. [CrossRef]
61. Stern, M.C.; Umbach, D.M.; Yu, M.C.; London, S.J.; Zhang, Z.Q.; Taylor, J.A. Hepatitis B. aflatoxin B(1), and p53 codon 249 mutation in hepatocellular carcinomas from Guangxi, People’s Republic of China, and a meta-analysis of existing studies. Cancer
Epidemiol. Biomark. Prev. 2001, 10, 617–625.
62. Aguilar, F.; Hussain, S.P.; Cerutti, P. Aflatoxin B1 induces the transversion of G–>T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl. Acad. Sci. USA 1993, 90, 8586–8590. [CrossRef]
63. Hamid, A.S.; Tesfamariam, I.G.; Zhang, Y.; Zhang, Z.G. Aflatoxin B1-induced hepatocellular carcinoma in developing countries:
Geographical distribution, mechanism of action and prevention. Oncol. Lett. 2013, 5, 1087–1092. [CrossRef]
64. Friedler, A.; DeDecker, B.S.; Freund, S.M.; Blair, C.; Rüdiger, S.; Fersht, A.R. Structural Distortion of p53 by the Mutation R249S and its Rescue by a Designed Peptide: Implications for “Mutant Conformation”. J. Mol. Biol. 2004, 336, 187–196. [CrossRef]
[PubMed]
65. Hsu, I.C.; Metcalf, R.A.; Sun, T.; Welsh, J.A.; Wang, N.J.; Harris, C.C. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 1991, 350, 427–428. [CrossRef] [PubMed]
66. Kew, M.C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003, 23, 405–409.
[CrossRef]
67. Ross, R.; Yu, M.; Henderson, B.; Yuan, J.-M.; Qian, G.-S.; Tu, J.-T.; Gao, Y.-T.; Wogan, G.; Groopman, J. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet 1992, 339, 943–946. [CrossRef]
68. Wild, C.P.; Montesano, R. A model of interaction: Aflatoxins and hepatitis viruses in liver cancer aetiology and prevention. Cancer
Lett. 2009, 286, 22–28. [CrossRef]
69. Liu, Y.; Wu, F. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment. Environ. Heal. Perspect. 2010,
118, 818–824. [CrossRef]
70. Huang, X.-H.; Zhang, X.-H.; Li, Y.-H.; Wang, J.-L.; Yan, X.; Xing, L.-X.; Wang, F.-R. Experimental lung carcinogenic in vivo study of aflatoxin G1 in NIH mice. Zhonghua Bing Li Xue Za Zhi Chin. J. Pathol. 2004, 33, 260–263.
71. Shen, H.T.; Zhang, X.H.; Huang, X.H.; Li, Y.H.; Wang, J.; Yan, X.; Wang, F. Histogenesis of lung adenocarcinoma induced by oral administration of mycotoxins in mice. Wei Sheng Yan Jiu 2005, 34, 341–344. [PubMed]
72. Guindon, K.A.; Foley, J.F.; Maronpot, R.R.; Massey, T.E. Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity. Toxicol. Appl. Pharmacol. 2008, 227, 179–183. [CrossRef] [PubMed]
73. Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.-I.; Arima, T.; Akita, O.; Kashiwagi, Y.; et al.
Genome sequencing and analysis of Aspergillus oryzae. Nat. Cell Biol. 2005, 438, 1157–1161. [CrossRef] [PubMed]
74. Yu, J.; Whitelaw, C.A.; Nierman, W.C.; Bhatnagar, D.; Cleveland, T.E. Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol. Lett. 2004, 237, 333–340. [CrossRef]
75. Denning, D.W.; Anderson, M.J.; Turner, G.; Latgé, J.P.; Bennett, J.W. Sequencing the Aspergillus fumigatus genome. Lancet Infect.
Dis. 2002, 2, 251–253. [CrossRef]
76. Faustinelli, P.C.; Wang, X.M.; Palencia, E.R.; Arias, R.S. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp.; Isolated from Peanut Seeds in Georgia: TABLE. Genome Announc. 2016, 4, 00278-16. [CrossRef]
77. Yu, J.; Bhatnagar, D.; Cleveland, T.E. Completed sequence of aflatoxin pathway gene cluster inAspergillus parasiticus. FEBS Lett.
2004, 564, 126–130. [CrossRef]
78. Yu, J.; Chang, P.-K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W.
Clustered Pathway Genes in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [CrossRef] [PubMed]
79. Marín, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem.
Toxicol. 2013, 60, 218–237. [CrossRef] [PubMed]
80. Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [CrossRef]
81. Heussner, A.H.; Bingle, L.E.H. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 2015, 7, 4253–4282.
[CrossRef]
82. Van Der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nat. Cell Biol. 1965, 205, 1112–1113. [CrossRef]
83. Bui-Klimke, T.R.; Wu, F. Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2015, 55,
1860–1869. [CrossRef] [PubMed]
84. Reddy, L.; Bhoola, K. Ochratoxins—Food Contaminants: Impact on Human Health. Toxins 2010, 2, 771–779. [CrossRef] [PubMed]
85. Petzinger, E.; Ziegler, K. Ochratoxin A from a toxicological perspective. J. Veter Pharmacol. Ther. 2000, 23, 91–98. [CrossRef]
[PubMed]
86. Kuruc, J.A.; Schwarz, P.; Wolf-Hall, C. Ochratoxin A in Stored U.S. Barley and Wheat. J. Food Prot. 2015, 78, 597–601. [CrossRef]
[PubMed]
87. Vidal, A.; Marín, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem. Toxicol. 2013, 53, 133–138.
[CrossRef]
88. Anselme, M.; Tangni, E.K.; Pussemier, L.; Motte, J.-C.; Van Hove, F.; Schneider, Y.-J.; Van Peteghem, C.; Larondelle, Y. Comparison of ochratoxin A and deoxynivalenol in organically and conventionally produced beers sold on the Belgian market. Food Addit.
Contam. 2006, 23, 910–918. [CrossRef]
89. Abouzied, M.M.; Horvath, A.D.; Podlesny, P.M.; Regina, N.P.; Metodiev, V.D.; Kamenova-Tozeva, R.M.; Niagolova, N.D.;
Stein, A.D.; Petropoulos, E.A.; Ganev, V.S. Ochratoxin A concentrations in food and feed from a region with Balkan Endemic
Nephropathy. Food Addit. Contam. 2002, 19, 755–764. [CrossRef]
90. Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Novotna, E. Ochratoxin A: Developmental and Reproductive Toxicity—An Overview.
Birth Defects Res. B Dev. Reprod. Toxicol. 2013, 98, 493–502. [CrossRef]
91. Mayura, K.; Reddy, R.V.; Hayes, A.W.; Berndt, W.O. Embryocidal, fetotoxic and teratogenic effects of ochratoxin A in rats.
Toxicology 1982, 25, 175–185. [CrossRef]
92. Kanetsky, P.A.; Mitra, N.; Vardhanabhuti, S.; Vaughn, D.J.; Li, M.; Ciosek, S.L.; Letrero, R.; D’Andrea, K.; Vaddi, M.; Doody, D.R.; et al. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum. Mol. Genet.
2011, 20, 3109–3117. [CrossRef]
93. Wang, Z.; Wu, Q.; Kuˇca, K.; Dohnal, V.; Tian, Z. Deoxynivalenol: Signaling pathways and human exposure risk assessment—an update. Arch. Toxicol. 2014, 88, 1915–1928. [CrossRef] [PubMed]
94. McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011,
3, 802–814. [CrossRef] [PubMed]
95. Foroud, N.A.; Eudes, F. Trichothecenes in Cereal Grains. Int. J. Mol. Sci. 2009, 10, 147–173. [CrossRef] [PubMed]
96. Mostrom, M.S.; Raisbeck, M.F. Trichothecenes. Vet. Toxicol. 2012, 1239–1265. [CrossRef]
97. Pestka, J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. Part. A 2008, 25, 1128–1140.
[CrossRef]
98. Wan, Q.; Wu, G.; He, Q.; Tang, H.; Wang, Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique.
Mol. BioSyst. 2015, 11, 882–891. [CrossRef] [PubMed]
99. Chaudhary, M.; Bhaskar, A.S.B.; Rao, P.V.L. Differential effects of route of T-2 toxin exposure on hepatic oxidative damage in mice.
Environ. Toxicol. 2013, 30, 64–73. [CrossRef]
100. Li, Y.; Wang, Z.; Beier, R.C.; Shen, J.; De Smet, D.; De Saeger, S.; Zhang, S. T-2 Toxin, a Trichothecene Mycotoxin: Review of
Toxicity, Metabolism, and Analytical Methods. J. Agric. Food Chem. 2011, 59, 3441–3453. [CrossRef]
101. Weekley, L.B.; E O’Rear, C.; Kimbrough, T.D.; Llewellyn, G.C. Acute and chronic effects of the trichothecene mycotoxin T-2 on rat brain regional concentrations of serotonin, tryptophan, and tyrosine. Veter Hum. Toxicol. 1989, 31, 221–224.
102. Königs, M.; Mulac, D.; Schwerdt, G.; Gekle, M.; Humpf, H.-U. Metabolism and cytotoxic effects of T-2 toxin and its metabolites on human cells in primary culture. Toxicol. 2009, 258, 106–115. [CrossRef]
103. Joffe, A.Z. Alimentary toxic aleukia. In Microbial Toxins; Kadis, S., Ciegler, A., Ajl, S.J., Eds.; Academic Press: Cambridge, MA,
USA, 1971; Volume 7, pp. 139–189.
104. Wegulo, S.N. Factors Influencing Deoxynivalenol Accumulation in Small Grain Cereals. Toxins 2012, 4, 1157–1180. [CrossRef]
105. Awad, W.; Ghareeb, K.; Böhm, J.; Zentek, J. The Toxicological Impacts of the Fusarium Mycotoxin, Deoxynivalenol, in Poultry
Flocks with Special Reference to Immunotoxicity. Toxins 2013, 5, 912–925. [CrossRef]
106. Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010,
3, 94–99. [CrossRef]
107. Hughes, D.M.; Gahl, M.J.; Graham, C.H.; Grieb, S.L. Overt signs of toxicity to dogs and cats of dietary deoxynivalenol. J. Anim.
Sci. 1999, 77, 693–700. [CrossRef]
108. Audenaert, K.; Vanheule, A.; Höfte, M.; Haesaert, G. Deoxynivalenol: A Major Player in the Multifaceted Response of Fusarium to Its Environment. Toxins 2013, 6, 1–19. [CrossRef] [PubMed]
109. Sun, L.-Y.; Li, Q.; Meng, F.-G.; Fu, Y.; Zhao, Z.-J.; Wang, L.-H. T-2 Toxin Contamination in Grains and Selenium Concentration in Drinking Water and Grains in Kaschin–Beck Disease Endemic Areas of Qinghai Province. Biol. Trace Element Res. 2012, 150,
371–375. [CrossRef] [PubMed]
110. Wang, L.H.; Fu, Y.; Shi, Y.X.; Wang, W.G. T-2 toxin induces degenerative articular changes in rodents: Link to Kaschin-Beck disease. Toxicol. Pathol. 2011, 39, 502–507. [CrossRef]
111. Kang, P.; Yao, Y.; Yang, J.; Shen, B.; Zhou, Z.; Pei, F. An animal model of Kashin–Beck disease induced by a low-nutrition diet and exposure to T-2 toxin. Osteoarthr. Cartil. 2013, 21, 1108–1115. [CrossRef] [PubMed]
112. Chen, J.; Chu, Y.; Cao, J.; Wang, W.; Liu, J.; Wang, J. Effects of T-2 toxin and selenium on chondrocyte expression of matrix metalloproteinases (MMP-1, MMP-13), α2-macroglobulin (α2M) and TIMPs. Toxicol. Vitr. 2011, 25, 492–499. [CrossRef] [PubMed]
113. Marasas, W.F.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.;
Gelderblom, W.C.; et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 2004, 134, 711–716. [CrossRef]
114. Bryla, M.; Roszko, M.; Szymczyk, K.; Jedrzejczak, R.; Obiedzinski, M.W.; Sekul, J. Fumonisins in plant-origin food and fodder–a review. Food Addit. Contam. Part. A 2013, 30, 1626–1640. [CrossRef]
115. Stockmann-Juvala, H.; Savolainen, K. A review of the toxic effects and mechanisms of action of fumonisin B. Hum. Exp. Toxicol.
2008, 27, 799–809. [CrossRef] [PubMed]
116. Scott, P.M. Recent research on fumonisins: A review. Food Addit. Contam. Part. A 2012, 29, 242–248. [CrossRef]
117. Domijan, A.M. Fumonisin B(1): A neurotoxic mycotoxin. Arch. Ind. Hyg. Toxicol. 2012, 63, 531–544.
118. Soriano, J.; González, L.; Catalá, A. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B.
Prog. Lipid Res. 2005, 44, 345–356. [CrossRef]
119. Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [CrossRef]
120. Cahagnier, B.; Melcion, D.; Richard-Molard, D. Growth of Fusarium moniliforme and its biosynthesis of fumonisin B1 on maize grain as a function of different water activities. Lett. Appl. Microbiol. 1995, 20, 247–251. [CrossRef]
121. Mogensen, J.M.; Nielsen, K.F.; A Samson, R.; Frisvad, J.C.; Thrane, U. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiol. 2009, 9, 281. [CrossRef] [PubMed]
122. Sydenham, E.W.; Thiel, P.G.; Marasas, W.F.O.; Shephard, G.S.; Van Schalkwyk, D.J.; Koch, K.R. Natural occurrence of some
Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. J. Agric.
Food Chem. 1990, 38, 1900–1903. [CrossRef]
123. Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H., Jr.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [CrossRef]
124. Magoha, H.; De Meulenaer, B.; Kimanya, M.; Hipolite, D.; Lachat, C.; Kolsteren, P. Fumonisin B1 contamination in breast milk and its exposure in infants under 6 months of age in Rombo, Northern Tanzania. Food Chem. Toxicol. 2014, 74, 112–116. [CrossRef]
[PubMed]
125. Jenkins, G.R.; Tolleson, W.H.; Newkirk, D.K.; Roberts, D.W.; Rowland, K.L.; Saheki, T.; Kobayashi, K.; Howard, P.C.; Melchior,
W.B., Jr. Identification of fumonisin B1 as an inhibitor of argininosuccinate synthetase using fumonisin affinity chromatography and in vitro kinetic studies. J. Biochem. Mol. Toxiclogy 2000, 14, 320–328. [CrossRef]
126. Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A
Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [CrossRef]
127. Vaclavikova, M.; Malachova, A.; Veprikova, Z.; Dzuman, Z.; Zachariasova, M.; Hajslova, J. ‘Emerging’ mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chem. 2013, 136, 750–757. [CrossRef]
128. European Food Safety Authority. Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [CrossRef]
129. Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [CrossRef]
130. Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [CrossRef] [PubMed]
131. Luz, C.; Saladino, F.; Luciano, F.; Mañes, J.; Meca, G. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food Chem. Toxicol. 2017, 107, 430–439. [CrossRef]
132. Stanciu, O.; Juan, C.; Miere, D.; Loghin, F.; Mañes, J. Presence of Enniatins and Beauvericin in Romanian Wheat Samples: From
Raw Material to Products for Direct Human Consumption. Toxins 2017, 9, 189. [CrossRef] [PubMed]
133. Yoshinari, T.; Suzuki, Y.; Sugita-Konishi, Y.; Ohnishi, T.; Terajima, J. Occurrence of beauvericin and enniatins in wheat flour and corn grits on the Japanese market, and their co-contamination with type B trichothecene mycotoxins. Food Addit. Contam. Part. A
2016, 33, 1620–1626. [CrossRef] [PubMed]
134. Quiles, J.M.; Saladino, F.; Mañes, J.; Fernández-Franzón, M.; Meca, G. Occurrence of mycotoxins in refrigerated pizza dough and risk assessment of exposure for the Spanish population. Food Chem. Toxicol. 2016, 94, 19–24. [CrossRef]
135. Sulyok, M.; Beed, F.; Boni, S.; Abass, A.; Mukunzi, A.; Krska, R. Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and Rwanda by an LC-MS/MS-based multi-toxin method. Food Addit. Contam. Part. A 2014,
32, 488–502. [CrossRef] [PubMed]
136. Varga, E.; Wiesenberger, G.; Hametner, C.; Ward, T.J.; Dong, Y.; Schöfbeck, D.; McCormick, S.; Broz, K.; Stückler, R.; Schuhmacher,
R.; et al. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene Mycotoxin. Environ.
Microbiol. 2015, 17, 2588–2600. [CrossRef] [PubMed]
137. Venkatesh, N.; Keller, N.P. Mycotoxins in Conversation with Bacteria and Fungi. Front. Microbiol. 2019, 10, 403. [CrossRef]
[PubMed]
138. Agriopoulou, S. Enniatins: An Emerging Food Safety Issue. EC Nutr. 2016, 3, 1142–1146.
139. Gunter, A.B.; Hermans, A.; Bosnich, W.; Johnson, D.A.; Harris, L.; Gleddie, S. Protein engineering of Saccharomyces cerevisiae transporter Pdr5p identifies key residues that impact Fusarium mycotoxin export and resistance to inhibition. MicrobiologyOpen
2016, 5, 979–991. [CrossRef]
140. Veršilovskis, A.; De Saeger, S. Sterigmatocystin: Occurrence in foodstuffs and analytical methods—An overview. Mol. Nutr. Food
Res. 2009, 54, 136–147. [CrossRef]
141. Li, M.; Li, P.; Wu, H.; Zhang, Q.; Ma, F.; Zhang, Z.; Ding, X.; Wang, H. An Ultra-Sensitive Monoclonal Antibody-Based Competitive
Enzyme Immunoassay for Sterigmatocystin in Cereal and Oil Products. PLoS ONE 2014, 9, e106415. [CrossRef]
142. Veršilovskis, A.; Bartkeviˇcs, V.; Mik, elsone, V. Sterigmatocystin presence in typical Latvian grains. Food Chem. 2008, 109, 243–248.
[CrossRef] [PubMed]
143. Reiss, J. Mycotoxins in foodstuffs. VI. Formation of sterigmatocystin in bread by Aspergillus versicolor. Z. Lebensm. Unters.
Und-Forsch. 1976, 160, 313–319.
144. Gao, W.; Jiang, L.; Ge, L.; Chen, M.; Geng, C.; Yang, G.; Li, Q.; Ji, F.; Yan, Q.; Zou, Y.; et al. Sterigmatocystin-induced oxidative
DNA damage in human liver-derived cell line through lysosomal damage. Toxicol. Vitr. 2015, 29, 1–7. [CrossRef] [PubMed]
145. Liu, Y.; Xing, X.; Wang, J.; Xing, L.; Su, Y.; Yao, Z.; Yan, X.; Wang, J.; Zhang, X. Sterigmatocystin alters the number of FoxP3+ regulatory T cells and plasmacytoid dendritic cells in BALB/c mice. Food Chem. Toxicol. 2012, 50, 1920–1926. [CrossRef]
146. Wallwey, C.; Li, S.-M. Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes.
Nat. Prod. Rep. 2010, 28, 496–510. [CrossRef] [PubMed]
147. Robinson, S.L.; Panaccione, D.G. Diversification of Ergot Alkaloids in Natural and Modified Fungi. Toxins 2015, 7, 201–218.
[CrossRef]
148. Rimar, Y.; Rimar, D. Witches saints and other diseases. Harefuah 2003, 142, 383–386396. [PubMed]
149. Alm, T. The Witch Trials of Finnmark, Northern Norway, during the 17th Century: Evidence for Ergotism as a Contributing
Factor. Econ. Bot. 2003, 57, 403–416. [CrossRef]
150. Schiff, P.L. Ergot and Its Alkaloids. Am. J. Pharm. Educ. 2006, 70, 98. [CrossRef]
151. Strickland, J.R.; Looper, M.L.; Matthews, J.C.; Rosenkrans, C.F., Jr.; Flythe, M.D.; Brown, K.R. Board-invited review: St. Anthony’s
Fire in livestock: Causes, mechanisms, and potential solutions. J. Anim. Sci. 2011, 89, 1603–1626. [CrossRef]
152. Klotz, J.L. Activities and Effects of Ergot Alkaloids on Livestock Physiology and Production. Toxins 2015, 7, 2801–2821. [CrossRef]
153. Craig, A.M.; Klotz, J.L.; Duringer, J.M. Cases of ergotism in livestock and associated ergot alkaloid concentrations in feed. Front.
Chem. 2015, 3, 8. [CrossRef] [PubMed]
154. Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed. Sci. Technol. 2007, 137, 326–341. [CrossRef]
155. Dänicke, S.; Winkler, J. Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem. Toxicol. 2015, 84, 225–249. [CrossRef]
156. Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [CrossRef]
157. Tomaszewski, J.; Miturski, R.; Semczuk, A.; Kotarski, J.; Jakowicki, J. Tissue zearalenone concentration in normal, hyperplastic and neoplastic human endometrium. Ginekol. Polska 1998, 69, 363–366.
158. Berthiller, F.; Crews, C.; Dall’Asta, C.; De Saeger, S.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J.
Masked mycotoxins: A review. Mol. Nutr. Food Res. 2012, 57, 165–186. [CrossRef] [PubMed]
159. De Boevre, M.; Jacxsens, L.; Lachat, C.; Eeckhout, M.; Di Mavungu, J.D.; Audenaert, K.; Maene, P.; Haesaert, G.; Kolsteren, P.; De
Meulenaer, B.; et al. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol. Lett.
2013, 218, 281–292. [CrossRef]
160. Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World
Mycotoxin J. 2009, 2, 129–140. [CrossRef]
161. Sivagnanam, K.; Komatsu, E.; Rampitsch, C.; Perreault, H.; Gräfenhan, T. Rapid screening of Alternaria mycotoxins using
MALDI-TOF mass spectrometry. J. Sci. Food Agric. 2017, 97, 357–361. [CrossRef]
162. European Food Safety Authority. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 10, 2407.
163. Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [CrossRef]
164. Bernal, Á.R.R.; Reynoso, C.M.; Londoño, V.A.G.; Broggi, L.E.; Resnik, S.L. Alternaria toxins in Argentinean wheat, bran, and flour.
Food Addit. Contam. Part. B 2019, 12, 24–30. [CrossRef]
165. Sanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh and dried tomato by
Alternaria toxins in southern Italy. Food Addit. Contam. Part. A 2019, 36, 789–799. [CrossRef] [PubMed]
166. Walravens, J.; Mikula, H.; Rychlik, M.; Asamd, S.; Ediagea, E.N.; Di Mavungua, J.D.; Landschoote, A.V.; Vanhaeckef, L.; De Saeger,
S. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J. Chromatogr. A 2014, 1372,
91–101. [CrossRef]
167. Brzonkalik, K.; Herrling, T.; Syldatk, C.; Neumann, A. Process development for the elucidation of mycotoxin formation in
Alternaria alternata. AMB Express 2011, 1, 27. [CrossRef] [PubMed]
168. Fleck, S.C.; Burkhardt, B.; Pfeiffer, E.; Metzler, M. Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol. Lett. 2012, 214, 27–32. [CrossRef]
169. Müller, M.E.; Korn, U. Alternaria mycotoxins in wheat—A 10 years survey in the Northeast of Germany. Food Control. 2013, 34,
191–197. [CrossRef]
170. Lee, H.B.; Patriarca, A.; Magan, N. Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology 2015,
43, 93–106. [CrossRef] [PubMed]
171. Moreno, M.Á.P.; Alonso, I.G.; De Santos, R.M.; Lacarra, T.G. The importance of genus Alternaria in mycotoxins production and human diseases. Nutr. Hosp. 2013, 27, 1772–1781.
172. Vidal, A.; Ouhibi, S.; Ghali, R.; Hedhili, A.; De Saeger, S.; De Boevre, M. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food Chem. Toxicol. 2019, 129, 249–256. [CrossRef]
173. Zhong, L.; Carere, J.; Lu, Z.; Lu, F.; Zhou, T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation
Strategies. Toxins 2018, 10, 475. [CrossRef] [PubMed]
174. Mardani, M.; Rezapour, S.; Rezapour, P. Survey of aflatoxins in Kashkineh: A traditional Iranian food. Iran. J. Microbiol. 2011, 3,
147–151. [PubMed]
175. Eriksen, G.S.; Jaderlund, K.H.; Moldes-Anaya, A.; Schonheit, J.; Bernhoft, A.; Jaeger, G.; Rundberget, T.; Skaar, I. Poisoning of dogs with tremorgenic Penicillium toxins. Medical Mycol. 2010, 48, 188–196. [CrossRef] [PubMed]
176. Vettorazzi, A.; López de Cerain, A. Chapter 17-Mycotoxins as Food Carcinogens. In Environmental Mycology in Public Health—
Fungi and Mycotoxins Risk Assessment and Management; Viegas, C., Pinheiro, A.C., Sabino, R., Viegas, S., Brandão, J., Veríssimo, C.,
Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2016; pp. 261–298.
177. Mizutani, K.; Kumagai, S.; Mochizuki, N.; Kitagawa, Y.; Sugita-Konishi, Y. Determination of a Yellow Rice Toxin, Luteoskyrin, in
Rice by Using Liquid Chromatography–Tandem Mass Spectrometry with Electrospray Ionization. J. Food Prot. 2009, 72, 1321–1326.
[CrossRef]
178. Srinivasan, U.; Bala, A.; Jao, S.-C.; Starke, D.W.; Jordan, T.W.; Mieyal, J.J. Selective Inactivation of Glutaredoxin by Sporidesmin and Other Epidithiopiperazinediones. Biochemistry 2006, 45, 8978–8987. [CrossRef]
179. Bradford, H.F.; Norris, P.J.; Smith, C.C. Changes in transmitter release patterns in vitro induced by tremorgenic mycotoxins. J.
Environ. Pathol. Toxicol. Oncol. 1990, 10, 17–30.
180. Boysen, S.R.; Rozanski, E.A.; Chan, D.L.; Grobe, T.L.; Fallon, M.J.; Rush, J.E. Tremorgenic mycotoxicosis in four dogs from a single household. J. Am. Veter Med. Assoc. 2002, 221, 1441–1444. [CrossRef] [PubMed]
181. Maragos, C.M.; Busman, M.; Plattner, R.D. Development of monoclonal antibodies for the fusarin mycotoxins. Food Addit. Contam.
Part. A 2007, 25, 105–114. [CrossRef]
182. Kleigrewe, K.; Aydin, F.; Hogrefe, K.; Piecuch, P.; Bergander, K.; Würthwein, E.U.; Humpf, H.U. Structure Elucidation of New
Fusarins Revealing Insights in the Rearrangement Mechanisms of theFusariumMycotoxin Fusarin C. J. Agric. Food Chem. 2012, 60,
5497–5505. [CrossRef]
183. Behrens, M.I.; Koh, J.; Canzoniero, L.M.T.; Sensi, S.L.; Csernansky, C.A.; Choi, D.W. 3-Nitropropionic acid induces apoptosis in cultured striatal and cortical neurons. NeuroReport 1995, 6, 545–548. [CrossRef] [PubMed]
184. Patoˇcka, J.; Bielavský, J.; Cabal, J.; Fusek, J. 3-Nitropropionic Acid and Similar Nitrotoxins. Acta Medica 2000, 43, 9–13. [CrossRef]
[PubMed]
185. Peraica, M.; Radi´c, B.; Luci´c, A.; Pavlovi´c, M. Toxic effects of mycotoxins in humans. Bull. World Heal. Organ. 1999, 77, 754–766.
186. Ludolph, A.; He, F.; Spencer, P.; Hammerstad, J.; Sabri, M. 3-Nitropropionic Acid—Exogenous Animal Neurotoxin and Possible
Human Striatal Toxin. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1991, 18, 492–498. [CrossRef]
187. Ueno, Y. Hepatotoxicity of cyclochlorotine—A cyclic peptide produced by Penicillium islandicum. Πриклaднaя Биoхимия И
Микрoбиoлoгия 1992, 28, 899–906.
188. Zhou, Z.-H.; Komiyama, M.; Terao, K.; Shimada, Y. Effects of cyclochlorotine on myofibrils in cardiomyocytes and on actin filament bundles in fibroblasts in vitro. Nat. Toxins 1994, 2, 378–385. [CrossRef] [PubMed]
189. Masuda, T.; Ito, J.; Akuzawa, S.; Ishii, K.; Takagi, H.; Ueno, Y. Hepatic accumulation and hepatotoxicity of luteoskyrin in mice.
Toxicol. Lett. 1992, 61, 9–20.
190. Mori, S.; Sugihara, Y.; Kitagawa, A.; Kawai, K.; Nozawa, Y.; Ogihara, Y. The respiration-impairing effect of rubroskyrin, a toxic metabolite. Mycotoxin Res. 1996, 12, 91–98. [CrossRef] [PubMed]
191. Upreti, G.; Jain, M.K. Interaction of sporidesmin, a mycotoxin from Pithomyces chartarum, with lipid bilayers. Biosci. Rep. 1993,
13, 233–243. [CrossRef]
192. Smith, B. Effects of low dose rates of sporidesmin given orally to sheep. New Zealand Veter J. 2000, 48, 176–181. [CrossRef]
[PubMed]
193. Munday, R. Studies on the mechanism of toxicity of the mycotoxin, sporidesmin. V. Generation of hydroxyl radical by sporidesmin.
J. Appl. Toxicol. 1987, 7, 17–22. [CrossRef]
194. Scholl, P.F.; Groopman, J.D. Long-term Stability of Human Aflatoxin B1 Albumin Adducts Assessed by Isotope Dilution Mass
Spectrometry and High-Performance Liquid Chromatography-Fluorescence. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1436–1439.
[CrossRef] [PubMed]
195. Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin. Toxicol. Appl. Pharmacol. 2005, 207, 103–111. [CrossRef]
196. Liu, B.-H.; Wu, T.-S.; Yu, F.-Y.; Wang, C.-H. Mycotoxin Patulin Activates the p38 Kinase and JNK Signaling Pathways in Human
Embryonic Kidney Cells. Toxicol. Sci. 2005, 89, 423–430. [CrossRef] [PubMed]
197. Hanumegowda, U.M.; Dhulipala, V.C.; Reddy, C.S. Mechanism of secalonic acid D-induced inhibition of transcription factor binding to cyclic AMP response element in the developing murine palate. Toxicol. Sci. 2002, 70, 55–62. [CrossRef]
198. Moldes-Anaya, A.S.; Fonnum, F.; Eriksen, G.S.; Rundberget, T.; Walaas, S.I.; Wigestrand, M.B. In vitro neuropharmacological evaluation of penitrem-induced tremorgenic syndromes: Importance of the GABAergic system. Neurochem. Int. 2011, 59,
1074–1081. [CrossRef]
199. Bruneau, J.C.; Stack, E.; O’Kennedy, R.; Loscher, C.E. Aflatoxins B1, B2 and G1 modulate cytokine secretion and cell surface marker expression in J774A.1 murine macrophages. Toxicol. Vitr. 2012, 26, 686–693. [CrossRef]
200. Kiessling, K.-H. Biochemical mechanism of action of mycotoxins. Pure Appl. Chem. 1986, 58, 327–338. [CrossRef]
201. Tonshin, A.A.; Teplova, V.V.; Andersson, M.A.; Salkinoja-Salonen, M.S. The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis.
Toxicology 2010, 276, 49–57. [CrossRef] [PubMed]
202. Zbib, N.; Repussard, C.; Tardieu, D.; Priymenko, N.; Domange, C.; Guerre, P. Toxicity of endophyte-infected ryegrass hay containing high ergovaline level in lactating ewes. J. Anim. Sci. 2015, 93, 4098–4109. [CrossRef] [PubMed]
203. Zhu, C.-C.; Hou, Y.-J.; Han, J.; Liu, H.-L.; Cui, X.-S.; Kim, N.-H.; Sun, S.-C. Effect of Mycotoxin-Containing Diets on Epigenetic
Modifications of Mouse Oocytes by Fluorescence Microscopy Analysis. Microsc. Microanal. 2014, 20, 1158–1166. [CrossRef]
[PubMed]
204. Tripathi, R.K.; Misra, R.S. Effect of aflatoxin B1 on chromatin-bound ribonucleic acid polymerase and nucleic acid and protein synthesis in germinating maize seeds. Appl. Environ. Microbiol. 1981, 42, 389–393. [CrossRef]
205. Tashiro, F.; Hiral, K.; Ueno, Y. Inhibitory effects of carcinogenic mycotoxins on deoxyribonucleic acid-dependent ribonucleic acid polymerase and ribonuclease H. Appl. Environ. Microbiol. 1979, 38, 191–196. [CrossRef]
206. Al-Hammadi, S.; Marzouqi, F.; Al-Mansouri, A.; Shahin, A.; Al-Shamsi, M.; Brown, E.M.; Souid, A.-K. The Cytotoxicity of
Aflatoxin B1 in Human Lymphocytes. Sultan Qaboos Univ. Med. J. 2014, 14, 65–71. [CrossRef] [PubMed]
207. Scallet, A.C.; Haley, R.L.; Scallet, D.M.; Duhart, H.M.; Binienda, Z.K. 3-nitropropionic acid inhibition of succinate dehydrogenase (complex II) activity in cultured Chinese hamster ovary cells: Antagonism by L-carnitine. Ann. N. Y. Acad. Sci. 2003, 993, 305–312, discussion 345–309. [CrossRef]
208. Kruglov, A.G.; Andersson, M.A.; Mikkola, R.; Roivainen, M.; Kredics, L.; Saris, N.-E.L.; Salkinoja-Salonen, M.S. Novel Mycotoxin fromAcremonium exuviarumIs a Powerful Inhibitor of the Mitochondrial Respiratory Chain Complex III. Chem. Res. Toxicol.
2009, 22, 565–573. [CrossRef]
209. Domijan, A.-M.; Abramov, A. Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—Implication to mechanism of cell toxicity. Int. J. Biochem. Cell Biol. 2011, 43, 897–904. [CrossRef] [PubMed]
210. Adeyeye, S.A.O. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 709–721. [CrossRef]
211. Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of ozone for degradation of mycotoxins in food: A review. Compr. Rev. Food Sci.
Food Saf. 2020, 19, 1777–1808. [CrossRef] [PubMed]
212. Asoegwu, C.R.; Chibueze, G.A.; Nelson, K.C.T.; Orji, C.G.; Nwosu, O.U.; Egbufor, U.C.; Chinaza, G.A. A Review on the Role of
Biofertilizers In Reducing Soil Pollution and Increasing Soil Nutrients. Himal. J. Agric. 2020, 1, 34–38.
213. Ahaotu, N.N.; Ibeabuchi, C.J.; Agunwa, I.; Echeta, C.K.; Awuchi, C.G.; Ohia, P. Antinutritional and phytochemical composition of fermented condiment (Ogiri) made from Sandbox (Hura crepitan) Seed. Eur. Acad. Res. 2020, 8, 1871–1883.
214. Nnennaya, A.N.; Kate, E.C.; Evelyn, B.N.; Godswill, A.C.; Linda, A.C.; Julian, I.C.; Moses, O. Study on the nutritional and chemical composition of “Ogiri” condiment made from sandbox seed (Hura crepitans) as affected by fermentation time. GSC Biol.
Pharm. Sci. 2020, 11, 105–113. [CrossRef]
215. Natumanya, P.; Twinomuhwezi, H.; Igwe, V.S.; Maryam, S.; Awuchi, C.G. Effects of Drying Techniques on Nutrient Retention and Phytochemicals in Selected Vegetables. Eur. J. Agric. Food Sci. 2021, 3, 5–14. [CrossRef]
216. Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control. 2018, 89, 123–132. [CrossRef]
217. Mishra, H.N.; Das, C. A Review on Biological Control and Metabolism of Aflatoxin. Crit. Rev. Food Sci. Nutr. 2003, 43, 245–264.
[CrossRef]
218. Wagacha, J.; Muthomi, J. Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [CrossRef] [PubMed]
219. Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize. Annu. Rev. Phytopathol. 2003, 41, 99–116.
[CrossRef] [PubMed]
220. Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control. 2019, 106, 106731. [CrossRef]
221. Alberts, J.; Lilly, M.; Rheeder, J.; Burger, H.-M.; Shephard, G.S.; Gelderblom, W. Technological and community-based methods to reduce mycotoxin exposure. Food Control. 2017, 73, 101–109. [CrossRef]
222. Polonelli, L.; Giovati, L.; Magliani, W.; Conti, S.; Sforza, S.; Calabretta, A.; Casoli, C.; Ronzi, P.; Grilli, E.; Gallo, A.; et al. Vaccination of Lactating Dairy Cows for the Prevention of Aflatoxin B1 Carry Over in Milk. PLoS ONE 2011, 6, e26777. [CrossRef]
223. Brown, R.L.; Menkir, A.; Chen, Z.-Y.; Bhatnagar, D.; Yu, J.; Yao, H.; Cleveland, T.E. Breeding aflatoxin-resistant maize lines using recent advances in technologies—A review. Food Addit. Contam. Part. A 2013, 30, 1382–1391. [CrossRef]
224. Yang, J.; Li, J.; Jiang, Y.; Duan, X.; Qu, H.; Yang, B.; Chen, F.; Sivakumar, D. Natural Occurrence, Analysis, and Prevention of
Mycotoxins in Fruits and their Processed Products. Crit. Rev. Food Sci. Nutr. 2014, 54, 64–83. [CrossRef] [PubMed]
225. Giovati, L.; Gallo, A.; Masoero, F.; Cerioli, C.; Ciociola, T.; Conti, S.; Magliani, W.; Polonelli, L. Vaccination of Heifers with
Anaflatoxin Improves the Reduction of Aflatoxin B1 Carry Over in Milk of Lactating Dairy Cows. PLoS ONE 2014, 9, e94440.
[CrossRef]
226. Magan, N.; Aldred, D.; Mylona, K.; Lambert, R.J. Limiting mycotoxins in stored wheat. Food Addit. Contam. Part. A 2010, 27,
644–650. [CrossRef]
227. Chulze, S. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part. A 2010, 27, 651–657.
[CrossRef]
228. Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as anAlternative Approach for Mycotoxin Risk
Reductionin Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [CrossRef]
229. Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119,
131–139. [CrossRef] [PubMed]
230. Alexa, E.; Dehelean, C.A.; Poiana, M.-A.; Radulov, I.; Cimpean, A.-M.; Bordean, D.-M.; Tulcan, C.; Pop, G. The occurrence of mycotoxins in wheat from western Romania and histopathological impact as effect of feed intake. Chem. Central J. 2013, 7, 99.
[CrossRef]
231. Lyagin, I.; Efremenko, E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action.
Molecules 2019, 24, 2362. [CrossRef]
232. Chinaza, G.A.; Chibueze, G.A. Physiological Effects of Plastic Wastes on the Endocrine System (Bisphenol A, Phthalates, Bisphenol
S, PBDEs, TBBPA). Int. J. Bioinform. Comput. Biol. 2019, 4, 11–29.
233. Chinaza, G.A.; Igwe, V.S.; Amagwula, I.O. Ready-to-Use Therapeutic Foods (RUTFs) for Remedying Malnutrition and Preventable
Nutritional Diseases. Int. J. Adv. Acad. Res. 2020, 6, 47–81.
234. Wang, L.; Wu, J.; Liu, Z.; Shi, Y.; Liu, J.; Xu, X.; Hao, S.; Mu, P.; Deng, F.; Deng, Y. Aflatoxin B1 Degradation and Detoxification by
Escherichia coli CG1061 Isolated From Chicken Cecum. Front. Pharmacol. 2019, 9, 1–9. [CrossRef]
235. Chinaza, G.A. Proximate Composition and Functional Properties of Different Grain Flour Composites for Industrial Applications.
Int. J. Food Sci. 2019, 2, 43–64.
236. Hassan, Y.; Zhou, T. Addressing the mycotoxin deoxynivalenol contamination with soil-derived bacterial and enzymatic transformations targeting the C3 carbon. World Mycotoxin J. 2018, 11, 101–112. [CrossRef]
237. Xia, X.; Zhang, Y.; Li, M.; Garba, B.; Zhang, Q.; Wang, Y.; Zhang, H.; Li, P. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B 1 biodegradation capability. Food Control. 2017, 75, 92–98. [CrossRef]
238. Kabak, B.; Var, I. Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J.
Environ. Sci. Heal. Part. B 2008, 43, 617–624. [CrossRef] [PubMed]
239. Gerbaldo, G.A.; Barberis, C.; Pascual, L.; Dalcero, A.; Barberis, L. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiol. Lett. 2012, 332, 27–33. [CrossRef]
240. Prado, G.; Madeira, J.E.G.C.; Morais, V.A.D.; Oliveira, M.S.; Souza, R.A.; Peluzio, J.M.; Godoy, I.J.; Silva, J.F.M.; Pimenta, R.S.
Reduction of Aflatoxin B1 in Stored Peanuts (Arachis hypogaea L.) Using Saccharomyces cerevisiae. J. Food Prot. 2011, 74,
1003–1006. [CrossRef] [PubMed]
241. Zhang, Z.; Li, M.; Wu, C.; Peng, B. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. J. Food Sci.
Technol. 2019, 56, 2326–2331. [CrossRef]
242. Wu, F.; Mitchell, N.J.; Male, D.; Kensler, T.W. Reduced Foodborne Toxin Exposure Is a Benefit of Improving Dietary Diversity.
Toxicol. Sci. 2014, 141, 329–334. [CrossRef] [PubMed]
243. Magoha, H.S.; Kimanya, M.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern. Child. Nutr. 2016, 12, 516–527. [CrossRef]
244. Cvetni´c, Z.; Pepeljnjak, S. Interaction Between Certain Moulds and Aflatoxin B1 Producer Aspergillus Flavus NRRL. Arch. Ind.
Hyg. Toxicol. 2007, 58, 429–434. [CrossRef]
245. Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B.; Shivakumara, P.; Kumar, J.S.; Raghava, S.; Avinash, P.; Shirin, M.; Bharathi,
T.R.; Rajini, S.B.; et al. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. J. Sci.
Food Agric. 2017, 97, 1698–1707. [CrossRef] [PubMed]
246. Adebo, O.A.; Kayitesi, E.; Njobeh, P.B. Reduction of Mycotoxins during Fermentation of Whole Grain Sorghum to Whole Grain
Ting (a Southern African Food). Toxins 2019, 11, 180. [CrossRef]
247. Tilocca, B.; Balmas, V.; Hassan, Z.U.; Jaoua, S.; Migheli, Q. A proteomic investigation of Aspergillus carbonarius exposed to yeast volatilome or to its major component 2-phenylethanol reveals major shifts in fungal metabolism. Int. J. Food Microbiol. 2019, 306,
108265. [CrossRef]
248. Liu, Y.; Chang, J.; Wang, P.; Yin, Q.-Q.; Huang, W.-W.; Liu, C.-Q.; Bai, X.-X.; Zhu, Q.; Gao, T.-Z.; Zhou, P. Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol. AMB Express 2019, 9, 1–11.
[CrossRef]
249. Mendieta, C.R.; Gómez, G.V.; Del Río, J.C.G.; Cuevas, A.C.; Arce, J.M.; Ávila, E.G. Effect of the Addition of Saccharomyces
Cerevisiae Yeast Cell Walls to Diets with Mycotoxins on the Performance and Immune Responses of Broilers. J. Poult. Sci. 2018,
55, 38–46. [CrossRef]
250. Yang, Q.; Wang, J.; Zhang, H.; Li, C.; Zhang, X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. World Mycotoxin J. 2016, 9, 269–278. [CrossRef]
251. Awuchi, C.G.; Igwe, V.S.; Echeta, C.K. The Functional Properties of Foods and Flours. Int. J. Adv. Acad. Res. 2019, 5, 139–160.
252. Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of
Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins 2017, 9, 19. [CrossRef]
253. Chinaza, G.A.; Clifford, I.O.; Chika, C.O.; Victory, S.I. Evaluation of Patulin Levels and impacts on the Physical Characteristics of
Grains. Int. J. Adv. Acad. Res. 2019, 5, 10–25.
254. Gonçalves, A.; Gkrillas, A.; Dorne, J.L.; Dall’Asta, C.; Palumbo, R.; Lima, N.; Battilani, P.; Venâncio, A.; Giorni, P. Pre- and
Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr. Rev. Food Sci. Food Saf. 2019, 18,
441–454. [CrossRef] [PubMed]
255. Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control. 2017, 78, 412–425. [CrossRef]
256. Shanakhat, H.; Sorrentino, A.; Raiola, A.; Romano, A.; Masi, P.; Cavella, S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: An overview. J. Sci. Food Agric. 2018, 98, 4003–4013. [CrossRef]
257. Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205.
[CrossRef]
258. Kalagatur, N.K.; Kamasani, J.R.; Mudili, V. Assessment of Detoxification Efficacy of Irradiation on Zearalenone Mycotoxin in
Various Fruit Juices by Response Surface Methodology and Elucidation of Its in-vitro Toxicity. Front. Microbiol. 2018, 9, 2937.
[CrossRef] [PubMed]
259. Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins 2019, 11, 328. [CrossRef]
260. Pereyra, M.G.; Martínez, M.; Cavaglieri, L. Presence of aiiA homologue genes encoding for N-Acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives. Food Chem. Toxicol. 2019, 124,
316–323. [CrossRef]
261. Alizadeh, A.M.; Hashempour-Baltork, F.; Khaneghah, A.M.; Hosseini, H. New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr. Opin. Food Sci. 2021, 39, 7–15. [CrossRef]
262. Wielogorska, E.; Ahmed, Y.; Meneely, J.; Graham, W.G.; Elliott, C.T.; Gilmore, B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019, 301,
125281. [CrossRef] [PubMed]
263. Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008, 25, 626–632. [CrossRef] [PubMed]
264. Hojnik, N.; Modic, M.; Tavˇcar-Kalcher, G.; Babiˇc, J.; Walsh, J.L.; Cvelbar, U. Mycotoxin Decontamination Efficacy of Atmospheric
Pressure Air Plasma. Toxins 2019, 11, 219. [CrossRef] [PubMed]
265. Awuchi, C.G.; Echeta, K.C. Current Developments in Sugar Alcohols: Chemistry, Nutrition, and Health Concerns of Sorbitol,
Xylitol, Glycerol, Arabitol, Inositol, Maltitol, and Lactitol. Int. J. Adv. Acad. Res. 2019, 5, 1–33.
266. Somtochukwu, I.V.; Chinenyenwa, O.G.; Godswill, A.C.; Ibrahim, K.M.; Uchenna, O.N.; Otuosorochi, A.I. Ethyl Carbamate in
Burukutu Produced from Different Sorghum Varieties Under Varying Storage Conditions Using Response Surface Methodology.
Am. J. Food Sci. Nutr. 2018, 5, 82–88.
267. Somtochukwu, I.V.; Chinenyenwa, O.G.; Godswill, A.C.; Ibrahim, K.M.; Uchenna, O.N.; Otuosorochi, A.I. Effect of Storage
Conditions on the Methanol Content of Burukutu Produced from Different Sorghum Varieties; a Response Surface Methodology
Approach. Am. J. Food Nutr. Health 2018, 3, 42–47.
268. Chinaza, G.A.; Ikechukwu, O.A.; Victory, S.I.; Allan, I.G. Effects of Repeated Deep Frying on Refractive Index and Peroxide Value of Selected Vegetable Oils. Int. J. Adv. Acad. Res. 2018, 4, 106–119.
269. Awuchi, C.G.; Nwankwere, E.T. Residual Calcium Content of Sweet Potato Slices after Osmotic Pre-treatment with Salt (NaCl)
Solution. Am. J. Food Nutr. Health 2018, 3, 8–15.
270. Awuchi, C.G. Sugar Alcohols: Chemistry, Production, Health Concerns and Nutritional Importance of Mannitol, Sorbitol, Xylitol, and Erythritol. Int. J. Adv. Acad. Res. 2017, 3, 31–66.
271. Udeogu, E.; Awuchi, C.G. Effect of Processing on Hemagglutinin Activity of Lectin Extracts from Selected Cereals and Legumes.
Int. J. Adv. Acad. Res. 2016, 2, 24–59.
272. Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [CrossRef] [PubMed]
273. Kamala, A.; Kimanya, M.; Haesaert, G.; Tiisekwa, B.; Madege, R.; Degraeve, S.; Cyprian, C.; De Meulenaer, B. Local post-harvest practices associated with aflatoxin and fumonisin contamination of maize in three agro ecological zones of Tanzania. Food Addit.
Contam. Part. A 2016, 33, 551–559. [CrossRef] [PubMed]
274. Francesconi, S.; Steiner, B.; Buerstmayr, H.; Lemmens, M.; Sulyok, M.; Balestra, G.M. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat
Genotypes. Molecules 2020, 25, 4752. [CrossRef]
275. Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduceFusarium head blight and mycotoxin contamination in wheat. PLoS
ONE 2019, 14, e0220562. [CrossRef] [PubMed]
276. Solís-Cruz, B.; Hernández-Patlán, D.; Beyssac, E.; Latorre, J.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; LópezArellano, R. Evaluation of Chitosan and Cellulosic Polymers as Binding Adsorbent Materials to Prevent Aflatoxin B1, Fumonisin
B1, Ochratoxin, Trichothecene, Deoxynivalenol, and Zearalenone Mycotoxicoses Through an In Vitro Gastrointestinal Model for
Poultry. Polymers 2017, 9, 529. [CrossRef] [PubMed]
277. Pirouz, A.A.; Selamat, J.; Iqbal, S.Z.; Samsudin, N.I.P. Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins 2020, 12, 115. [CrossRef]
278. Zachetti, V.G.L.; Cendoya, E.; Nichea, M.J.; Chulze, S.N.; Ramirez, M.L. Preliminary Study on the Use of Chitosan as an
Eco-Friendly Alternative to Control Fusarium Growth and Mycotoxin Production on Maize and Wheat. Pathogens 2019, 8, 29.
[CrossRef]
279. Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; De Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous Ozonation to Reduce
Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms 2019, 7, 220. [CrossRef]
280. Piemontese, L.; Messia, M.C.; Marconi, E.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Perrone, G.; Solfrizzo, M. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina. Food Addit. Contam.
Part. A 2018, 35, 761–772. [CrossRef]
281. Li, M.; Guan, E.; Bian, K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit.
Contam. Part. A 2014, 32, 544–553. [CrossRef]
282. Okpala, C.O.R. Ozone delivery on food materials incorporating some bio-based processes: A succinct synopsis. Adv. Mater. Proc.
2017, 2, 469–478. [CrossRef]
283. Okpala, C.O.R. Changes in some biochemical and microbiological properties of ozone-processed shrimp: Effects of increased ozone discharge combined with iced storage. J. Food Nutr. Res. 2018, 57, 48–56.
284. Pandiselvam, R.; Sunoj, S.; Manikantan, M.R.; Kothakota, A.; Hebbar, K.B. Application and Kinetics of Ozone in Food Preservation.
Ozone Sci. Eng. 2016, 39, 115–126. [CrossRef]
285. Li, M.; Guan, E.; Bian, K. Structure Elucidation and Toxicity Analysis of the Degradation Products of Deoxynivalenol by Gaseous
Ozone. Toxins 2019, 11, 474. [CrossRef] [PubMed]
286. Agriopoulou, S.; Koliadima, A.; Karaiskakis, G.; Kapolos, J. Kinetic study of aflatoxins’ degradation in the presence of ozone.
Food Control. 2016, 61, 221–226. [CrossRef]
287. Luo, X.; Wang, R.; Wang, L.; Li, Y.; Wang, Y.; Chen, Z. Detoxification of aflatoxin in corn flour by ozone. J. Sci. Food Agric. 2014, 94,
2253–2258. [CrossRef]
288. Jalili, M. A review on aflatoxins reduction in food. Iran. J. Health Saf. Environ. 2016, 3, 445–459.
289. Wang, L.; Luo, Y.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Shao, H.; Chen, Z. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control. 2016, 66, 137–144. [CrossRef]
290. Brodowska, A.J.; Nowak, A.; Smigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and ´ applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [CrossRef]
291. Öztekin, S.; Zorlugenç, B.; Zorlugenç, F.K. Effects of ozone treatment on microflora of dried figs. J. Food Eng. 2006, 75, 396–399.
[CrossRef]
292. Palou, L.; Smilanick, J.L.; Crisosto, C.H.; Mansour, M. Effect of Gaseous Ozone Exposure on the Development of Green and Blue
Molds on Cold Stored Citrus Fruit. Plant. Dis. 2001, 85, 632–638. [CrossRef]
293. Wu, J.; Doan, H.; Cuenca, M.A. Investigation of gaseous ozone as an anti-fungal fumigant for stored wheat. J. Chem. Technol.
Biotechnol. 2006, 81, 1288–1293. [CrossRef]
294. Young, J.C.; Zhu, H.; Zhou, T. Degradation of trichothecene mycotoxins by aqueous ozone. Food Chem. Toxicol. 2006, 44, 417–424.
[CrossRef]
295. Inan, F.; Pala, M.; Doymaz, I. Use of ozone in detoxification of aflatoxin B1 in red pepper. J. Stored Prod. Res. 2007, 43, 425–429.
[CrossRef]
296. Zorlugenç, B.; Zorlugenç, F.K.; Öztekin, S.; Evliya, I.B. The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs. Food Chem. Toxicol. 2008, 46, 3593–3597. [CrossRef] [PubMed]
297. Ji, J.; Xie, W. Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater.
2020, 381, 120915. [CrossRef]
298. Bankole, S.A. Effect of ethylene oxide and methyl formate fumigation on seeds mycoflora and germination of some stored oil seeds in Nigeria. Crop. Res. 1996, 11, 224–227.
299. Kavita, W.; Reddy, M.U. Effect of chemicals on aflatoxin B1production, germination and viability in maize and groundnuts. J. Res.
Angrau 2000, 28, 57–64.
300. Tarazona, A.; Gómez, J.V.; Mateo, E.M.; Jiménez, M.; Mateo, F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int. J. Food Microbiol. 2019, 306, 108259.
[CrossRef] [PubMed]
301. Zhou, Y.; Wu, S.; Wang, F.; Li, Q.; He, C.; Duan, N.; Wang, Z. Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@ TiO2 composite. Chemosphere 2020, 238, 124648.
[CrossRef] [PubMed]
302. González-Jartín, J.M.; Alves, L.D.C.; Alfonso, A.; Piñeiro, Y.; Vilar, S.Y.; Gomez, M.G.; Osorio, Z.V.; Sainz, M.J.; Vieytes, M.R.;
Rivas, J.; et al. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem. 2019, 294, 60–66. [CrossRef]
303. Chaudhari, A.K.; Dwivedy, A.K.; Singh, V.K.; Das, S.; Singh, A.; Dubey, N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation.
Environ. Sci. Pollut. Res. 2019, 26, 25414–25431. [CrossRef] [PubMed]
304. Perczak, A.; Ju´s, K.; Gwiazdowska, D.; Marchwi ´nska, K.; Wa´skiewicz, A. The Efficiency of Deoxynivalenol Degradation by
Essential Oils under In Vitro Conditions. Foods 2019, 8, 403. [CrossRef] [PubMed]
305. Aiko, V.; Mehta, A. Occurrence, detection and detoxification of mycotoxins. J. Biosci. 2015, 40, 943–954. [CrossRef]
306. Sánchez-Montero, L.; Córdoba, J.J.; Alía, A.; Peromingo, B.; Núñez, F. Effect of Spanish smoked paprika “Pimentón de La Vera” on control of ochratoxin A and aflatoxins production on a dry-cured meat model system. Int. J. Food Microbiol. 2019, 308, 108303.
[CrossRef]
307. Kollia, E.; Proestos, C.; Zoumpoulakis, P.; Markaki, P. Capsaicin, an inhibitor of Ochratoxin A production by Aspergillus section
Nigri strains in grapes (Vitis vinifera L.). Food Addit. Contam. Part. A 2019, 36, 1709–1721. [CrossRef] [PubMed]
308. Kalagatur, N.K.; Kamasani, J.R.; Mudili, V.; Krishna, K.; Chauhan, O.P.; Sreepathi, M.H. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 2018, 21, 53–59. [CrossRef]
309. Timmermans, R.; Hayrapetyan, H.; Vollebregt, M.; Dijksterhuis, J. Comparing thermal inactivation to a combined process of moderate heat and high pressure: Effect on ascospores in strawberry puree. Int. J. Food Microbiol. 2020, 325, 108629. [CrossRef]
[PubMed]
310. Suchanek, M.; Olejniczak, Z. Low field MRI study of the potato cell membrane electroporation by pulsed electric field. J. Food
Eng. 2018, 231, 54–60. [CrossRef]
311. Vijayalakshmi, S.; Nadanasabhapathi, S.; Kumar, R.; Kumar, S.S. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology. J. Food Sci. Technol. 2018, 55, 868–878. [CrossRef]
312. Zhong, C.; Guan, X.; Fan, Z.; Song, W.; Chen, R.; Wang, Y.; Sun, X.; He, S. Pulsed electric field disinfection treatment of Fusarium oxysporum in nutrient solution. Water Supply 2019, 19, 2116–2122. [CrossRef]
313. Rudik, F.Y.; Morgunova, N.L.; Krasnikova, E.S. Decontamination of grain by ultrasound. IOP Conf. Ser. Earth Environ. Sci. IOP
Conf. Ser. Earth Environ. Sci. 2020, 421, 022022. [CrossRef]
314. Del Villalobos, M.; Serradilla, M.J.; Martín, A.; Ruíz-Moyano, S.; Casquete, R.; Hernández, A.; Córdoba, M.G. Use of efficient drying methods to improve the safety and quality of dried fig. J. Food Process. Preserv. 2018, 43, e13853. [CrossRef]