Author details:
The purpose of this review is to present information about the role of activation of aflatoxins and other mycotoxins, of the aryl hydrocarbon receptor (AhR) pathway. Aflatoxins and other mycotoxins are a diverse group of secondary metabolites that can be contaminants in a broad range of agricultural products and feeds. Some species of Aspergillus, Alternaria, Penicilium, and Fusarium are major producers of mycotoxins, some of which are toxic and carcinogenic. Several aflatoxins are planar molecules that can activate the AhR. AhR participates in the detoxification of several xenobiotic substances and activates phase I and phase II detoxification pathways. But it is important to recognize that AhR activation also affects differentiation, cell adhesion, proliferation, and immune response among others. Any examination of the effects of aflatoxins and other toxins that act as activators to AhR must consider the potential of the disruption of several cellular functions in order to extend the perception thus far about the toxic and carcinogenic effects of these toxins. There have been no Reviews of existing data between the relation of AhR and aflatoxins and this one attempts to give information precisely about this dichotomy.
Keywords: Aspergillus, Alternaria, AFB1, alternariol (AOH), CYP1A1.
Andreoli, V., Gehrau, R. C., and Bocco, J. L. (2010). Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 62, 896–905. doi: 10.1002/iub.396
Ayed-Boussema, I., Pascussi, J. M., Maurel, P., Bacha, H., and Hassen, W. (2011). Activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes. Environ. Toxicol. Pharmacol. 31, 79–87. doi: 10.1016/j.etap.2010.09.008
Ayed-Boussema, I., Pascussi, J. M., Rjiba, K., Maurel, P., Bacha, H., and Hassen, W. (2012a). The mycotoxin, patulin, increases the expression of PXR and AhR and their target cytochrome P450s in primary cultured human hepatocytes. Drug Chem. Toxicol. 35, 241–250. doi: 10.3109/01480545.2011.592194
Ayed-Boussema, I., Pascussi, J. M., Zaied, C., Maurel, P., Bacha, H., and Hassen, W. (2012b). Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: a possible activation of nuclear receptors. Drug Chem. Toxicol. 35, 71–80. doi: 10.3109/01480545.2011. 589438
Bacsi, S. G., Reisz-Porszasz, S., and Hankinson, O. (1995). Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. Mol. Pharmacol. 47, 432–438.
Bennett, J. W., and Klich, M. (2003). Mycotoxins. Clin. Microbiol. Rev. 16, 497–516. doi: 10.1128/CMR.16.3.497-516.2003
Boon, P. E., Ruprich, J., Petersen, A., Moussavian, S., Debegnach, F., and van Klaveren, J. D. (2009). Harmonisation of food consumption data format for dietary exposure assessments of chemicals analysed in raw agricultural commodities. Food Chem. Toxicol. 47, 2883–2889. doi: 10.1016/j.fct.2009. 08.003
Bräse, S., Encinas, A., Keck, J., and Nising, C. F. (2009). Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 109, 3903–3990. doi: 10.1021/cr050001f
Brugger, E.-M., Wagner, J., Schumacher, D. M., Koch, K., Podlech, J., Metzler, M., et al. (2006). Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 164, 221–230. doi: 10.1016/j.toxlet.2006.01.001
Bryden, W. L. (2007). Mycotoxins in the food chain: human health implications. Asia Pac. J. Clin. Nutr. 16(Suppl. 1), 95–101. doi: 10.6133/apjcn.2007.16.s1.18
Burbach, K. M., Poland, A., and Bradfield, C. A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. U.S.A. 89, 8185–8189. doi: 10.1073/pnas.89.17.8185
Burkhardt, B., Jung, S. A., Pfeiffer, E., Weiss, C., and Metzler, M. (2012). Mouse hepatoma cell lines differing in aryl hydrocarbon receptor-mediated signaling have different activities for glucuronidation. Arch. Toxicol. 86, 643–649. doi: 10.1007/s00204-011-0789-8
Carver, L. A., LaPres, J. J., Jain, S., Dunham, E. E., and Bradfield, C. A. (1998). Characterization of the Ah receptor-associated protein, ARA9. J. Biol. Chem. 273, 33580–33587. doi: 10.1074/jbc.273.50.33580
Chapman-Smith, A., and Whitelaw, M. L. (2006). Novel DNA binding by a basic helix-loop-helix protein. The role of the dioxin receptor PAS domain. J. Biol. Chem. 281, 12535–12545. doi: 10.1074/jbc.M512145200
Chen, H. S., and Perdew, G. H. (1994). Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. J. Biol. Chem. 269, 27554–27558.
Conney, A. H., Miller, E. C., and Miller, J. A. (1957). Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J. Biol. Chem. 228, 753–766.
Cortez-Rocha, M. O., Ramírez-Astudillo, W. R., Sánchez-Mariñez, R. I., RosasBurgos, E. C., Wong-Corral, F. J., Borboa-Flores, J., et al. (2003). Fumonisins and fungal species in corn from Sonora, Mexico. Bull. Environ. Contam. Toxicol. 70, 668–673. doi: 10.1007/s00128-003-0036-y
Dall’Asta, C., Cirlini, M., and Falavigna, C. (2014). Mycotoxins from Alternaria: toxicological implications. Adv. Mol. Biol. 8, 107–121. doi: 10.1016/B978-0- 444-63406-1.00003-9
de Melo, F. T., de Oliveira, I. M., Greggio, S., Dacosta, J. C., Guecheva, T. N., Saffi, J., et al. (2012). DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food Chem. Toxicol. 50, 3548–3555. doi: 10.1016/j.fct. 2013.07.052
Dere, E., Lo, R., Celius, T., Matthews, J., and Zacharewski, T. R. (2011). Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 12:365. doi: 10.1186/1471-2164-12-365
Eastman, Q., and Grosschedl, R. (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233–240. doi: 10.1016/S0955-0674(99)80031-3
Eguchi, H., Hayashi, S., Watanabe, J., Gotoh, O., and Kawajiri, K. (1994). Molecular cloning of the human AH receptor gene promoter. Biochem. Biophys. Res. Commun. 203, 615–622. doi: 10.1006/bbrc.1994.2227
European Food Safety Authority [EFSA] (2005). Opinion of the Scientific Panel on contaminants in the food chain (CONTAM) related to fumonisins as undesirable substances in animal feed. EFSA J. 235, 1–32. doi: 10.2903/j.efsa. 2005.235
Fan, C., Cao, X., Liu, M., and Wang, W. (2016). Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography. J. Chromatogr. A 1436, 133–140. doi: 10.1016/j.chroma. 2016.01.069
Fehr, M., Pahlke, G., Fritz, J., Christensen, M. O., Boege, F., Altemöller, M., et al. (2009). Alternariol acts as a topoisomerase poison, preferentially affecting the II alpha isoform. Mol. Nutr. Food Res. 53, 441–451. doi: 10.1002/mnfr.20070 0379
Fleck, S. C., Burkhardt, B., Pfeiffer, E., and Metzler, M. (2012). Alternaria toxins: altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol. Lett. 214, 27–32. doi: 10.1016/j.toxlet.2012.08.003
Floyd, Z. E., Trausch-Azar, J. S., Reinstein, E., Ciechanover, A., and Schwartz, A. L. (2001). The nuclear ubiquitin-proteasome system degrades MyoD. J. Biol. Chem. 276, 22468–22475. doi: 10.1074/jbc.M009388200
Fujisawa-Sehara, A., Yamane, M., and Fujii-Kuriyama, Y. (1988). A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proc. Natl. Acad. Sci. U.S.A. 85, 5859–5863. doi: 10.1073/pnas.85.16.5859
Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S., and Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. J. Biol. Chem. 270, 29270–29278. doi: 10.1074/jbc.270.49.29270
García, S., and Heredia, N. (2006). Mycotoxins in Mexico: epidemiology, management, and control strategies. Mycopathologia 162, 255–264. doi: 10. 1007/s11046-006-0058-1
Gasiewicz, T. A., and Bauman, P. A. (1987). Heterogeneity of the rat hepatic Ah receptor and evidence for transformation in vitro and in vivo. J. Biol. Chem. 262, 2116–2120.
Gasiewicz, T. A., Henry, E. C., and Collins, L. L. (2008). Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit. Rev. Eukaryot. Gene Expr. 18, 279–321. doi: 10.1615/CritRevEukarGeneExpr.v18.i4.10
Gelderblom, W. C., Jaskiewicz, K., Marasas, W. F., Thiel, P. G., Horak, R. M., Vleggaar, R., et al. (1988). Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54, 1806–1811.
Gil-Serna, Y., Vázquez, C., González-Jaén, M. T., and Patiño, B. (2014). “Discrimination of the main ochratoxin A-producing species,” in Encyclopedia of Food Microbiology, 2nd Edn, Vol. 1, eds C. A. Batt, and M. A. Tortorello (London: Elsevier), 887–892.
Gu, Y.-Z., Hogenesch, J. B., and Bradfield, C. A. (2000). The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40, 519–561. doi: 10.1146/annurev.pharmtox.40.1.519
Hahn, M. E. (2002). Aryl hydrocarbon receptors: diversity and evolution. Chem. Biol. Interact. 141, 131–160. doi: 10.1016/S0009-2797(02)00070-4
Hanioka, N., Nonaka, Y., Saito, K., Negishi, T., Okamoto, K., Kataoka, H., et al. (2012). Effect of aflatoxin B1 on UDP-glucuronosyltransferase mRNA expression in HepG2 cells. Chemosphere 89, 526–529. doi: 10.1016/j. chemosphere.2012.05.039
Harper, J. W., Elledge, S. J., Keyomarsi, K., Dynlacht, B., Tsai, L. H., Zhang, P., et al. (1995). Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6, 387–400. doi: 10.1091/mbc.6.4.387
Harper, P. A., Riddick, D. S., and Okey, A. B. (2006). Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem. Pharmacol. 72, 267–279. doi: 10.1016/j.bcp.2006.01.007
Hendricks, J. D. (1994). “Carcinogenicity of aflatoxins in non-mammalian organisms,” in The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance, eds J. D. Eaton, and D. L. Groopman (New York, NY: Academic Press), 103–136. doi: 10.1016/b978-0-12-228255-3.50011-8
Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., et al. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954–958. doi: 10.1126/science.1852076
Huang, G., and Elferink, C. J. (2012). A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression. Mol. Pharmacol. 81, 338–347. doi: 10.1124/mol.111.075952 IARC (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 82, 1–556.
Ikuta, T., Eguchi, H., Tachibana, T., Yoneda, Y., and Kawajiri, K. (1998). Nuclear localization and export signals of the human aryl hydrocarbon receptor. J. Biol. Chem. 273, 2895–2904. doi: 10.1074/jbc.273.5.2895
Jackson, D. P., Joshi, A. D., and Elferink, C. J. (2015). Ah receptor pathway intricacies, signaling through diverse protein partners and DNA-motifs. Toxicol. Res. 4, 1143–1158. doi: 10.1039/C4TX00236A
Jackson, D. P., Li, H., Mitchell, K. A., Joshi, A. D., and Elferink, C. J. (2014). Ah receptor-mediated suppression of liver regeneration through NC-XREdriven p21Cip1 expression. Mol. Pharmacol. 85, 533–541. doi: 10.1124/mol.113. 089730
Jeng, Y.-M., and Hsu, H.-C. (2003). KLF6, a putative tumor suppressor gene, is mutated in astrocytic gliomas. Int. J. Cancer 105, 625–629. doi: 10.1002/ijc. 11123
Jones, P. B., Galeazzi, D. R., Fisher, J. M., and Whitlock, J. P. (1985). Control of cytochrome P1-450 gene expression by dioxin. Science 227, 1499–1502. doi: 10.1126/science.3856321
Jones, P. B., Miller, A. G., Israel, D. I., Galeazzi, D. R., and Whitlock, J. P. (1984). Biochemical and genetic analysis of variant mouse hepatoma cells which overtranscribe the cytochrome P1-450 gene in response to 2,3,7,8- tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 259, 12357–12363.
Kaestner, K. H., Hiemisch, H., Luckow, B., and Schütz, G. (1994). The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20, 377–385. doi: 10.1006/geno.1994.1191
Kensler, J. D., Roebuck, T. W., Wogan, B. D., and Groopman, G. N. (2011). Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Tox. Sci. 120, S28–S48. doi: 10.1093/toxsci/kfq283
Kimmig, J., and Schulz, K. H. (1957). Occupational acne (so-called chloracne) due to chlorinated aromatic cyclic ethers. Dermatologica 115, 540–546.
Kociba, R. J., Keyes, D. G., Beyer, J. E., Carreon, R. M., Wade, C. E., Dittenber, D. A., et al. (1978). Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol. Appl. Pharmacol. 46, 279–303. doi: 10.1016/0041-008X(78)90075-3
Koliopanos, A., Kleeff, J., Xiao, Y., Safe, S., Zimmermann, A., Büchler, M. W., et al. (2002). Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. Oncogene 21, 6059–6070. doi: 10.1038/ sj.onc.1205633
Korkalainen, M., Lindén, J., Tuomisto, J., and Pohjanvirta, R. (2005). Effect of TCDD on mRNA expression of genes encoding bHLH/PAS proteins in rat hypothalamus. Toxicology 208, 1–11. doi: 10.1016/j.tox.2004.11.003
Krska, R., Schubert-Ullrich, P., Molinelli, A., Sulyok, M., MacDonald, S., and Crews, C. (2008). Mycotoxin analysis: an update. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25, 152–163. doi: 10.1080/ 02652030701765723
Kuhn, D. M., and Ghannoum, M. A. (2003). Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin. Microbiol. Rev. 16, 144–172. doi: 10.1128/CMR.16.1.144-172.2003
Lee, H. B., Patriarca, A., and Magan, N. (2015). Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiology 43, 93–106. doi: 10.5941/ MYCO.2015.43.2.93
Lee, H. J., Pyo, M. C., Shin, H. S., Ryu, D., and Lee, K. W. (2018). Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem. Toxicol. 122, 59–68. doi: 10.1016/j.fct.2018.10.00
Lewis, D. F., Dickins, M., Eddershaw, P. J., Tarbit, M. H., and Goldfarb, P. S. (1999). Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries. Drug Metabol. Drug Interact. 15, 1–49.
Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., et al. (2005). Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 113, 1763–1767. doi: 10.1289/ehp.7998
Li, F. Q., Yoshizawa, T., Kawamura, O., Luo, X. Y., and Li, Y. W. (2001). Aflatoxins and fumonisins in corn from the high-incidence area for human hepatocellular carcinoma in Guangxi, China. J. Agric. Food Chem. 49, 4122–4126. doi: 10.1021/ jf010143k
Lin, P., Chang, H., Tsai, W. T., Wu, M. H., Liao, Y. S., Chen, J. T., et al. (2003). Overexpression of aryl hydrocarbon receptor in human lung carcinomas. Toxicol. Pathol. 31, 22–30. doi: 10.1080/01926230390173824
Lo, R. S., and Massagué, J. (1999). Ubiquitin-dependent degradation of TGF-betaactivated smad2. Nat. Cell Biol. 1, 472–478. doi: 10.1038/70258
Ma, Q. (2002). Induction and superinduction of 2,3,7,8-tetrachlorodibenzo-rhodioxin-inducible poly(ADP-ribose) polymerase: role of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator transcription activation domains and a labile transcription r. Arch. Biochem. Biophys. 404, 309–316. doi: 10.1016/S0003-9861(02)00339-9
Ma, Q., and Baldwin, K. T. (2000). 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activaton and DNA binding of AhR. J. Biol. Chem. 275, 8432–8438. doi: 10.1074/jbc.275.12.8432
Ma, Q., Dong, L., and Whitlock, J. P. (1995). Transcriptional activation by the mouse Ah receptor. Interplay between multiple stimulatory and inhibitory functions. J. Biol. Chem. 270, 12697–12703. doi: 10.1074/jbc.270.21. 12697
Ma, Q., and Whitlock, J. P. (1997). A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 272, 8878–8884. doi: 10.1074/jbc.272.14.8878
Mahon, M. J., and Gasiewicz, T. A. (1995). Ah receptor phosphorylation: localization of phosphorylation sites to the C-terminal half of the protein. Arch. Biochem. Biophys. 318, 166–174. doi: 10.1006/abbi.1995.1217
Mally, A. (2012). Ochratoxin A and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol. Sci. 127, 315–330. doi: 10.1093/toxsci/kfs105
Manzini, L., Halwachs, S., Girolami, F., Badino, P., Honscha, W., and Nebbia, C. (2017). Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB in a MDCKII in vitro model. J. Vet. Pharmacol. Ther. 40, 591–598. doi: 10.1111/jvp.12397
Marasas, W. F. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environ. Health Perspect. 109(Suppl. 2), 239–243. doi: 10.1289/ehp. 01109s2239
Marin, V., Ramos, S., Cano-Sancho, A. J., and Sanchis, G. (2013). Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 60, 218–237. doi: 10.1016/j.fct.2013.07.047
Martínez-Larrañaga, M. R., Anadon, A., Díaz, M. J., Fernández, R., Sevil, B., Fernández-Cruz, M. L., et al. (1996). Induction of cytochrome P4501A1 and P4504A1 activities and peroxisomal proliferation by fumonisin B1. Toxicol. Appl. Pharmacol. 141, 185–194. doi: 10.1006/taap.1996.0275
Mary, V. S., Theumer, M. G., Arias, S. L., and Rubinstein, H. R. (2012). Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302, 299–307. doi: 10.1016/j.tox.2012.08.012
Mary, V. S., Valdehita, A., Navas, J. M., Rubinstein, H. R., and Fernández-Cruz, M. L. (2015). Effects of aflatoxin B1, fumonisin B1 and their mixture on the aryl hydrocarbon receptor and cytochrome P450 1A induction. Food Chem. Toxicol. 75, 104–111. doi: 10.1016/j.fct.2014.10.030
McEvilly, R., Erkman, J. L., Luo, L., Sawchenko, P. E., Ryan, A. F., and Rosenfeld, M. G. (1996). Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577. doi: 10.1038/384574a0
McKinley, E. R., and Carlton, W. W. (1980). Patulin mycotoxicosis in Swiss ICR mice. Food Cosmet. Toxicol. 18, 181–187. doi: 10.1016/0015-6264(80)90072-3
Merrick, B. A., Phadke, D. P., Auerbach, S. S., Mav, D., Stiegelmeyer, S. M., Shah, R. R., et al. (2013). RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats. PLoS One 8:61768. doi: 10.1371/journal. pone.0061768
Meyer, B. K., Pray-Grant, M. G., Vanden Heuvel, J. P., and Perdew, G. H. (1998). Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell Biol. 18, 978–988. doi: 10.1128/mcb.18.2.978
Missmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill, A. H. Jr., Rothman, K. J., et al. (2006). Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 114, 237–241. doi: 10.1289/ehp.8221
Mitchell, K. A., Lockhart, C. A., Huang, G., and Elferink, C. J. (2006). Sustained aryl hydrocarbon receptor activity attenuates liver regeneration. Mol. Pharmacol. 2006, 163–170. doi: 10.1124/mol.106.023465
Morasso, M. I., Grinberg, A., Robinson, G. T., Sargent, D., and Mahon, K. A. (1999). Placental failure in mice lacking the homeobox gene Dlx3. Proc. Natl. Acad. Sci. U.S.A. 96, 162–167. doi: 10.1073/pnas.96.1.162
Nebert, D. W. (1986). The 1986 bernard B. brodie award lecture. The genetic regulation of drug-metabolizing enzymes. Drug Metab. Dispos. 16, 1–8.
Nebert, D. W., and Bausserman, L. L. (1970). Genetic differences in the extent of aryl hydrocarbon hydroxylase induction in mouse fetal cell cultures. J. Biol. Chem. 245, 6373–6382.
Nebert, D. W., Goujon, F. M., and Gielen, J. E. (1972). Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nat. New Biol. 236, 107–110. doi: 10.1038/newbio236107a0
Nebert, D. W., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Eisen, H. J. (1982). The Ah locus, a multigene family necessary for survival in a chemically adverse environment: comparison with the immune system. Adv. Genet. 21, 1–52. doi: 10.1016/S0065-2660(08)60296-5
Ostry, V. (2008). Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 1, 175–188. doi: 10.3920/WMJ2008.x013
Pahlke, G., Tiessen, C., Domnanich, K., Kahle, N., Groh, I. A., Schreck, I., et al. (2016). Impact of Alternaria toxins on CYP1A1 expression in different human tumor cells and relevance for genotoxicity. Toxicol. Lett. 240, 93–104. doi: 10.1016/j.toxlet.2015.10.003
Peters, J. M., Narotsky, M. G., Elizondo, G., Fernandez-Salguero, P. M., Gonzalez, F. J., and Abbott, B. D. (1999). Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicol. Sci. 47, 86–92. doi: 10.1093/toxsci/47.1.86.E
Pfeiffer, E., Eschbach, S., and Metzler, M. (2007). Alternaria toxins: DNA strandbreaking activity in mammalian cells in vitro. Mycotoxin Res. 23, 152–157. doi: 10.1007/BF02951512
Pfohl-Leszkowicz, A., and Manderville, R. A. (2012). An update on direct genotoxicity as molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 25, 252–262. doi: 10.1021/tx200430f
Philipsen, S., and Suske, G. (1999). A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 27, 2991–3000. doi: 10.1093/ nar/27.15.2991
Piqué, E., Vargas-Murga, L., Gómez-Catalán, J., Lapuente, J. D., and Llobet, J. M. (2013). Occurrence of patulin in organic and conventional apple-based food marketed in Catalonia and exposure assessment. Food Chem. Toxicol. 60, 199–204. doi: 10.1016/j.fct.2013.07.052
Pohjanvirta, R. (2011). The Ah Receptor in Biology and Toxicology. New Jersey, NJ: Wiley, 3–32. doi: 10.1002/9781118140574
Poland, A., and Glover, E. (1973). 2,3,7,8-Tetrachlorodibenzo-p-dioxin: a potent inducer of -aminolevulinic acid synthetase. Science 179, 476–477. doi: 10.1126/ science.179.4072.476
Poland, A., and Glover, E. (1974). Comparison of 2,3,7,8-tetrachlorodibenzop-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3- methylcholanthrene. Mol. Pharmacol. 10, 349–359.
Poland, A., Glover, E., and Kende, A. S. (1976). Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251, 4936–4946.
Pot, C. (2012). Aryl hydrocarbon receptor controls regulatory CD4+ T cell function. Swiss Med. Wkly. 142:w13592. doi: 10.4414/smw.2012.13592
Reisz-Porszasz, S. M., Probst, R., Fukunaga, B. N., and Hankinson, O. (1994). Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol. Cell. Biol. 14, 6075–6086. doi: 10.1128/mcb. 14.9.6075
Richardson, H. L., Stier, A. R., and Borsos-Nachtnebel, E. (1952). Liver tumor inhibition and adrenal histologic responses in rats to which 3’-methyl-4- dimethylaminoazobenzene and 20-methylcholanthrene were simultaneously administered. Cancer Res. 12, 356–361.
Roberts, B. J., and Whitelaw, M. L. (1999). Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J. Biol. Chem. 274, 36351–36356. doi: 10.1074/ jbc.274.51.36351
Rubinstein, M., Idelman, G., Plymate, S. R., Narla, G., Friedman, S. L., and Werner, H. (2004). Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology 145, 3769–3777. doi: 10. 1210/en.2004-0173
Samson, R. A., Houbraken, J., Varga, J., and Frisvad, J. C. (2009). Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia 22, 14–27. doi: 10.3767/003158509X418925
Samson, R. A., Noonim, P., Meijer, M., Houbraken, J., Frisvad, J. C., and Varga, J. (2007). Diagnostic tools to identify black Aspergilli. Stud. Mycol. 59, 129–145. doi: 10.3114/sim.2007.59.13
Schobert, R., and Schlenk, A. (2008). Tetramic and tetronic acids: an update on new derivatives and biological aspects. Bioorg. Med. Chem. 16, 4203–4221. doi: 10.1016/j.bmc.2008.02.069
Schrader, T. J., Cherry, W., Soper, K., Langlois, I., and Vijay, H. M. (2001). Examination of Alternaria alternata mutagenicity and effects of nitrosylation using the Ames salmonella test. Teratog. Carcinog. Mutagen. 21, 261–274. doi: 10.1002/tcm.1014
Schreck, I., Deigendesch, U., Burkhardt, B., Marko, D., and Weiss, C. (2012). The Alternaria mycotoxins alternariol and alternariol methyl ether induce cytochrome P450 1A1 and apoptosis in murine hepatoma cells dependent on the aryl hydrocarbon receptor. Arch. Toxicol. 86, 625–632. doi: 10.1007/s00204- 011-0781-3
Schreiber, S. L. (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251, 283–287. doi: 10.1126/science. 1702904
Schultz, K. H. (1957). Clinical and experimental studies on the etiology of chloracne. Arch. Klin. Exp. Dermatol. 206, 589–596.
Schwartz, G. G. (2002). Hypothesis: does ochratoxin A cause testicular cancer? Cancer Causes Control 13, 91–100. doi: 10.1023/A:1013973715289
Shephard, G. S. (2004). “Mycotoxins worldwide: current issues in Africa,” in Meeting the Mycotoxin Menace, eds D. Barug, H. P. van Egmond, R. LopezGarcia, W. A. van Osenbruggen, and A. Visconti (Wageningen: Wageningen Academic Publishers), 81–88.
Siegel, I. N., Merkel, S., Koch, M., and Nehls, I. (2010). Quantification of the Alternaria mycotoxin tenuazonic acid in beer. Food Chem. 120, 902–906. doi: 10.1016/j.foodchem.2009.10.070
Siraj, M. Y., Hayes, A. W., Takanaka, A., and Ho, I. K. (1980). Effect of patulin on hepatic monooxygenase in male mice. J Environ Pathol Toxicol. 4, 545–553.
Smit, E., Souza, T., Jennen, D. G. J., Kleinjans, J. C. S., and van der Beucken, T. (2017). Identificaion of essential transcription factors for adequate DNA damage response after benzo(a)pyrene and AFB1 exposure by combining transcriptomics with functional genomics. Toxicology 390, 74–82. doi: 10.1016/ j.tox.2017.09.002
Solfrizzo, M., Gambacorta, L., Lattanzio, V. M. T., Powers, S., and Visconti, A. (2011). Simultaneous LC-MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol, α and β-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal. Bioanal. Chem. 401, 2831–2841. doi: 10.1007/s00216-011-5354-z
Soshilov, A., and Denison, M. S. (2008). Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. J. Biol. Chem. 283, 32995–33005. doi: 10.1074/jbc.M802414200
Stevens, V. L., and Tang, J. (1997). Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J. Biol. Chem. 272, 18020–18025. doi: 10.1074/jbc.272.29.18020
Steyn, P. S. (1995). Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 8, 843–851. doi: 10.1016/0378-4274(95)03525-7
Tan, Z., Huang, M., Puga, A., and Xia, Y. (2004). A critical role for MAP kinases in the control of Ah receptor complex activity. Toxicol. Sci. 82, 80–87. doi: 10.1093/toxsci/kfh228
Tanaka, G., Kanaji, S., Hirano, A., Arima, K., Shinagawa, A., Goda, C., et al. (2005). Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. Int. Immunol. 17, 797–805. doi: 10.1093/intimm/dxh260
Tangni, E. K., Ponchaut, S., Maudoux, M., Rozenberg, R., and Larondelle, Y. (2002). Ochratoxin A in domestic and imported beers in Belgium: occurrence and exposure assessment. Food Addit. Contam. 19, 1169–1179. doi: 10.1080/ 02652030210007859
Tijet, N., Boutros, P. C., Moffat, I. D., Okey, A. B., Tuomisto, J., and Pohjanvirta, R. (2006). Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol. 69, 140–153. doi: 10.1124/ mol.105.018705
Turkez, H., and Geyikoglu, F. (2010). Boric acid: a potential chemoprotective agent against aflatoxin b(1) toxicity in human blood. Cytotechnology 62, 157–165. doi: 10.1007/s10616-010-9272-2
Ueno, Y., Iijima, K., Wang, S. D., Sugiura, Y., Sekijima, M., Tanaka, T., et al. (1997). Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem. Toxicol. 35, 1143–1150. doi: 10.1016/S0278-6915(97)0 0113-0
Valencia-Quintana, R., Sánchez-Alarcón, J., Tenorio, M. G., Deng, Y., Waliszewski, S. M., and Valera, M. Á. (2012). Preventive strategies aimed at reducing the health risks of Aflatoxin B1. Toxicol. Environ. Health Sci. 4, 71–79. doi: 10.1007/ s13530-012-0138-1
Valencia-Quintana, R., Sánchez-Alarcón, J., Tenorio-Arvide, M. G., Deng, Y., Montiel-González, J. M., Gómez-Arroyo, S., et al. (2014). The microRNAs as potential biomarkers for predicting the onset of aflatoxin exposure in human beings: a review. Front. Microbiol. 5:102. doi: 10.3389/fmicb.2014.00102
Vettorazzi, A., van Delft, J., and López de Carain, A. (2013). A review on ochratoxin A transcriptomic studies. Food Chem. Toxicol. 59, 766–783. doi: 10.1016/j.fct. 2013.05.043
Visagie, C. M., Varga, J., Houbraken, J., Meijer, M., Kocsubé, S., Yilmaz, N., et al. (2014). Ochratoxin production and taxonomy of the yellow Aspergilli (Aspergillus section Circumdati). Stud. Mycol. 78, 1–61. doi: 10.1016/j.simyco. 2014.07.001
Voss, K. A., Smith, G. W., and Haschek, W. M. (2007). Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137, 299–325. doi: 10.1016/j.anifeedsci.2007.06.007
Wilson, S. R., Joshi, A. D., and Elferink, C. J. (2013). The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J. Pharmacol. Exp. Ther. 345, 419–429. doi: 10.1124/jpet.113.203786
Wu, F., Groopman, J. D., and Pestka, J. J. (2014). Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 5, 351–372. doi: 10.1146/annurev-food-030713-092431
Yueh, M.-F., Huang, Y.-H., Hiller, A., Chen, S., Nguyen, N., and Tukey, R. H. (2003). Involvement of the xenobiotic response element (XRE) in Ah receptormediated induction of human UDP-glucuronosyltransferase 1A1. J. Biol. Chem. 278, 15001–15006. doi: 10.1074/jbc.M300645200
Zain, M. E. (2011). Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15, 129–144. doi: 10.1016/j.jscs.2010.06.006
Zhang, J., Zheng, N., Liu, J., Li, F. D., Li, S. L., and Wang, J. Q. (2015). Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food Chem. Toxicol. 83, 54–60. doi: 10.1016/j.fct. 2015.05.020