The energy expenditure (EE) required for walking (i.e., locomotion), body movements, and forage browsing, selection, and prehension for grazing animals is likely the main difference between pasture-raised and feedlot-raised ruminants, assuming that the dietary metabolizable energy is similar between these systems. However, our incomplete understanding of these components keeps rebounding time after time without a more definitive solution. Different techniques were developed during the early 1960s throughout the mid-1980s to assess grazing animals' EE, but they are far from ideal. The majority of the data on ruminants’ EE climaxed during the same period, boosted by many open-circuit, indirect calorimetry apparatuses and methods. However, a considerable variation exists when literature data is analyzed because many factors can alter the EE of grazing animals. New data and novel predictive analytics are indispensable to propel our scientific understanding of plant and animal interactions (e.g., forage selection, grazing behavior, pasture growth/regrowth, pasture quality, nutrient digestion and absorption, volatile fatty acids production and profile, energy requirement). The scientific community has been under a spell since the mid-1980s, and only recently, in the last five years, we have been invigorated by the advance of sensors (and artificial intelligence) that has allowed us to embark on a gradual crescendo of excitement. We must continue to boost the investment in non-invasive techniques onwards; otherwise, we will once again paralyze our understanding of energy needs by grazing ruminants, jeopardizing our search for sustainable livestock production, and upsurge our dependability on feedlots to produce meat to satisfy the population demand.
Agricultural Research Council. 1980. The Nutrient Requirements of Ruminant Livestock. Agricultural Research Council. The Gresham Press, London, UK.
Aharoni, Y., A. Dolev, Z. Henkin, Y. Yehuda, A. Ezra, E. D. Ungar, A. Shabtay, and A. Brosh. 2013. Foraging behavior of two cattle breeds, a whole-year study: I. Heat production, activity, and energy costs. J. Anim. Sci. 91 (3):1381-1390. doi: 10.2527/jas.2012-5400
Aharoni, Y., Z. Henkin, A. Ezra, A. Dolev, A. Shabtay, A. Orlov, Y. Yehuda, and A. Brosh. 2009. Grazing behavior and energy costs of activity: A comparison between two types of cattle. J. Anim. Sci. 87 (8):2719-2731. doi: 10.2527/jas.2008-1505
Alemu, A. W., D. Vyas, G. Manafiazar, J. A. Basarab, and K. A. Beauchemin. 2017. Enteric methane emissions from low– and high–residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J. Anim. Sci. 95 (8):3727-3737. doi: 10.2527/jas.2017.1501
Baldwin, R. L. 1995. Modeling Ruminant Digestion and Metabolism. Chapman & Hall, New York, NY.
Bell, M. J., L. Mereu, and J. Davis. 2018. The use of mobile near-infrared spectroscopy for realtime pasture management. Frontiers in Sustainable Food Systems. 2 (76) doi: 10.3389/fsufs.2018.00076
Blaxter, K. L. 1962. The Energy Metabolism of Ruminants. Hutchinson, London, UK.
Blaxter, K. L. 1967. Techniques in energy metabolism studies and their limitations. Proc. Nutr. Soc. 26 (1):86-96. doi: 10.1079/PNS19670016
Brody, S. 1945. Bioenergetics and Growth; With Special Reference to the Efficiency Complex in Domestic Animals. Reinhold Publishing Corporation, New York, NY.
Brosh, A., Z. Henkin, E. D. Ungar, A. Dolev, A. Orlov, Y. Yehuda, and Y. Aharoni. 2006. Energy cost of cows’ grazing activity: Use of the heart rate method and the Global Positioning System for direct field estimation. J. Anim. Sci. 84 (7):1951-1967. doi: 10.2527/jas.2005-315
Brosh, A., Z. Henkin, E. D. Ungar, A. Dolev, A. Shabtay, A. Orlov, Y. Yehuda, and Y. Aharoni. 2010. Energy cost of activities and locomotion of grazing cows: A repeated study in larger plots. J. Anim. Sci. 88 (1):315-323. doi: 10.2527/jas.2009-2108
Brouwer, E. 1965. Report of the sub-committee on constants and factors. Pages 441-443 in Proceedings of the 3rd Symposium of Energy Metabolism, v. 11. K. L. Blaxter, ed. Troon, Scotland. Academic Press.
Caetano, M., M. J. Wilkes, W. S. Pitchford, S. J. Lee, and P. I. Hynd. 2018. Energy relations in cattle can be quantified using open-circuit gas-quantification systems. Anim. Prod. Sci. 58 (10):1807-1813. doi: 10.1071/AN16745
Cannas, A., L. O. Tedeschi, D. G. Fox, A. N. Pell, and P. J. Van Soest. 2004. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 82 (1):149-169. doi: 10.2527/2004.821149x
Carro, O., C. Hillaire-Marcel, and M. Gagnon. 1980. Detection of adulterated maple products by stable carbon isotope ratio. J. AOAC Int. 63 (4):840-844.
Chabot, D. 1993. The Relationship between Heart Rate and Metabolic Rate in Wapiti (Cervux elaphus canadensis). Thesis, University of Calgary, Calgary.
Chevalier, R., G. Pelletier, and M. Gagnon. 1984. Sampling technique for collection of expired CO2 in studies using naturally labelled 13C in calves. Can. J. Anim. Sci. 64 (2):495-498.
Coates, D. B., and R. M. Dixon. 2011. Developing robust faecal near infrared spectroscopy calibrations to predict diet dry matter digestibility in cattle consuming tropical forages. J. Near Infrared Spectrosc. 19 (6):507-519. doi: 10.1255/jnirs.967
Coleman, S. W., S. A. Gunter, J. E. Sprinkle, and J. P. S. Neel. 2014. BEEF SPECIES SYMPOSIUM: Difficulties associated with predicting forage intake by grazing beef cows. J. Anim. Sci. 92 (7):2775-2784. doi: 10.2527/jas.2013-7090
Commonwealth Scientific and Industrial Research Organization. 1990. Feeding Standards for Australian Livestock. Ruminants. Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia.
Commonwealth Scientific and Industrial Research Organization. 2007. Nutrient Requirements of Domesticated Ruminants. Commonwealth Scientific and Industrial Research Organization, Collingwood, VIC.
Corbett, J. L., R. A. Leng, and B. A. Young. 1969. Measurements of energy expenditure by grazing sheep and the amount of energy supplied by volatile fatty acids produced in the rumen. Pages 177-186 in Proc. of the 4th Energy Metabolism of Farm Animals, v. 12. K. L. Blaxter, J. Kielanowski and G. Thorbek, eds. Warsaw. Oriel Press.
Cottle, D., and L. Kahn. 2014. Beef Cattle Production and Trade. CSIRO Publishing, Collingwood, Australia.
De Gelder, J., K. De Gussem, P. Vandenabeele, and L. Moens. 2007. Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy. 38 (9):1133-1147. doi: 10.1002/jrs.1734
Delhaye, M., and P. Dhamelincourt. 1975. Raman microprobe and microscope with laser excitation. Journal of Raman Spectroscopy. 3 (1):33-43. doi: 10.1002/jrs.1250030105
Detmann, E., M. P. Gionbelli, and P. Huhtanen. 2014. A meta-analytical evaluation of the regulation of voluntary intake in cattle fed tropical forage-based diets. J. Anim. Sci. 92 (10):4632- 4641. doi: 10.2527/jas.2014-7717
Di Marco, O. N., and M. S. Aello. 1998. Energy cost of cattle walking on the level and on a gradient. J. Range Manage. 51 (1):9-13. doi: 10.2307/4003556
Dijkman, J. T., and P. R. Lawrence. 1997. The energy expenditure of cattle and buffaloes walking and working in different soil conditions. J. Agric. Sci. 128 (1):95-103. doi: 10.1017/S0021859696003929
Dixon, R. M., and D. B. Coates. 2009. Review: Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. J. Near Infrared Spectrosc. 17 (1):1-31.
Faithfull, N. T. 2002. Methods in Agricultural Chemical Analysis. CABI Publishing, Wallingford, UK.
Fall, A., R. A. Pearson, and P. R. Lawrence. 1997. Nutrition of draught oxen in semi-arid west Africa. 1. Energy expenditure on oxen working on soils of different consistencies. Anim. Sci. 64 (2):209-215. doi: 10.1017/S1357729800015757
Fancy, S. G., J. M. Blanchard, D. F. Holleman, K. J. Kokjer, and R. G. White. 1986. Validation of doubly labeled water method using a ruminant. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 251:R143-R149.
Farber, C., L. Sanchez, S. Rizevsky, A. Ermolenkov, B. McCutchen, J. Cason, C. Simpson, M. Burow, and D. Kurouski. 2020. Raman spectroscopy enables noninvasive identification of peanut genotypes and value-added traits. Sci. Rep. 10 (1):7730. doi: 10.1038/s41598-020-64730- w
Ferrannini, E. 1988. The theoretical bases of indirect calorimetry: A review. Metabolism. 37 (3):287-301.
Ferrell, C. L., and J. W. Oltjen. 2008. ASAS CENTENNIAL PAPER: Net energy systems for beef cattle--Concepts, application, and future models. J. Anim. Sci. 86 (10):2779-2794. doi: 10.2527/jas.2008-0954
Fisher, D. S. 1996. Modeling ruminant feed intake with protein, chemostatic, and distention feedbacks. J. Anim. Sci. 74 (12):3076-3081. doi: 10.2527/1996.74123076x
Flatt, W. P., C. E. Coppock, and L. A. Moore. 1965a. Energy balance studies with dry, nonpregnant dairy cows consuming pelleted forages. Pages 131-144 in Proceedings of the 3rd Symposium of Energy Metabolism. K. L. Blaxter, ed. Troon, Scotland.
Flatt, W. P., C. E. Coppock, and L. A. Moore. 1965b. Energy balance studies with lactating, non-pregnant dairy cows consuming rations with varying hay to grain ratios. Pages 121-130 in Proceedings of the 3rd Symposium of Energy Metabolism. K. L. Blaxter, ed. Troon, Scotland.
Flatt, W. P., P. J. Van Soest, J. F. Sykes, and L. A. Moore. 1958. A description of the energy metabolism laboratory at the U.S. Department of Agriculture, Agricultural Research Center in Beltsville, Maryland. Pages 53-64 in Proceedings of the 1st Symposium of Energy Metabolism, v. 8. G. Thorbek and H. Aersoe, eds. Copenhagen. European Association for Animal Production.
Fox, D. G., and T. P. Tylutki. 1998. Accounting for the effects of environment on the nutrient requirements of dairy cattle. J. Dairy Sci. 81 (11):3085-3095. doi: 10.3168/jds.S0022- 0302(98)75873-4
Galyean, M. 2020. The need for forage intake measurements. J. Anim. Sci. 98 (Supplement_4):77-78. doi: 10.1093/jas/skaa278.141
Garrett, W. N., and D. E. Johnson. 1983. Nutritional energetics of ruminants. J. Anim. Sci. 57 (Suppl. 2):478-497. doi: 10.2527/animalsci1983.57Supplement_2478x
Gerrits, W. J. J., and E. Labussière. 2015. Indirect Calorimetry : Techniques, Computations and Applications. Wageningen Academic Publishers, Wageningen. Available at: http://libezproxy.tamu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk &AN=1161959&site=ehost-live
Gómez-Mascaraque, L. G., K. Kilcawley, D. Hennessy, J. T. Tobin, and T. F. O'Callaghan. 2020. Raman spectroscopy: A rapid method to assess the effects of pasture feeding on the nutritional quality of butter. J. Dairy Sci. 103 (10):8721-8731. doi: 10.3168/jds.2020-18716
González, L. A., I. Kyriazakis, and L. O. Tedeschi. 2018. Review: Precision nutrition of ruminants: approaches, challenges and potential gains. Animal. 12 (S2):S246-S261. doi: 10.1017/S1751731118002288
Haggarty, P. 1991. Potential of the doubly labelled water method for estimating heat production in farm animals. J. Agric. Sci. 117:141-148.
Harborne, J. B. 1993. Introduction to Ecological Biochemistry. (4th ed.). Elsevier, Academic Press, New York, NY.
Havstad, K. M., and J. C. Malechek. 1982. Energy expenditure by heifers grazing crested wheatgrass of diminishing availability. J. Range Manage. 35 (4):447-450.
Hegarty, R. S. 2013. Applicability of short-term emission measurements for on-farm quantification of enteric methane. Animal. 7 (Supplements2):401-408. doi: 10.1017/S1751731113000839
Herselman, M. J., T. Sahlu, S. P. Hart, and A. L. Goetsh. 1998. Energy expenditure by dry and lactating Alpine does estimated by entry rate of carbon dioxide. J. Dairy Sci. 81:2469-2474.
Huhtanen, P., M. Ramin, and A. N. Hristov. 2019. Enteric methane emission can be reliably measured by the GreenFeed monitoring unit. Livest. Sci. 222:31-40. doi: 10.1016/j.livsci.2019.01.017
Johnson, D. E., C. L. Ferrell, and T. G. Jenkins. 2003. The history of energetic efficiency research: Where have we been and where are we going? J. Anim. Sci. 81 (E. Suppl.):E27-E38. doi: 10.2527/2003.8113_suppl_1E27x
Jones, R. J., and R. P. Lefeuvre. 1989. The delta 13C value of ruminant saliva and its effect on the estimation of the legume component of esophageal extrusa samples. J. Agric. Sci. 113 (2):199- 202.
Kallenbach, R., S. Hamilton, and T. R. Lock. 2020. Digital technologies ease the burden of pasture intake measurements: A new hope. J. Anim. Sci. 98 (Supplement_4):78-78. doi: 10.1093/jas/skaa278.142
Kellner, O. J. 1905. Die Ernährung der landwirtschaftlichen Nutztiere: Lehrbuch auf der Grundlage physiologischer Forschung und praktischer Erfahrung. Parey, Berlin.
Kleiber, M. 1961. The Fire of Life: An Introduction to Animal Energetics. John Wiley & Sons, Inc., New York, NY.
Krimmer, M., C. Farber, and D. Kurouski. 2019. Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer. ACS Omega. 4 (15):16330-16335. doi: 10.1021/acsomega.9b01661
Lachica, M., and J. F. Aguilera. 2005. Energy needs of the free-ranging goat. Small Ruminant Res. 60 (1):111-125. doi: 10.1016/j.smallrumres.2005.06.006
Lachica, M., and J. F. Aguilera. 2008. Methods to estimate the energy expenditure of goats: From the lab to the field. Small Ruminant Res. 79 (2-3):179-182.
Landsberg, G., and L. Imandelstam. 1928. Eine neue erscheinung bei der lichtzerstreuung in krystallen (A novel effect of light scattering in crystals). Naturwissenschaften. 16 (28):557-558. doi: 10.1007/BF01506807
Lardy, G. P., D. C. Adams, T. J. Klopfenstein, and H. H. Patterson. 2004. Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model. J. Anim. Sci. 82 (E. Suppl.):E83-E92. doi: 10.2527/2004.8213_supplE83x
Lawrence, P. R., R. A. Pearson, and J. T. Dijkman. 1991. Techniques for measuring whole body energy expenditure of working animals: A critical review. Pages 211-232 in Proceedings of Isotope and Related Techniques in Animal Production and Health. Vienna, Austria. Internation Atomic Energy Agency (IAEA) and Food and Agriculture Organization of the United Nations (FAO).
Lawrence, P. R., and J. I. Richards. 1980. The energy cost of walking in some tropical draught animals. Anim. Prod. 30 (3):455. doi: 10.1017/S0003356100039118
Lawrence, P. R., and R. J. Stibbards. 1990. The energy costs of walking, carrying and pulling loads on flat surfaces by Brahman cattle and swamp buffalo. Anim. Prod. 50 (1):29-39. doi: 10.1017/S000335610000444X
Lifson, N., and R. McClintock. 1966. Theory of the use of turnover rates of body water for measuring energy expenditure and material balance. J. Theor. Biol. 12:46-74.
Lippke, H., and F. E. Barton, II. 1988. Near infrared reflectance spectroscopy for predicting intake of digestible organic matter by cattle. J. Dairy Sci. 71 (11):2986-2991. doi: 10.3168/jds.S0022-0302(88)79896-3
Lofgreen, G. P., and W. N. Garrett. 1968. A system for expressing net energy requirements and feed values for growing and finishing beef cattle. J. Anim. Sci. 27 (3):793-806. doi: 10.2527/jas1968.273793x
Mahipala, M. B. P. K., G. L. Krebs, P. McCafferty, T. Naumovski, K. Dods, and R. Stephens. 2010. Predicting the quality of browse-containing diets fed to sheep using faecal near-infrared reflectance spectroscopy. Anim. Prod. Sci. 50 (10):925-930. doi: 10.1071/AN09141
McLean, J. A. 1972. On the calculation of heat production from open-circuit calorimetric measurements. Br. J. Nutr. 27:597-600.
McLean, J. A., and G. Tobin. 1987. Animal and Human Calorimetry. Cambridge University Press, New York, NY.
Méndez, D. G., O. N. Di Marco,and P. M. Corva. 1996. Energy expenditure of cattle walking on a flat terrain. Anim. Sci. 63 (1):39-44. doi: 10.1017/S1357729800028265
Menke, K. H., L. Raab, A. Salenski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93 (1):217-222. doi: 10.1017/S0021859600086305
Mertens, D. R. 1987. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 64 (5):1548-1558. doi: 10.2527/jas1987.6451548x
Minson, D. J. 1990. Forage in Ruminant Nutrition. Academic Press, New York, NY. doi: 10.1016/B978-0-12-498310-6.50018
Moe, P. W. 1981. Energy metabolism of dairy cattle. J. Dairy Sci. 64 (6):1120-1139. doi: 10.3168/jds.S0022-0302(81)82692-6
Moe, P. W., W. P. Flatt, and H. F. Tyrrell. 1972. Net energy value of feeds for lactation. J. Dairy Sci. 55 (7):945-958. doi: 10.3168/jds.S0022-0302(72)85601-7
Morey, R., A. Ermolenkov, W. Z. Payne, D. C. Scheuring, J. W. Koym, M. I. Vales, and D. Kurouski. 2020. Noninvasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Analytical and Bioanalytical Chemistry. 412 (19):4585-4594. doi: 10.1007/s00216-020-02706-5
Moughan, P. J., and W. H. Hendriks. 2018. Feed Evaluation Science. Wageningen Academic Publishers, Wageningen, The Netherlands.
Nagy, K. A. 1980. CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 238:R466-R473.
National Academies of Sciences, Engineering, and Medicine. 2016. Nutrient Requirements of Beef Cattle. (8th ed.). Animal Nutrition Series. National Academy Press, Washington, DC. doi: 10.17226/19014
National Research Council. 1945a. Recommended Nutrient Allowances for Beef Cattle. Recommended Nutrient Allowances for Domestic Animals. National Academy Press, Washington, DC.
National Research Council. 1945b. Recommended Nutrient Allowances for Dairy Cattle. Recommended Nutrient Allowances for Domestic Animals. National Academy Press, Washington, DC.
National Research Council. 1945c. Recommended Nutrient Allowances for Sheep. Recommended Nutrient Allowances for Domestic Animals. National Academy Press, Washington, DC. doi: 10.17226/21454
National Research Council. 1981. Nutritional Energetics of Domestic Animals and Glossary of Energy Terms. Natl. Acad. Press, Washington, DC. doi: 10.17226/1670
National Research Council. 2000. Nutrient Requirements of Beef Cattle. (updated 7th ed.). Nutrient Requirements of Domestic Animals. National Academy Press, Washington, DC. doi: 10.17226/9791
National Research Council. 2001. Nutrient Requirements of Dairy Cattle. (7th ed.). Nutrient Requirements of Domestic Animals. National Academy Press, Washington, DC. doi: 10.17226/9825
National Research Council. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. (7th ed.). Animal Nutrition Series. National Academy Press, Washington, DC. doi: 10.17226/11654
Nienaber, J. A., J. H. Eisemann, J. T. Yen, and G. B. Hunington. 1993. Technical note: Comparison of techniques for measurement of oxygen uptake by cattle. J. Anim. Sci. 71 (10):2756- 2759.
Norris, K. H., R. F. Barnes, J. E. Moore, and J. S. Shenk. 1976. Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 43 (4):889-897. doi: 10.2134/jas1976.434889x
Oltjen, J. W. 2019. How did Lofgreen and Garrett do the math? Transl. An. Sci. 3 (3):1011-1017. doi: 10.1093/tas/txz072
Poppi, D. P., M. Gill, J. France, and R. A. Dynes. 1989. Additivity in intake models. Pages 29- 46 in Proc. of the 3rd International Modelling Ruminant Digestion and Metabolism. A. B. Robson and D. P. Poppi, eds. Lincoln College, Canterbury, NZ. Lincoln University.
Prieto, C., M. Lachica, F. F. Bermúdez, and J. F. Aguilera. 1997. The aplication of the labelled 13C-bicarbonate method for estimating energy expenditure in goats. Pages 185-188 in Proceedings of the 14th Energy Metabolism of Farm Animals. K. J. McCracken, E. F. Unsworth and A. R. G. Wylie, eds. Newcastle. CABI Publishing.
Pringle, J., T. Art, and P. Lekeux. 1998a. Near infrared spectroscopy for noninvasive assessment of intracranial haemoglobin oxygenation in an in vitro model of the calf head. Res. Vet. Sci. 65 (2):103-109.
Pringle, J., C. Uystepruyst, T. Art, and P. Lekeux. 1998b. Continuous and noninvasive study of brain oxygenation in the calf by near infrared spectroscopy. Res. Vet. Sci. 65 (3):239-244.
Raman, C. V., and K. S. Krishnan. 1928. A new type of secondary radiation. Nature. 121 (3048):501-502. doi: 10.1038/121501c0
Reinermann, S., S. Asam, and C. Kuenzer. 2020. Remote sensing of grassland production and management—A review. Remote Sens. 12 (12) doi: 10.3390/rs12121949
Ribeiro, J. M. C. R., J. M. Brockway, and A. J. F. Webster. 1977. A note on the energy cost of walking in cattle. Anim. Prod. 25 (1):107-110. doi: 10.1017/S0003356100039118
Sahlu, T., H. G. Jung, J. A. Nienaber, and J. G. Morris. 1988. Developing and validation of a prediction equation estimating heat production by carbon dioxide entry rate technique. J. Anim. Sci. 66:2036-2043.
Sanchez, M. D., and J. G. Morris. 1984. Energy expenditure of beef cattle grazing annual grassland. Can. J. Anim. Sci. 64 (5):332-334.
Schneider, B. H., and W. P. Flatt. 1975. The Evaluation of Feed through Digestibility Experiments. The University of Georgia Press, Athens, GA.
Serrano, J., S. Shahidian, J. Marques da Silva, L. Paixão, E. Carreira, R. Carmona-Cabezas, J. Nogales-Bueno, and A. E. Rato. 2020. Evaluation of near infrared spectroscopy (NIRS) and remote sensing (Rs) for estimating pasture quality in mediterranean montado ecosystem. Applied Sciences. 10 (13) doi: 10.3390/app10134463
Shenk, J. S., and M. O. Westerhaus. 1994. The application of near infrared reflectance spectroscopy (NIRS) to forage analysis. Pages 406-449 in Forage Quality, Evaluation, and Utilization. G. C. Fahey Jr., M. Collins, D. R. Mertens and L. E. Moser, eds. American Society of Agronomy, Madison, WI. doi: 10.2134/1994.foragequality.c10
Stuth, J. W., W. T. Hamilton, and R. Conner. 2002. Insights in development and deployment of the GLA and NUTBAL decision support systems for grazinglands. Agric. Syst. 74 (1):99-113. doi: 10.1016/S0308-521X(02)00023-9
Stuth, J. W., A. Jama, and D. R. Tolleson. 2003. Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crop Res. 84 (1-2):45-56. doi: 10.1016/S0378-4290(03)00140-0
Stuth, J. W., R. K. Lyons, J. P. Angerer, and C. D. McKown. 1991. Role of NIRS-based nutritional monitoring systems for grazing and nutritional management of range livestock. Pages 83-93 in Proceedings of the 2nd Grazing Livestock Nutrition Conference. M. K. Petersen, F. T. McCollum III, M. B. Judkins, F. C. Hinds and J. D. Wallace, eds. Steamboat Springs, CO. Oklahoma State University. Available at: http://coronasc.nmsu.edu/grazing-livestock-nutrit.html. Accessed on: May 17, 2016
Susenbeth, A., R. Mayer, B. Köhler, and O. Neumann. 1997. Heat production associated with eating in cattle. Pages 279-282 in Proc. of the 14th Energy Metabolism of Farm Animals. K. J. McCracken, E. F. Unsworth and A. R. G. Wylie, eds. Newcastle. CABI Publishing.
Susenbeth, A., R. Mayer, B. Köhler, and O. Neumann. 1998. Energy requirement for eating in cattle. J. Anim. Sci. 76 (10):2701-2705. doi: 10.2527/1998.76102701x
Swift, R. W. 1957. The caloric value of TDN. J. Anim. Sci. 16 (4):753-756. doi: 10.2527/jas1957.164753x
Takahashi, J., and H. Eda. 1997. Noninvasive optical determination of animal energy metabolism using near-infrared laser. Pages 197-200 in Proceedings of the 14th Energy Metabolism of Farm Animals. K. J. McCracken, E. F. Unsworth and A. R. G. Wylie, eds. Newcastle. CABI Publishing.
Tedeschi, L. O. 2001. Development and Evaluation of Models for the Cornell Net Carbohydrate and Protein System: 1. Feed Libraries, 2. Ruminal Nitrogen and Branched-Chain Volatile Fatty Acid Deficiencies, 3. Diet Optimization, 4. Energy Requirement for Maintenance and Growth. Dissertation, Cornell University, Ithaca, NY. Available at: http://search.proquest.com/?accountid=7082
Tedeschi, L. O. 2019a. ASN-ASAS SYMPOSIUM: FUTURE OF DATA ANALYTICS IN NUTRITION: Mathematical modeling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. J. Anim. Sci. 97 (5):1321-1944. doi: 10.1093/jas/skz092
Tedeschi, L. O. 2019b. Relationships of retained energy and retained protein that influence the determination of cattle requirements of energy and protein using the California Net Energy System. Transl. An. Sci. 3 (3):1029-1039. doi: 10.1093/tas/txy120
Tedeschi, L. O., and D. G. Fox. 2015. Energy and nutrient requirements of grazing and confined growing beef cattle: Refining the assessment of energy expenditure for grazing animals. Pages 21- 56 in Proceedings of the X NESPRO Meeting & II International Symposium on Beef Cattle Production Systems. G. R. Pereira, T. E. de Oliveira and J. O. J. Barcellos, eds. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Tedeschi, L. O., and D. G. Fox. 2020a. The Ruminant Nutrition System: Volume I - An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants. (3rd ed.). XanEdu, Ann Arbor, MI. Tedeschi, L. O., and D. G. Fox. 2020b. The Ruminant Nutrition System: Volume II - Tables of Equations and Coding. XanEdu, Ann Arbor, MI.
Tedeschi, L. O., D. G. Fox, and P. J. Guiroy. 2004. A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth. Agric. Syst. 79 (2):171-204. doi: 10.1016/S0308-521X(03)00070-2
Tedeschi, L. O., M. L. Galyean, and K. E. Hales. 2017. Recent advances in estimating protein and energy requirements of ruminants. Anim. Prod. Sci. 57 (11):2237-2249. doi: 10.1071/AN17341
Tedeschi, L. O., G. Molle, H. M. Menendez, A. Cannas, and M. A. Fonseca. 2019. The assessment of supplementation requirements of grazing ruminants using nutrition models. Transl. An. Sci. 3 (2):811-828. doi: 10.1093/tas/txy140
Tedeschi, L. O., J. P. Muir, D. G. Riley, and D. G. Fox. 2015. The role of ruminant animals in sustainable livestock intensification programs. Int. J. Sustainable Dev. World Ecol. 22 (5):452- 465. doi: 10.1080/13504509.2015.1075441
Thomas, C. K., and R. A. Pearson. 1986. Effects of ambient temperature and head cooling on energy expenditure, food intake and heat tolerance of Brahman and Brahman x Friesian cattle working on treadmills. Anim. Prod. 43 (1):83-90. doi: 10.1017/S0003356100018353
Tilley, J. M. A., and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111. doi: 10.1111/j.1365-2494.1963.tb00335.x
Tyrrell, H. F., G. Pelletier, R. Chevalier, M.-C. Hillaire, and M. Gagnon. 1984. Use of carbon13 as tracer in metabolism studies. Can. J. Anim. Sci. 64 (5):127-129.
Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant. (2nd ed.). Comstock Publishing Associates, Ithaca, NY.
Van Soest, P. J. 2015. The Detergent System for Analysis of Foods and Feeds. Cornell University, Ithaca, NY.
Waghorn, G. C., E. J. Garnet, C. S. Piñares, and S. Zimmerman. 2013. Implementation of GreenFeed for estimating methane in a dairy herd grazing pasture. Adv. Anim. Biosci. 4 (02):436.
White, R. G. 1993. Energy expenditure of ruminants on pasture. Pages 475-498 in Proc. of the World Conf. on Animal Prod., 7, v. 1. Edmonton. Whitelaw, F. G. 1974. Measurements of energy expenditure in the grazing ruminant. Proceeding of Nutrition Society. 33:163-172.
Wigley, K., J. L. Owens, M. Westerschulte, P. Riding, J. Fourie, and A. Werner. 2019. Photogrammetry for assessment of pasture biomass. Journal of New Zealand Grasslands. 81:33- 39. doi: 10.33584/jnzg.2019.81.394
Woli, P., F. M. Rouquette, Jr., C. R. Long, L. O. Tedeschi, and G. Scaglia. 2020. Modification of the summative equation to estimate daily total digestible nutrients for bermudagrass pasture. J. Anim. Sci. 98 (11) doi: 10.1093/jas/skaa354
Woodward, S. J. R., M. B. Neal, and P. S. Cross. 2019. Preliminary investigation into the feasibility of combining satellite and GPS data to identify pasture growth and grazing. Journal of New Zealand Grasslands. 81:47-54. doi: 10.33584/jnzg.2019.81.404
Young, B. A. 1970. Application of the carbon dioxide entry rate technique to measurement of energy expenditure by grazing cattle. Pages 237-241 in Proceedings of the 5th Energy Metabolism of Farm Animals, v. 13. A. Schurch and C. Wenk, eds. Vitznau. Juris Verlag Zurich.
Young, B. A., R. A. Leng, R. G. White, G. L. McClymont, and J. L. Cobertt. 1969. Estimation of energy expenditure from measurements of carbon dioxide entry rate. Pages 435-436 in Proceedings of the 4th Energy Metabolism of Farm Animals, v. 12. K. L. Blaxter, J. Kielanowski and G. Thorbek, eds. Warsaw. Oriel Press.
Zimmerman, P., S. Zimmerman, S. Utsumi, and D. Beede. 2011. Development of a userfriendly online system to quantitatively measure metabolic gas fluxes from ruminants. Page 759 in American Dairy Science Association, v. 94. New Orleans, LA. ADSA.