1 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; 2 Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany; 3 Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina.
Abstract
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.
Keywords: patulin; postharvest disease; Penicillium; Clavispora lusitaniae; sensorial analysis; biocontrol spectrum; citrus.
1. Ippolito, A.; Nigro, F. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Prot. 2000, 19, 715–723. [CrossRef]
2. Janisiewicz, W.J.; Korsten, L. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 2002,
40, 411–441. [CrossRef] [PubMed]
3. Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [CrossRef]
4. Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [CrossRef]
5. Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [CrossRef]
6. Wilson, C.L.; Wisniewski, M.E. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol. 1989, 27, 425–441. [CrossRef]
7. Droby, S.; Vinokur, V.; Weiss, B.; Cohen, L.; Daus, A.; Goldschmidt, E.E.; Porat, R. Induction of resistance to
Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 2002, 92,
393–399. [CrossRef]
8. Bazioli, J.M.; Belinato, J.R.; Costa, J.H.; Akiyama, D.Y.; Pontes, J.G.d.M.; Kupper, K.C.; Augusto, F.; de Carvalho, J.E.; Fill, T.P. Biological control of citrus postharvest phytopathogens. Toxins 2019, 11, 460.
[CrossRef]
9. Yin, G.; Zhang, Y.; Pennerman, K.K.; Wu, G.; Hua, S.S.T.; Yu, J.; Jurick, W.M.; Guo, A.; Bennett, J.W.
Characterization of Blue Mold Penicillium species isolated from stored fruits using multiple highly conserved loci. J. Fungi 2017, 3, 12. [CrossRef]
10. Cheng, Y.; Lin, Y.; Cao, H.; Li, Z. Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms 2020, 8, 449. [CrossRef]
11. Frisvad, J. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin.
World Mycotoxin J. 2018, 11, 73–100. [CrossRef]
12. Moake, M.M.; Padilla-Zakour, O.I.; Worobo, R.W. Comprehensive review of patulin control methods in foods.
Compr. Rev. Food Sci. Food Saf. 2005, 4, 8–21. [CrossRef]
13. Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631.
[CrossRef]
14. Zhong, L.; Carere, J.; Lu, Z.; Lu, F.; Zhou, T. Patulin in apples and apple-based food products: The burdens and the mitigation strategies. Toxins 2018, 10, 475. [CrossRef]
15. Qian, X.; Yang, Q.; Zhang, Q.; Abdelhai, M.H.; Dhanasekaran, S.; Serwah, B.N.A.; Gu, N.; Zhang, H.
Elucidation of the initial growth process and the infection mechanism of Penicillium digitatum on postharvest citrus (Citrus reticulata Blanco). Microorganisms 2019, 7, 485. [CrossRef]
16. Ballester, A.R.; López-Pérez, M.; de la Fuente, B.; González-Candelas, L. Functional and pharmacological analyses of the role of Penicillium digitatum proteases on virulence. Microorganisms 2019, 7, 198. [CrossRef]
[PubMed]
17. Yang, Q.; Qian, X.; Dhanasekaran, S.; Boateng, N.A.S.; Yan, X.; Zhu, H.; He, F.; Zhang, H. Study on the infection mechanism of Penicillium digitatum on postharvest citrus (Citrus reticulata Blanco) based on transcriptomics. Microorganisms 2019, 7, 672. [CrossRef]
18. Ruan, R.; Wang, M.; Liu, X.; Sun, X.; Chung, K.-R.; Li, H. Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum. PLoS ONE 2017, 12, e0176485. [CrossRef]
19. Chen, C.; Qi, W.; Peng, X.; Chen, J.; Wan, C. Inhibitory effect of 7-demethoxytylophorine on Penicillium italicum and its possible mechanism. Microorganisms 2019, 7, 36. [CrossRef]
20. Patel, K.M.; Maurer, D.; Feygenberg, O.; Ovadia, A.; Elad, Y.; Oren-Shamir, M.; Alkan, N. Phenylalanine:
A promising inducer of fruit resistance to postharvest pathogens. Foods 2020, 9, 646. [CrossRef]
21. Sumalan, R.M.; Kuganov, R.; Obistioiu, D.; Popescu, I.; Radulov, I.; Alexa, E.; Negrea, M.; Salimzoda, A.F.;
Sumalan, R.L.; Cocan, I. Assessment of mint, basil, and lavender essential oil vapor-phase in antifungal protection and lemon fruit quality. Molecules 2020, 25, 1831. [CrossRef]
22. Heredero, M.; Garrigues, S.; Gandía, M.; Marcos, J.F.; Manzanares, P. Rational design and biotechnological production of novel AfpB-PAF26 chimeric antifungal proteins. Microorganisms 2018, 6, 106. [CrossRef]
23. Zheng, X.D.; Zhang, H.Y.; Sun, P. Biological control of postharvest green mold decay of oranges by
Rhodotorula glutinis. Eur. Food Res. Technol. 2005, 220, 353–357. [CrossRef]
24. Pimenta, R.S.; Silva, F.L.; Silva, J.F.; Morais, P.B.; Braga, D.T.; Rosa, C.A.; Correa, A., Jr. Biological control of
Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Braz. J. Microbiol. 2008, 39, 85–90. [CrossRef] [PubMed]
25. Lu, L.; Ye, C.; Guo, S.; Sheng, K.; Shao, L.; Zhou, T.; Yu, T.; Zheng, X. Preharvest application of antagonistic yeast Rhodosporidium paludigenum induced resistance against postharvest diseases in mandarin orange.
Biol. Control 2013, 67, 130–136. [CrossRef]
26. Perez, M.F.; Contreras, L.; Garnica, N.M.; Fernández-Zenoff, M.V.; Farías, M.E.; Sepulveda, M.; Ramallo, J.;
Dib, J.R. Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE 2016,
11, e0165590. [CrossRef]
27. Perez, M.F.; Ibarreche, J.P.; Isas, A.S.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Antagonistic yeasts for the biological control of Penicillium digitatum on lemons stored under export conditions. Biol. Control 2017, 115, 135–140.
[CrossRef]
28. Perez, M.F.; Díaz, M.A.; Pereyra, M.M.; Córdoba, J.M.; Isas, A.S.; Sepúlveda, M.; Dib, J.R. Biocontrol features of Clavispora lusitaniae against Penicillium digitatum on lemons. Postharvest Biol. Technol. 2019, 155, 57–64.
[CrossRef]
29. Zhu, R.; Yu, T.; Guo, S.; Hu, H.A.O.; Zheng, X.; Karlovsky, P. Effect of the yeast Rhodosporidium paludigenum on postharvest decay and patulin accumulation in apples and pears. J. Food Prot. 2015, 78, 157–163. [CrossRef]
30. Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41 (Suppl. 1), S95–S128. [CrossRef]
31. Ianiri, G.; Idnurm, A.; Wright, S.A.I.; Durán-Patrón, R.; Mannina, L.; Ferracane, R.; Ritieni, A.; Castoria, R.
Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl. Environ. Microbiol. 2013, 79, 3101–3115. [CrossRef] [PubMed]
32. Kosawang, C.; Karlsson, M.; Vélëz, H.; Rasmussen, P.H.; Collinge, D.B.; Jensen, B.; Jensen, D.F. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biol. 2014, 118, 364–373. [CrossRef]
33. Pinedo, C.; Wright, S.A.I.; Collado, I.G.; Goss, R.J.M.; Castoria, R.; Hrelia, P.; Maffei, F.; Durán-Patrón, R.
Isotopic labeling studies reveal the patulin detoxification pathway by the biocontrol yeast Rhodotorula kratochvilovae. J. Nat. Prod. 2018, 81, 2692–2699. [CrossRef] [PubMed]
34. Zhu, R.; Feussner, K.; Wu, T.; Yan, F.; Karlovsky, P.; Zheng, X. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem. 2015, 179, 1–5. [CrossRef] [PubMed]
35. Roessler, E.B.; Pangborn, R.M.; Sidel, J.L.; Stone, H. Expanded statistical tables for estimating significance in paired—preference, paired–difference, duo–trio and triangle tests. J. Food Sci. 1978, 43, 940–943. [CrossRef]
36. Welch, B.L. The generalization of Student’s problem when several different population variances are involved.
Biometrika 1947, 34, 28–35. [CrossRef]
37. Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Version,
Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2016. Available online: http://www. infostat.com.ar (accessed on 4 May 2020).
38. Droby, S.; Chalutz, E.; Wilson, C.L.; Wisniewski, M. Characterization of the biocontrol activity of
Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can. J. Microbiol. 1989,
35, 794–800. [CrossRef]
39. Marquina, D.; Barroso, J.; Santos, A.; Peinado, J.M. Production and characteristics of Debaryomyces hansenii killer toxin. Microbiol. Res. 2001, 156, 387–391. [CrossRef]
40. Buzzini, P.; Martini, A. Large scale screening of selected Candida maltosa, Debaryomyces hansenii and
Pichia anomala toxin activity against pathogenic yeasts. Med. Micol. 2001, 39, 479–482. [CrossRef]
41. Teixidó, N.; Torres, R.; Viñas, I.; Abadias, M.; Usall, J. Biological control of postharvest diseases in fruit and vegetables. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and
Beverage Biopreservation; Lacroix, C., Ed.; Woodhead Publishing: Zürich, Switzerland, 2011; pp. 364–402,
ISBN 978-1-84569-669-6.
42. Sui, Y.; Wisniewski, M.; Droby, S.; Liu, J. Responses of yeast biocontrol agents to environmental stress.
Appl. Environ. Microbiol. 2015, 81, 2968–2975. [CrossRef]
43. Gramisci, B.R.; Lutz, M.C.; Lopes, C.A.; Sangorrín, M.P. Enhancing the efficacy of yeast biocontrol agents against postharvest pathogens through nutrient profiling and the use of other additives. Biol. Control 2018,
121, 151–158. [CrossRef]
44. Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit.
Contam. 2002, 19, 387–399. [CrossRef] [PubMed]
45. Oporto, C.I.; Villarroel, C.A.; Tapia, S.M.; García, V.; Cubillos, F.A. Distinct transcriptional changes in response to patulin underlie toxin biosorption differences in Saccharomyces cerevisiae. Toxins 2019, 11, 400. [CrossRef]
[PubMed]
46. Mortimer, R.K.; Johnston, J.R. Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 1986,
113, 35–43. [PubMed]
47. Winston, F.; Dollard, C.; Ricupero-Hovasse, S.L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 1995, 11, 53–55. [CrossRef]
48. Ngea, G.L.N.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M.N.; Zhang, H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci.
Food Saf. 2020, in press. [CrossRef]
49. Sajid, M.; Mehmood, S.; Niu, C.; Yuan, Y.; Yue, T. Effective adsorption of patulin from apple juice by using non-cytotoxic heat-inactivated cells and spores of Alicyclo bacillus strains. Toxins 2018, 10, 344. [CrossRef]
50. Luo, Y.; Wang, J.; Liu, B.; Wang, Z.; Yuan, Y.; Yue, T. Effect of yeast cell morphology, cell wall physical structure and chemical composition on patulin adsorption. PLoS ONE 2015, 10, e0136045. [CrossRef]
51. Zhang, Z.; Li, M.; Wu, C.; Peng, B. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. J. Food Sci. Technol. 2019, 56, 2326–2331. [CrossRef]
52. Gómez-López, V.M. Decontamination of Fresh and Minimally Processed Produce; Wiley-Blackwell: Murcia, Spain,
2012; ISBN 978-0-8138-2384-3.