Methionine (Met) is an important building block and metabolite for protein biosynthesis. However, the mechanism behind its absorption in the fish gut has not been elucidated. Here, we describe the fundamental properties of Met transport along trout gut at µmol/L and mmol/L concentration. Both electrogenic and unidirectional DL-[14C]Met flux were employed to characterize Met transporters in Ussing chambers. Exploiting the differences in gene expression between diploid (2N) and triploid (3N) and intestinal segment as tools, allowed the association between gene and methionine transport. Specifically, three intestinal segments including pyloric caeca (PC), midgut (MG), and hindgut (HG) were assessed. Results at 0–150 µmol/L concentration demonstrated that the DL-Met was most likely transported by apical transporter ASCT2 (SLC1A5) and recycled by basolateral transporter y+ LAT1 (SLC7A7) due to five lines of observation: (1) lack of Na+ -independent kinetics, (2) low expression of B0 AT2-like gene, (3) Na+ -dependent, high-affinity (Km, µmol/L ranges) kinetics in DL-[14C]Met flux, (4) association mRNA expression with the high-affinity kinetics and (5) electrogenic currents induced by Met. Results at 0.2–20 mmol/L concentration suggested that the DL-Met transport is likely transported by B0 AT1-like (SLC6A19-like) based on gene expression, Na+ -dependence and low-affinity kinetics (Km, mmol/L ranges). Similarly, genomic and gene expression analysis suggest that the basolateral exit of methionine was primarily through LAT4-like transporter (SLC43A2-like). Conclusively, DL-Met uptake in trout gut was most likely governed by Na+ -dependent apical transporters ASCT2 and B0 AT1-like and released through basolateral LAT4-like, with some recycling through y+ LAT1. A comparatively simpler model than that previously described in mammals.
Keywords Electrogenic, intestine, methionine, radioisotope flux, rainbow trout, transport.
Balocco, C., C. Boge, and H. Roche. 1993. Neutral amino acid transport by marine fish intestine: role of the side chain. J. Comp. Physiol. 61:340–347.
Belghit, I., S. Skiba-Cassy, I. Geurden, K. Dias, A. Surget, S. Kaushik, et al. 2014. Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 112:493–503.
Bin, P., R. Huang, and X. Zhou. 2017. Oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017:1–6.
Bodoy, S., L. Martin, A. Zorzano, M. Palacin, R. Estevez, and J. Bertran. 2005. Identification of LAT4, a novel amino acid transporter with system L activity. J. Biol. Chem. 280: 12002–12011.
Broer, A., N. Brookes, V. Ganapathy, K. S. Dimmer, C. A. Wagner, F. Lang, et al. 1999. The astroglial ASCT2 amino acid transporter as a mediator of Glutamine efflux. J. Neurochem. 73:2184–2194.
Broer, A., C. Wagner, F. Lang, and S. Broer. 2000. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem. J. 346:705–710.
Broer, S. 2008. Amino acid transport across mammalian € intestinal and renal epithelia. Physiol. Rev. 88:249–286.
Broer, S., and S. J. Fairweather. 2019. Amino acid transport € across the mammalian intestine. Compr. Physiol. 9:343–373.
Burant, C. F., and G. I. Bell. 1992. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry 31:10414–10420.
Burnstock, G. 1959. The morphology of the gut of the brown trout (Salmo trutta). Q. J. Microsc. Sci. 100:183–198.
Busch, A. E., T. Herzer, S. Waldegger, F. Schmidt, M. Palacin, J. Biber, et al. 1994. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J. Biol. Chem. 269:25581–25586.
Chen, J., Y. Zhu, and M. Hu. 1994. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2). J. Nutr. 124:1907–1916.
Chillaron, J., R. Est evez, C. Mora, C. A. Wagner, H. Suessbrich, F. Lang, et al. 1996. Obligatory amino acid exchange via systems b o,+ -like and y + L-like. J. Biol. Chem. 271:17761–17770.
Clarke, L. L. 2009. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Liver Physiol. 296:G1151–G1166.
Day, P. E., J. K. Cleal, E. M. Lofthouse, M. A. Hanson, and R. M. Lewis. 2013. What factors determine placental glucose transfer kinetics. Placenta 34:953–958.
Deitmer, J. W., A. Broer, and S. Br € oer. 2003. Glutamine efflux € from astrocytes is mediated by multiple pathways. J. Neurochem. 87:127–135.
Doyle, F. A., and J. D. McGivan. 1992. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na+- dependent neutral amino acid transport system (System B°) similar to that in bovine renal brush border membrane vesicles. BBA – Biomembr. 1104:55–62.
Espe, M., S. M. Andersen, E. Holen, I. Rønnestad, E. VeisethKent, J.-E. Zerrahn, et al. 2014. Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. Br. J. Nutr. 112:1274–1285.
Fernandez, E., M. Carrascal, F. Rousaud, J. Abian, A. Zorzano, M. Palacin, and J. Chillaron. 2002. rBAT-b0,+AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am. J. Physiol 283:540–548.
Forsling, B. Y. M. L., and W. F. Widdas. 1968. The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol. J. Physiol 194:545–554.
Fotiadis, D., Y. Kanai, and M. Palacin. 2013. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34:139–158.
Gliddon, C. M., Z. Shao, J. L. LeMaistre, and C. M. Anderson. 2009. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J. Neurochem. 108:372–383.
Gould, G. W., H. M. Thomas, T. J. Jess, and G. I. Bell. 1991. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30:5139–5145.
Guetg, A., L. Mariotta, L. Bock, B. Herzog, R. Fingerhut, S. M. R. Camargo, et al. 2015. Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J. Physiol. 593:1273–1289.
Hahn, T., S. Barth, U. Weiss, W. Mosgoeller, and G. Desoye. 1998. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 12:1221–1231.
Ingham, L., and C. Arme. 1977. Intestinal absorption of amino acids by rainbow trout, Salmo gairdneri (Richardson). J. Comp. Physiol. 117:323–334.
Kanai, Y., Y. Fukasawa, S. H. Cha, H. Segawa, A. Chairoungdua, D. K. Kim, et al. 2000. Transport properties of a system y+L neutral and basic amino acid transporter. J. Biol. Chem. 275:20787–20793.
Kleta, R., E. Romeo, Z. Ristic, T. Ohura, C. Stuart, M. ArcosBurgos, et al. 2004. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 36:999–1002.
Kobayashi, M., F. Hashimoto, K. Ohe, T. Nadamura, K. Nishi, N. Shikano, et al. 2012. Transport mechanism of 11Clabeled L- and D-methionine in human-derived tumor cells. Nucl. Med. Biol. 39:1213–1218.
Kuang, S. Y., W. W. Xiao, L. Feng, Y. Liu, J. Jiang, W. D. Jiang, et al. 2012. Effects of graded levels of dietary methionine hydroxy analogue on immune response and antioxidant status of immune organs in juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 32: 629–636.
Loewen, M. E., L. E. Bekar, W. Walz, G. W. Forsyth, and S. E. Gabriel. 2004. pCLCA1 lacks inherent chloride channel activity in an epithelial colon carcinoma cell line. Am. J. Physiol. Liver Physiol. 287:G33–G41.
Lucia, V., P. Vieira, and B. Baldisserotto. 2001. Amino acids and carbohydrates absorption by Na+ -dependent transporters in the pyloric ceca of Hoplias malabaricus (Erythrinidae). Ci^encia Rural 31:793–797.
Mackenzie, B., M. K. H. Sch€afer, J. D. Erickson, M. A. Hedige, E. Weihe, and H. Varoqui. 2003. Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J. Biol. Chem. 278:23720–23730.
Maffia, M., G. Cassano, D. Marcucci, S. Vilella, and C. Storelli. 1990. The Na+-dependent proline carrier, of eel intestinal brush-border membrane, sequentially binds proline and then Na+. BBA – Biomembr. 1027:8–16.
Malo, C. 1991. Multiple pathways for amino acid transport in brush border membrane vesicles isolated from the human fetal small intestine. Gastroenterology 100:1644–1652.
Mastrototaro, L., G. Sponder, B. Saremi, and J. R. Aschenbach. 2016. Gastrointestinal methionine shuttle: Priority handling of precious goods. IUBMB Life 68:924–934.
McGeachy, S. A., T. J. Benfey, and G. W. Friars. 1995. Freshwater performance of triploid Atlantic salmon (Salmo salar) in New Brunswick aquaculture. Aquaculture 137:333–341.
Mepham, T. B., and M. W. Smith. 1966. Amino acid transport in the gold fish intestine. J. Physiol. 184:673–684.
Metayer-Coustard, S., H. Mameri, I. Seiliez, S. Crochet, P. Crepieux, Y. Mercier, et al. 2010. Methionine deprivation regulates the S6K1 pathway and protein synthesis in avian QM7 myoblasts without activating the GCN2/eIF2 alpha cascade. J. Nutr. 140:1539–1545.
Michelato, M., W. M. Furuya, and D. M. Gatlin. 2018. Metabolic responses of Nile tilapia Oreochromis niloticus to methionine and taurine supplementation. Aquaculture 485:66–72.
Miller, D. S., and W. B. Kinter. 1979. Pathways of cycloleucine transport in killifish small intestine. Am. J. Physiol. Metab. 237:E567.
Munck, B. G., and L. K. Munck. 1994. Phenylalanine transport in rabbit small intestine. J. Physiol. 480:99–107.
Munck, L. K., M. L. Grøndahl, J. E. Thorbøll, E. Skadhauge, and B. G. Munck. 2000. Transport of neutral, cationic and anionic amino acids by systems B, bo,+, XAG, and ASC in swine small intestine. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126:527–537.
Nickel, A., G. Kottra, G. Schmidt, J. Danier, T. Hofmann, and H. Daniel. 2009. Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chem. Biol. Interact. 177:234–241.
Nishimura, H., F. V. Pallardo, G. A. Seidner, S. Vannucci, I. A. Simpson, and M. J. Birnbaum. 1993. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J. Biol. Chem. 268:8514–8520.
O’Flynn, F. M., S. A. Mcgeachy, G. W. Friars, T. J. Benfey, and J. K. Bailey. 1997. Comparisions of cultured triploid and diploid Atlantic salmon (Salmo solar L.). ICES J. Mar. Sci. 54:1160–1165.
Oppedal, F., G. L. Taranger, and T. Hansen. 2003. Growth performance and sexual maturation in diploid and triploid Atlantic salmon (Salmo salar L.) in seawater tanks exposed to continuous light or simulated natural photoperiod. Aquaculture 215:145–162.
Pfeiffer, R., J. Loffing, G. Rossier, C. Bauch, C. Meier, T. Eggermann, et al. 1999. Luminal heterodimeric amino acid transporter defective in Cystinuria. Mol. Biol. Cell 10: 4135–4147.
Pfeiffer, R., G. Rossier, B. Spindler, C. Meier, L. Kuhn, and F. € Verrey. 1999. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J. 18:49–57.
Pingitore, P., L. Pochini, M. Scalise, M. Galluccio, K. Hedfalk, and C. Indiveri. 2013. Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris - functional and kinetic asymmetry revealed in proteoliposomes. Biochim. Biophys. Acta – Biomembr. 1828:2238–2246.
Pinho, M. J., V. Pinto, M. P. Serr~ao, P. A. Jose, and P. Soaresda-Silva. 2007. Underexpression of the Na + -dependent neutral amino acid transporter ASCT2 in the spontaneously hypertensive rat kidney. Am. J. Physiol. Integr. Comp. Physiol. 293:R538–R547.
Preston, R. L., J. F. Schaeffer, and P. F. Curran. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J. Gen. Physiol. 64:443–467.
Regina, A., F. Roux, and P. A. Revest. 1997. Glucose transport in immortalized rat brain capillary endothelial cells in vitro: transport activity and GLUT1 expression. Biochim. Biophys. Acta – Gen. Subj. 1335:135–143.
Scalise, M., L. Pochini, S. Panni, P. Pingitore, K. Hedfalk, and C. Indiveri. 2014. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids 46:2463–2475.
Schultz, S. G., and R. Zalusky. 1964. Ion transport in isolated rabbit Ileum: I. short-circuit current and Na fluxes. J. Gen. Physiol. 47:567–584.
Scopelliti, A. J., J. Font, R. J. Vandenberg, O. Boudker, and R. M. Ryan. 2018. Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat. Commun. 9:1–12.
Seite, S., A. Mourier, N. Camougrand, B. Salin, A. C. Figueiredo-Silva, S. Fontagne-Dicharry, et al. 2018. Dietary methionine deficiency affects oxidative status, mitochondrial integrity and mitophagy in the liver of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 8:10151.
Small, S. A., C. MacDonald, and A. P. Farrell. 1990. Vascular reactivity of the coronary artery in rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Integr. Comp. Physiol. 258:R1402–R1410.
Smith, R. L. 1969. Intestinal amino-acid transport in the marine teleost, Haemulon plumieri. Comp. Biochem. Physiol. 30:1115–1123.
Soriano-Garcia, J. F., M. Torras-Llort, R. Ferrer, and M. Moreto. 1998. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum. J. Physiol. 509:527–539.
Souba, W. W., M. Pan, and B. R. Stevens. 1992. Kinetics of the sodium-dependent glutamine transporter in human intestinal cell confluent monolayers. Biochem. Biophys. Res. Commun. 188:746–753.
Subramaniam, M., L. P. Weber, and M. E. Loewen. 2019. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5Aassociated kinetic segmental segregation. Am. J. Physiol. Integr. Comp. Physiol. 316:R222–R234.
Teerijoki, H., A. Krasnov, Y. Gorodilov, S. Krishna, and H. Mols € €a. 2001. Rainbow trout glucose transporter (OnmyGLUT1): functional assessment in Xenopus laevis oocytes and expression in fish embryos. J. Exp. Biol. 204:2667–2673.
Tesseraud, S., S. Metayer Coustard, A. Collin, and I. Seiliez. 2009. Role of sulfur amino acids in controlling nutrient metabolism and cell functions: implications for nutrition. Br. J. Nutr. 101:1132–1139.
Torras-Llort, M., D. Torrents, J. F. Soriano-Garcia, J. L. Gelpi, R. Estevez, R. Ferrer, et al. 2001. Sequential amino acid exchange across b0,+-like system in chicken brush border jejunum. J. Membr. Biol. 180:213–220.
Torrents, D., R. Estevez, M. Pineda, E. Fernandez, J. Lloberas, Y.-B. Shi, et al. 1998. Identification and characterization of a membrane protein (y + L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y + L. J. Biol. Chem. 273:32437–32445.
Tulli, F., M. Messina, M. Calligaris, and E. Tibaldi. 2010. Response of European sea bass (Dicentrarchus labrax) to graded levels of methionine (total sulfur amino acids) in soya protein-based semi-purified diets. Br. J. Nutr. 104: 664–673.
Utsunomiya-Tate, N., H. Endou, and Y. Kanai. 1996. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J. Biol. Chem. 271:14883–14890.
Verma, N. E., and V. K. Kansal. 1993. Characterisation of the routes of methionine transport in mouse mammary glands. The Indian journal of medical research. Indian J. Med. Res. 98:297–304.
Vilella, S., G. A. Ahearn, G. Cassano, and C. Storelli. 1988. Na-dependent L-proline transport by eel intestinal brush-border membrane vesicles. Am. J. Physiol. Integr. Comp. Physiol. 255:R648–R653.
Woodrow, C. J., R. J. Burchmore, and S. Krishna. 2000. Hexose permeation pathways in Plasmodium falciparuminfected erythrocytes. Proc. Natl. Acad. Sci. 97:9931–9936.
Yao, D., B. Mackenzie, H. Ming, H. Varoqui, H. Zhu, M. A. Hediger, et al. 2000. A novel system A isoform mediating Na+/neutral amino acid cotransport. J. Biol. Chem. 275:22790–22797.
Zhang, S., E. A. Wong, and E. R. Gilbert. 2015. Bioavailability of different dietary supplemental methionine sources in animals. Front. Biosci. 7:478–490