Methionine is a key factor in modulating the cellular availability of the main biological methyl donor S-adenosylmethionine (SAM), which is required for all biological methylation reactions including DNA and histone methylation. As such, it represents a potential critical factor in nutritional programming. Here, we investigated whether early methionine restriction at first feeding could have long-term programmed metabolic consequences in rainbow trout. For this purpose, trout fry were fed with either a control diet (C) or a methionine-deficient diet (MD) for 2 weeks from the first exogenous feeding. Next, fish were subjected to a 5 month growth trial with a standard diet followed by a 2 week challenge (with the MD or C diet) to test the programming effect of the early methionine restriction. The results showed that, whatever the dietary treatment of fry, the 2 week challenge with the MD diet led to a general mitochondrial defect associated with an increase in endoplasmic reticulum stress, mitophagy and apoptosis, highlighting the existence of complex cross-talk between these different functions. Moreover, for the first time, we also observed that fish fed the MD diet at the first meal later exhibited an increase in several critical factors of mitophagy, hinting that the early nutritional stimulus with methionine deficiency resulted in long-term programming of this cell function. Together, these data extend our understanding of the role of dietary methionine and emphasize the potential for this amino acid in the application of new feeding strategies, such as nutritional programming, to optimize the nutrition and health of farmed fish.
KEY WORDS: Fish, Mitophagy, Mitochondria, ER stress, DNA and histone methylation, Nutritional programming
Andersen, S. M., Waagbø, R. and Espe, M. (2016). Functional amino acids in fish health and welfare. Front. Biosci. Elite 8, 143-169. doi:10.2741/e757
Anderson, O. S., Sant, K. E. and Dolinoy, D. C. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853-859. doi:10.1016/j.jnutbio.2012.03.003
Balasubramanian, M. N., Panserat, S., Dupont-Nivet, M., Quillet, E., Montfort, J., Le Cam, A., Medale, F., Kaushik, S. J. and Geurden, I. (2016). Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 17, 449. doi:10.1186/s12864-016-2804-1
Belghit, I., Skiba-Cassy, S., Geurden, I., Dias, K., Surget, A., Kaushik, S., Panserat, S. and Seiliez, I. (2014). Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 112, 493-503. doi:10.1017/S0007114514001226
Block, T. and El-Osta, A. (2017). Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis 266, 31-40. doi:10.1016/j. atherosclerosis.2017.09.003
Bouman, L., Schlierf, A., Lutz, A. K., Shan, J., Deinlein, A., Kast, J., Galehdar, Z., Palmisano, V., Patenge, N., Berg, D. et al. (2011). Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769-782. doi:10.1038/cdd.2010.142
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. doi:10.1016/0003-2697(76)90527-3
Burdge, G. C. and Lillycrop, K. A. (2010). Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. In Annual Review of Nutrition, Vol. 30, (ed. R. J. Cousins), pp. 315-339. Palo Alto: Annual Reviews.
Caballero, F., Ferna´ndez, A., Matias, N., Mart ´ inez, L., Fucho, R., Elena, M., ´ Caballeria, J., Morales, A., Ferna´ndez-Checa, J. C. and Garcia-Ruiz, C. ´ (2010). Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis impact on mitochondrial S-adenosyl-L-methionine and glutathione. J. Biol. Chem. 285, 18528-18536. doi:10.1074/jbc.M109.099333
Cohen, S. A. and Michaud, D. P. (1993). Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem. 211, 279-287. doi:10.1006/abio.1993.1270
Cook, R. J., Horne, D. W. and Wagner, C. (1989). Effect of dietary methyl group deficiency on one-carbon metabolism in rats. J. Nutr. 119, 612-617. doi:10.1093/ jn/119.4.612
Craig, P. M. and Moon, T. W. (2013). Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrateenriched diets. Br. J. Nutr. 109, 402-412. doi:10.1017/S0007114512001663
Eisenberg-Lerner, A., Bialik, S., Simon, H.-U. and Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16, 966-975. doi:10.1038/cdd.2009.33
Fang, L., Liang, X.-F., Zhou, Y., Guo, X.-Z., He, Y., Yi, T.-L., Liu, L.-W., Yuan, X.-C. and Tao, Y.-X. (2014). Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br. J. Nutr. 111, 808-818. doi:10.1017/S0007114513003243
Fontagne´-Dicharry, S., Godin, S., Liu, H., Prabhu, P. A. J., Bouyssiere, B., ` Bueno, M., Tacon, P., Me´dale, F. and Kaushik, S. J. (2015). Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stressrelated parameters in rainbow trout (Oncorhynchus mykiss) fry. Br. J. Nutr. 113, 1876-1887. doi:10.1017/S0007114515001300
Fontagne´-Dicharry, S., Alami-Durante, H., Aragao, C., Kaushik, S. J. and ~ Geurden, I. (2017). Parental and early-feeding effects of dietary methionine in rainbow trout (Oncorhynchus mykiss). Aquaculture 469, 16-27. doi:10.1016/j. aquaculture.2016.11.039
Gao, Z., Wang, X., Tan, C., Zhou, H., Mai, K. and He, G. (2019). Effect of dietary methionine levels on growth performance, amino acid metabolism and intestinal homeostasis in turbot (Scophthalmus maximus L.). Aquaculture 498, 335-342. doi:10.1016/j.aquaculture.2018.08.053
Geurden, I., Aramendi, M., Zambonino-Infante, J. and Panserat, S. (2007). Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R2275-R2283. doi:10.1152/ ajpregu.00444.2006
Geurden, I., Borchert, P., Balasubramanian, M. N., Schrama, J. W., DupontNivet, M., Quillet, E., Kaushik, S. J., Panserat, S. and Me´dale, F. (2013). The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE 8, e83162. doi:10.1371/journal.pone. 0083162
Geurden, I., Mennigen, J., Plagnes-Juan, E., Veron, V., Cerezo, T., Mazurais, D., Zambonino-Infante, J., Gatesoupe, J., Skiba-Cassy, S. and Panserat, S. (2014). High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J. Exp. Biol. 217, 3396-3406. doi:10.1242/jeb.106062
Good, C. A., Kramer, H. and Somogyi, M. (1933). The determination of glycogen. J. Biol. Chem. 100, 485-491. Guo, J., Yang, Z., Yang, X., Li, T., Liu, M. and Tang, H. (2018). miR-346 functions as a pro-survival factor under ER stress by activating mitophagy. Cancer Lett. 413, 69-81. doi:10.1016/j.canlet.2017.10.030
Karimi, M., Johansson, S., Stach, D., Corcoran, M., Grande´r, D., Schalling, M., Bakalkin, G., Lyko, F., Larsson, C. and Ekstro¨m, T. J. (2006). LUMA (LUminometric Methylation Assay)—a high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res. 312, 1989-1995. doi:10.1016/j.yexcr. 2006.03.006
Kim, R., Emi, M. and Tanabe, K. (2006). Role of mitochondria as the gardens of cell death. Cancer Chemother. Pharmacol. 57, 545-553. doi:10.1007/s00280-005- 0111-7
Lillycrop, K. A. and Burdge, G. C. (2012). Epigenetic mechanisms linking early nutrition to long term health. Best Pract. Res. Clin. Endocrinol. Metab. 26, 667-676. doi:10.1016/j.beem.2012.03.009
Liu, J., Dias, K., Plagnes-Juan, E., Veron, V., Panserat, S. and Marandel, L. (2017). Long-term programming effect of embryonic hypoxia exposure and highcarbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. J. Exp. Biol. 220, 3686-3694. doi:10.1242/jeb.161406
Llames, C. R. and Fontaine, J. (1994). Determination of amino acids in feeds: collaborative study. J. AOAC Int. 77, 1362-1402. Lucas, A. (1991). Programming by early nutrition in man. Ciba Found. Symp. 156, 38-50; discussion 50-55. doi:10.1002/9780470514047.ch4
Lucas, A. (1998). Programming by early nutrition: an experimental approach. J. Nutr. 128, 401S-406S. doi:10.1093/jn/128.2.401S
Ma, C., Niu, R., Huang, T., Shao, L.-W., Peng, Y., Ding, W., Wang, Y., Jia, G., He, C. and Li, C.-Y. (2019). N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation. Nat. Cell Biol. 21, 319. doi:10.1038/ s41556-018-0238-5
Maiuri, M. C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752. doi:10.1038/nrm2239
Mambrini, M., Roem, A. J., Carvedi, J. P., Lalle ` s, J. P. and Kaushik, S. J. ` (1999). Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J. Anim. Sci. 77, 2990-2999. doi:10.2527/1999.77112990x
Marchi, S., Patergnani, S. and Pinton, P. (2014). The endoplasmic reticulum– mitochondria connection: one touch, multiple functions. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837, 461-469. doi:10.1016/j.bbabio.2013.10.015
Marycz, K., Kornicka, K., Szlapka-Kosarzewska, J. and Weiss, C. (2018). Excessive endoplasmic reticulum stress correlates with impaired mitochondrial dynamics, mitophagy and apoptosis, in liver and adipose tissue, but not in muscles in EMS horses. Int. J. Mol. Sci. 19. doi:10.3390/ijms19010165
McGee, M., Bainbridge, S. and Fontaine-Bisson, B. (2018). A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes. Nutr. Rev. 76, 469-478. doi:10.1093/nutrit/nuy006
Niculescu, M. D. and Zeisel, S. H. (2002). Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J. Nutr. 132, 2333S-2335S. doi:10.1093/jn/132.8.2333S
Panserat, S., Marandel, L., Seiliez, I. and Skiba-Cassy, S. (2019). New insights on intermediary metabolism for a better understanding of nutrition in teleosts. Annu. Rev. Anim. Biosci. 7, 195-220. doi:10.1146/annurev-animal-020518-115250
Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36. doi:10.1093/ nar/30.9.e36
Rainbolt, T. K., Saunders, J. M. and Wiseman, R. L. (2014). Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol. Metab. 25, 528-537. doi:10.1016/j.tem.2014.06.007
Rees, W. D. (2002). Manipulating the sulfur amino acid content of the early diet and its implications for long-term health. Proc. Nutr. Soc. 61, 71-77. doi:10.1079/ PNS2001137
Seiliez, I., Belghit, I., Gao, Y., Skiba-Cassy, S., Dias, K., Cluzeaud, M., Re´mond, D., Hafnaoui, N., Salin, B., Camougrand, N. et al. (2016). Looking at the metabolic consequences of the colchicine-based in vivo autophagic flux assay. Autophagy 12, 343-356. doi:10.1080/15548627.2015.1117732
Seiliez, I., Ve´lez, E. J., Lutfi, E., Dias, K., Plagnes-Juan, E., Marandel, L., Panserat, S., Geurden, I. and Skiba-Cassy, S. (2017). Eating for two: Consequences of parental methionine nutrition on offspring metabolism in rainbow trout (Oncorhynchus mykiss). Aquaculture 471, 80-91. doi:10.1016/j. aquaculture.2017.01.010
Se´ite´, S., Mourier, A., Camougrand, N., Salin, B., Figueiredo-Silva, A. C., Fontagne´-Dicharry, S., Panserat, S. and Seiliez, I. (2018). Dietary methionine deficiency affects oxidative status, mitochondrial integrity and mitophagy in the liver of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 8, 10151. doi:10.1038/ s41598-018-28559-8
Se´ite´, S., Pioche, T., Ory, N., Plagnes-juan, E., Panserat, S. and Seiliez, I. (2019). The autophagic flux inhibitor bafilomycine a1 affects the expression of intermediary metabolism-related genes in trout hepatocytes. Front. Physiol. 10, 263. doi:10.3389/fphys.2019.00263
Senft, D. and Ronai, Z. A. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141-148. doi:10. 1016/j.tibs.2015.01.002
Skiba-Cassy, S., Geurden, I., Panserat, S. and Seiliez, I. (2016). Dietary methionine imbalance alters the transcriptional regulation of genes involved in glucose, lipid and amino acid metabolism in the liver of rainbow trout (Oncorhynchus mykiss). Aquaculture 454, 56-65. doi:10.1016/j.aquaculture. 2015.12.015
Szyman´ski, J., Janikiewicz, J., Michalska, B., Patalas-Krawczyk, P., Perrone, M., Zio´lkowski, W., Duszyn´ski, J., Pinton, P., Dobrzyn´, A. and Wie?ckowski, M. R. (2017). Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci. 18, E1576. doi:10.3390/ijms18071576
Tesseraud, S., Me´tayer Coustard, S., Collin, A. and Seiliez, I. (2009). Role of sulfur amino acids in controlling nutrient metabolism and cell functions: implications for nutrition. Br. J. Nutr. 101, 1132-1139. doi:10.1017/ S0007114508159025
Vagner, M., Robin, J. H., Zambonino-Infante, J. L., Tocher, D. R. and Person-Le Ruyet, J. (2009). Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways. Br. J. Nutr. 101, 1452-1462. doi:10.1017/S0007114508088053
Veron, V., Marandel, L., Liu, J., Ve´lez, E. J., Lepais, O., Panserat, S., Skiba, S. and Seiliez, I. (2018). DNA methylation of the promoter region of bnip3 and bnip3l genes induced by metabolic programming. BMC Genomics 19, 677. doi:10.1186/ s12864-018-5048-4
Waterland, R. A. (2006). Assessing the effects of high methionine intake on DNA methylation. J. Nutr. 136, 1706S-1710S. doi:10.1093/jn/136.6.1706S
Waterland, R. A. and Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63-68. doi:10.1016/j.nut.2003.09.011
Zhang, X., Yuan, Y., Jiang, L., Zhang, J., Gao, J., Shen, Z., Zheng, Y., Deng, T., Yan, H., Li, W. et al. (2014). Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury. Autophagy 10, 1801-1813. doi:10.4161/auto.32136